Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66.878
Filtrar
1.
J Contemp Dent Pract ; 21(6): 636-639, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33025932

RESUMO

AIM: Variation in the surface roughness of archwires not only leads to more accumulation of plaque but also modifies the coefficient of friction. This necessitated for the present study to evaluate the surface characteristics of 0.016 × 0.022-inch nickel-titanium, beta-titanium, and copper-nickel-titanium archwires, before and after their use in the oral cavity using atomic force microscopy. MATERIALS AND METHODS: The control and experimental samples were measured at three different positions under atomic force microscopy. The surface roughness was measured using roughness average, root mean square, and maximum height before and after use in the oral cavity among 60 adult participants. Data were analyzed using a one-way analysis of variance and Student's t tests using the Statistical Package for Social Software (SPSS) v.20.0. RESULTS: The surface roughness of archwires increased considerably after their clinical use compared to controls for nickel-titanium (p = 0.013) and beta-titanium (p = 0.002). A similar trend was noticed for root mean square where nickel-titanium (p = 0.014) and beta-titanium (p = 0.013) had increased root mean square. Maximum height was also noticed in nickel-titanium (p = 0.031) and beta-titanium (p = 0.016). CONCLUSION: Surface roughness and the level of friction of the orthodontic wires increase significantly for nickel-titanium and beta-titanium after the clinical use. There is a difference in increase of surface roughness of the archwire within and between the bracket slots. CLINICAL SIGNIFICANCE: Nickel-titanium and beta-titanium wires show more roughness and resultant higher friction levels after use in the oral cavity. Hence, care related to plaque accumulation is essential.


Assuntos
Cobre , Níquel , Ligas Dentárias , Humanos , Teste de Materiais , Propriedades de Superfície , Titânio
2.
J Environ Sci (China) ; 97: 35-44, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32933738

RESUMO

Few studies have been carried out to connect nutrient recovery as struvite from wastewater and sustainable utilization of the recovered struvite for copper and zinc immobilization in contaminated soil. This study revealed the effect of struvite on Cu and Zn immobilization in contaminated bio-retention soil in the presence of commonly exuded plant organic acids. The research hypothesis was that the presence of both struvite and organic acids may influence the immobilization of Cu and Zn in soil. The outcome of this research confirmed that more than 99% of Cu and Zn was immobilized in bio-retention filter media by struvite application. Water-soluble Cu and Zn concentrations of struvite treated soil were less than 1.83 and 0.86 mg/kg respectively, and these concentrations were significantly lower compared to the total Cu and Zn content of 747.05 mg/kg in the contaminated soil. Application of struvite to Cu- and Zn-contaminated soil resulted in formation of compounds similar to zinc phosphate tetrahydrate (Zn3(PO4)2•4H2O) and amorphous Cu and Zn phases. Struvite was effective in heavy metal remediation in acidic soil regardless of the presence of Ca impurities in struvite and the presence of plant organic acids in soil. Overall, this study revealed that struvite recovered from wastewater treatment plants has potential for use as an amendment for heavy metal remediation in contaminated bio-retention soil.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Cobre , Solo , Estruvita , Zinco
3.
Sci Total Environ ; 740: 140140, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927548

RESUMO

This study proposed a framework (termed as "nanoHealthRisk" hereafter) for incorporating i) interaction of nanoparticles (NPs) with fishes, ii) availability of NPs to the human digestive system, and iii) estimation of health risk due to fish consumption and inadvertent ingestion of NP-contaminated surface water, for the first time as per the literature review. The framework was applied for estimating health risks due to hypothetical exposures of pristine ZnO, CuO, and TiO2 NPs (without any surface functionalization) from fish tissues. Values of bio- concentration factors (BCF) of ZnO, CuO, and TiO2 NPs in fish and model distributions of bio-assimilation factor of ZnO, CuO and TiO2 NPs in the human digestive system were incorporated explicitly in the risk assessment of NPs for the first time. ZnO NP was observed to be transferred more to the human digestive system from aqueous matrix than the other two NPs. Maximum allowable values of NP posing no risk were found to be 0.115 mg/L, 0.152 mg/L, and 1.77 × 107 mg/L for pristine ZnO, CuO and TiO2 NP, respectively. At the environmental concentration range, exposures of studied NPs from aquatic environment under the assumptions used did not pose any health risk under the conditions studied in this study. More work is required to (1) Estimate bio-concentration factors of a mixture of NPs with other constituents in fish tissues, (2) Estimate dissolution of NP from fish tissue in human digestive media, (3) Generate new data to develop reference dose of NP for human health risk assessment, and (4) Study effect of NP fate in the water on health risk through fish consumption pathway. Until all above-mentioned aspects are not explicitly incorporated in the risk assessment framework, risk estimates do not represent the risk from environment completely. Thus, continuous monitoring of these NPs in the environment is required to protect health due to chronic exposure of small concentrations of NPs from an aqueous matrix.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Cobre , Peixes , Humanos , Água
4.
Environ Monit Assess ; 192(10): 639, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929590

RESUMO

Soil and the dominant plant species in the vicinity of Khatoon Abad copper smelter in Kerman province of Iran are examined to determine contamination, bioavailability, and ecological-health risk of potentially toxic elements (PTEs) based on 23 collected soil samples and 13 Artemisia siebri plant species. Cu, Mo, As, and Sb display a significant level of enrichment in soil. Ecological risk assessment shows that Cu, As, and Cd pose the highest ecological risk. The results of PTEs fractionation reveal that, on average, Cu, As, Cd, Pb, Zn, and Mo are mostly distributed between non-residual fractions reflecting higher mobility and potential ecological risk, while Cr, Ni, and Co are significantly distributed within the residual fraction, and do not pose a serious ecological risk. Mobility factor suggests high bioavailability of Cu for plants followed by As, Cd, Pb, Mo, Co, Ni, and Cr. Biological accumulation coefficient displays higher phytoavailability of Mo and Cd. PTEs transfer within plant follows the order of Mo > As > Pb > Zn > Cu > Ni > Co > Cr > Cd. The results of phytoavailability indicate the high tendency of Cd to bioaccumulate in Artemisia's root, while Mo, As, and Pb tend to translocate towards Artemisia's shoot. Calculated hazard index and incremental lifetime cancer risk revealed that As poses the highest non-carcinogenic health risk, and As and Pb pose the greatest carcinogenic health risk in both adults and children.


Assuntos
Metais Pesados/análise , Poluentes do Solo/análise , Adulto , Disponibilidade Biológica , Criança , Cobre , Monitoramento Ambiental , Humanos , Irã (Geográfico) , Medição de Risco , Solo
5.
Anticancer Res ; 40(10): 5399-5404, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988859

RESUMO

BACKGROUND/AIM: The aim of the present study was to investigate whether idarubicin (IDR) induces oxidative DNA damage in the presence of copper (II). MATERIALS AND METHODS: DNA damage was evaluated by pBR322 plasmid DNA cleavage. The formation of oxidative stress markers [O2 •- and 8-hydroxy-2'-deoxyguanosine (8-OHdG)] was analysed. RESULTS: IDR induced DNA damage and O2 •- and 8-OHdG generation in the presence of copper (II). CONCLUSION: IDR induced oxidative DNA damage in the presence of copper (II). Since it has been reported that the concentration of copper in the serum of cancer patients is higher than that in healthy groups, IDR-induced oxidative DNA damage in the presence of copper (II) may play an important role in anticancer therapeutic strategies.


Assuntos
Antraciclinas/farmacologia , Idarubicina/farmacologia , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Antraciclinas/química , Cobre/química , Dano ao DNA/efeitos dos fármacos , Humanos , Idarubicina/química , Neoplasias/genética , Neoplasias/patologia , Espécies Reativas de Oxigênio/química , Superóxido Dismutase/genética
6.
J Toxicol Sci ; 45(9): 539-548, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879253

RESUMO

We investigated the mechanism underlying intestinal cadmium (Cd) uptake based on the mediators (metal transporters) of essential elements, such as Fe, Zn, Cu, and Ca, under normal conditions in female rats. These elements interact with Cd uptake from the intestinal tract. Cd concentration at each site of the small intestine (duodenum, jejunum, and ileum) increased as Cd exposure increased. However, Cd concentration was the highest in the duodenum. The gene expression of ZIP14, DMT1, and ATP7A increased with increase in Cd concentration. Further, Cu concentration decreased as Cd concentration increased. In contrast, Fe concentration displayed a decreasing tendency with the increase in Cd concentration. The gene expression levels of ZIP14, DMT1, and ATP7A were positively correlated with Cd concentration. Immunohistochemical staining revealed the positive sites of ZIP14 and DMT1 scattered in the area adjacent to the goblet cells, resorbable epithelial cells, and lamina propria in the duodenum tissue, according to the increase in Cd concentration. Cd is induced to synthesize and bind to metallothionein (MT-I and -II) and accumulate in the intestinal tissues, mainly in the duodenum. Such findings suggest that Cd, a contaminant element, is taken up from the intestinal tract by multiple metal transporters such as Cu, Fe, and Zn, thereby involving in the intestinal Cd absorption.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Absorção Intestinal/genética , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Cobre , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Duodeno/metabolismo , Feminino , Expressão Gênica , Ferro , Metalotioneína/metabolismo , Ratos , Zinco
7.
Chemosphere ; 254: 126763, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957263

RESUMO

Epidemiologic studies suggest that circulating metals from the natural environment are linked with cardiometabolic health. However, few studies examined the relationship between multiple metals exposure and metabolic phenotypes, especially in obese individuals. We conducted a cross-sectional study to explore the association between 23 urinary metals and metabolic phenotypes in 1392 overweight and obese individuals (592 males, 800 females, mean age 43.1 ± 9.8 years). Participants were classified as metabolically unhealthy if they had ≥2 of the following metabolic abnormalities: elevated blood pressure, elevated fasting blood glucose, elevated triglycerides, and reduced high-density lipoprotein cholesterol. Odds ratios (ORs) of unhealthy metabolic phenotypes for metal levels categorized into tertiles were assessed using logistic regression models. Five metals (barium, copper, iron, uranium, and zinc) were associated with unhealthy metabolic phenotypes in single-metal models, while in the multiple-metal model, only zinc and zinc-copper ratio remained significant. The ORs (95% CIs) comparing extreme tertiles were 2.57 (1.69, 3.89) for zinc and 1.68 (1.24, 2.27) for zinc-copper ratio after adjustment for confounders (both p-trends were <0.001). The numbers of metabolic abnormalities significantly increased with the levels of zinc and the zinc-copper ratio increased. Similar associations were observed with metabolic syndrome risk. High levels of urinary zinc were positively associated with elevated fasting blood glucose (p-trend < 0.001) and elevated triglycerides (p-trend = 0.003). The results suggest that urinary zinc and zinc-copper ratio are positively associated with increased risk of unhealthy metabolic phenotype. Further prospective studies with a larger sample size are required to verify these findings.


Assuntos
Exposição Ambiental , Metais/urina , Obesidade , Adulto , HDL-Colesterol , Cobre , Estudos Transversais , Feminino , Humanos , Ferro , Modelos Logísticos , Masculino , Síndrome Metabólica , Pessoa de Meia-Idade , Razão de Chances , Sobrepeso , Fenótipo , Estudos Prospectivos , Zinco
8.
Bull Environ Contam Toxicol ; 105(4): 553-558, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32918155

RESUMO

The aim of this study was to evaluate, through nonlinear regression models, the initial development of soybean (Glycine max L. Merr. cv. BRS 257) in soil supplemented with different copper levels. The experiment was performed in a greenhouse under natural light and temperature conditions. The seeds were sowed in soil containing different copper levels (11.20, 32.28, 52.31, 64.51, 79.42, 117.70, 133.53, 144.32, or 164.00 mg kg- 1). Germination percentage was not affected by the increase of copper content in the soil, but there was a delay in the germination process. There was no influence of copper levels on the seedling emergence speed index until 98.42 mg kg- 1; however, higher copper amounts reduced this parameter. Low copper concentrations increased plant development, but higher concentrations compromised mainly root growth. Overall, these results suggest that copper supplementation in the soil exerted dose-dependent dual effects on soybean seedlings.


Assuntos
Cobre/efeitos adversos , Germinação/efeitos dos fármacos , Poluentes do Solo/efeitos adversos , Soja/efeitos dos fármacos , Relação Dose-Resposta a Droga , Dinâmica não Linear , Análise de Regressão , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Solo/química , Soja/crescimento & desenvolvimento
9.
Yakugaku Zasshi ; 140(9): 1101-1106, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32879242

RESUMO

Organoselenium compounds have attracted significant interest because of their use as important reagents in organic syntheses and potential biological activities, necessitating the development of simple and general synthetic methods. This article reviews our studies to develop of copper-catalyzed C-Se bond formation reactions via cross coupling and C-H activation. A number of unsymmetrical and symmetrical diaryl selenides were synthesized via Se-arylation of diaryl diselenides or selenium powder with triarylbismuthanes under aerobic conditions, achieving moderate to excellent yields. When the reaction of triphenylbismuthane with elemental Se was monitored with gas chromatography, diphenyl diselenide and diphenyl selenide formation was confirmed. Subsequently, 1-pot 2-step reactions were performed under mild conditions to obtain 3-selanyl imidazo[1,2-a]pyridines from triarylbismuthanes and diimidazopyridyl diselenides, which were generated from imidazo[1,2-a]pyridines and Se powder, in good to excellent yields. It should be noted that all three aryl groups in the bismuth and both selanyl groups in the diaryl diselenide generated from the selenium source were transferred to the coupling products. Cu-catalyzed tandem cyclization of 2-(2-iodophenyl)imidazo[1,2-a]pyridines with selenium for the synthesis of benzo[b]selenophene-fused imidazo[1,2-a]pyridines is also described herein. The molecular structure of the tetracyclic compound features nearly coplanar rings, and the maximum absorption is red-shifted compared to those of imidazo[1,2-a]pyridine and benzoselenophene.


Assuntos
Carbono/química , Cobre/química , Hidrogênio/química , Compostos Organosselênicos/síntese química , Catálise , Ciclização , Ligação de Hidrogênio , Fenômenos de Química Orgânica
10.
Ecotoxicol Environ Saf ; 203: 111001, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32888585

RESUMO

Environmental nanomaterials contamination is a great concern for organisms including human. Copper oxide nanoparticles (CuO NPs) are widely used in a huge range of applications which might pose potential risk to organisms. This study investigated the in vivo transgenerational toxicity on development and reproduction with parental CuO NPs exposure in the nematode Caenorhabditis elegans. The results showed that CuO NPs (150 mg/L) significantly reduced the body length of parental C. elegans (P0). Only about 1 mg/L Cu2+ (~0.73%) were detected from 150 mg/L CuO NPs in 0.5X K-medium after 48 h. In transgenerational assays, CuO NPs (150 mg/L) parental exposure significantly induced developmental and reproductive toxicity in non-exposed C. elegans progeny (CuO NPs free) on body length (F1) and brood size (F1 and F2), respectively. In contrast, parental exposure to Cu2+ (1 mg/L) did not cause transgenerational toxicity on growth and reproduction. This suggests that the transgenerational toxicity was mostly attributed to the particulate form of CuO NPs. Moreover, qRT-PCR results showed that the mRNA levels of met-2 and spr-5 genes were significantly decreased at P0 and F1 upon only maternal exposure to CuO NPs (150 mg/L), suggesting the observed transgenerational toxicity was associated with possible epigenetic regulation in C. elegans.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Cobre/toxicidade , Epigênese Genética/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Feminino , Humanos , Exposição Materna/efeitos adversos , Reprodução/efeitos dos fármacos , Reprodução/genética
11.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3694-3699, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893560

RESUMO

Forsythiae Fructus is divided into Qingqiao and Laoqiao due to different harvesting periods. So far, the accumulation of heavy metals in the two types of Forsythiae Fructus has not been reported. In this study, the residual levels of copper(Cu), lead(Pb), chromium(Cr), arsenic(As), cadmium(Cd) and mercury(Hg) in 29 batches of Laoqiao and 60 batches of Qingqiao were determined by inductively coupled plasma mass spectrometry(ICP-MS). The samples were collected from Shanxi, Shaanxi, Henan, and Hebei Provinces. In addition, the diversity and correlation of harmful elements in Qingqiao and Laoqiao were analyzed by multivariate statistical method. Furthermore, principal component analysis(PCA) was used to analyze the harmful elements concentrations of Qingqiao and Laoqiao. The results showed that there was a significant difference on the residual levels of heavy metals and harmful elements between Qingqiao and Laoqiao. Among them, the content of Pb in Laoqiao is significantly higher than that in Qingqiao(P<0.01), while the content of Cu is significantly lower than that in Qingqiao. However, the difference in harmful elements among different producing areas of Forsythiae Fructus is not significant. PCA analysis showed that Qingqiao and Laoqiao were successfully grouped into two categories. This study suggests significant difference in the residual levels of heavy metals and harmful elements between Qingqiao and Laoqiao. Besides, Forsythiae Fructus has a certain enrichment of Pb in the fruit ripening stage(Laoqiao). This study provides a reference for the quality classification and safety of Forsythiae Fructus.


Assuntos
Arsênico , Medicamentos de Ervas Chinesas , Metais Pesados , Cobre
12.
Chemosphere ; 254: 126873, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32957285

RESUMO

The removal of organic pollutants from water is highly desired because of the development of industrial and social economy. Superhydrophilic and underwater superoleophobic membranes are emerging materials for effective oil/water separation. In this paper, superhydrophilic and underwater superoleophobic polypropylene (PP) melt-blown membranes were prepared through melt-blown and in situ growth method, achieving highly efficient oil/water separation. After in situ growth, polydopamine (PDA) grows on the surface of PP fibers, and the addition of coupling agent (3-aminopropyltriethoxysilane, APTES) can improve the stability of the membrane in harsh environments (1 M HCl, 1 M NaOH, 1 M NaCl). The PDA/APTES@PP membrane could dramatically enhance the wetting (water contact angle ∼0, underwater oil contact angle∼154°) compare with the pristine PP melt-blown membrane (water contact angle ∼130°, underwater oil contact angle ∼0). Moreover, the filtration performance is at a high level (∼99%). The behaviors are comparable or even superior to the typical reported results in the references (such as the mussel-inspired superhydrophilic PVDF membrane and copper mesh). This method provides a facile route to prepared multi-functional membrane for highly efficiency oil/water separation and industrial oily wastewater remediation.


Assuntos
Indóis/análise , Polímeros/análise , Cobre , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Óleos , Águas Residuárias , Água , Purificação da Água , Molhabilidade
13.
Nat Commun ; 11(1): 4557, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917908

RESUMO

Why metalloenzymes often show dramatic changes in their catalytic activity when subjected to chemically similar but non-native metal substitutions is a long-standing puzzle. Here, we report on the catalytic roles of metal ions in a model metalloenzyme system, human carbonic anhydrase II (CA II). Through a comparative study on the intermediate states of the zinc-bound native CA II and non-native metal-substituted CA IIs, we demonstrate that the characteristic metal ion coordination geometries (tetrahedral for Zn2+, tetrahedral to octahedral conversion for Co2+, octahedral for Ni2+, and trigonal bipyramidal for Cu2+) directly modulate the catalytic efficacy. In addition, we reveal that the metal ions have a long-range (~10 Å) electrostatic effect on restructuring water network in the active site. Our study provides evidence that the metal ions in metalloenzymes have a crucial impact on the catalytic mechanism beyond their primary chemical properties.


Assuntos
Anidrases Carbônicas/química , Íons/química , Metaloproteínas/química , Metais/química , Sítios de Ligação , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Anidrases Carbônicas/metabolismo , Catálise , Domínio Catalítico , Cobalto/química , Cobre/química , Cristalografia por Raios X , Humanos , Íons/metabolismo , Cinética , Metaloproteínas/metabolismo , Metais/metabolismo , Modelos Moleculares , Níquel/química , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Zinco/química
14.
PLoS One ; 15(9): e0238385, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32936810

RESUMO

A lack of replicable test systems that realistically simulate hot water premise plumbing conditions at the laboratory-scale is an obstacle to identifying key factors that support growth of opportunistic pathogens (OPs) and opportunities to stem disease transmission. Here we developed the convectively-mixed pipe reactor (CMPR) as a simple reproducible system, consisting of off-the-shelf plumbing materials, that self-mixes through natural convective currents and enables testing of multiple, replicated, and realistic premise plumbing conditions in parallel. A 10-week validation study was conducted, comparing three pipe materials (PVC, PVC-copper, and PVC-iron; n = 18 each) to stagnant control pipes without convective mixing (n = 3 each). Replicate CMPRs were found to yield consistent water chemistry as a function of pipe material, with differences becoming less discernable by week 9. Temperature, an overarching factor known to control OP growth, was consistently maintained across all 54 CMPRs, with a coefficient of variation <2%. Dissolved oxygen (DO) remained lower in PVC-iron (1.96 ± 0.29 mg/L) than in PVC (5.71 ± 0.22 mg/L) or PVC-copper (5.90 ± 0.38 mg/L) CMPRs as expected due to corrosion. Further, DO in PVC-iron CMPRs was 33% of that observed in corresponding stagnant pipes (6.03 ± 0.33 mg/L), demonstrating the important role of internal convective mixing in stimulating corrosion and microbiological respiration. 16S rRNA gene amplicon sequencing indicated that both bulk water (Padonis = 0.001, R2 = 0.222, Pbetadis = 0.785) and biofilm (Padonis = 0.001, R2 = 0.119, Pbetadis = 0.827) microbial communities differed between CMPR versus stagnant pipes, consistent with creation of a distinct ecological niche. Overall, CMPRs can provide a more realistic simulation of certain aspects of premise plumbing than reactors commonly applied in prior research, at a fraction of the cost, space, and water demand of large pilot-scale rigs.


Assuntos
Água Potável/efeitos adversos , Água Potável/microbiologia , Engenharia Sanitária/instrumentação , Microbiologia da Água , Biofilmes/crescimento & desenvolvimento , Fenômenos Químicos , Cobre/química , Desenho de Equipamento , Humanos , Ferro/química , Microbiota/genética , Modelos Biológicos , Infecções Oportunistas/etiologia , Infecções Oportunistas/microbiologia , Cloreto de Polivinila/química , RNA Ribossômico 16S/genética , Temperatura , Abastecimento de Água
15.
Ecotoxicol Environ Saf ; 205: 111334, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961486

RESUMO

In order to investigate and model toxicity and interactions between metals in mixtures, inhibition of wheat root elongation in response to additions of single-metals of copper (Cu), zinc (Zn), and nickel (Ni) and of binary mixed-metal combinations of Cu-Ni and Zn-Ni was tested, using water culture experiments under different Mg concentrations and pH values. A biotic ligand model (BLM) of single-metal Cu, Zn, and Ni was established. The results showed that the toxicity of Cu, Zn or Ni in isolation decreased with increasing Mg concentration whereas the effects of pH on Cu, Zn, or Ni toxicity were related not only to free Cu2+, Zn2+, and Ni2+ concentrations, but also to inorganic metal complexes. In binary mixtures, the two metals in the Cu-Ni mixture showed a weakly antagonistic effect, whereas the two metals in the Zn-Ni mixture showed greater antagonism. Using data from single-metal Cu, Zn, and Ni BLMs, combined with the toxicity index and the overall amounts of metal ions bound to the biotic ligands, one simple model was developed. This model consisted of the toxic unit (TUM, no competition included) and two extended BLMs, BLM-TUf (f as a function of TU, including competition between Mg2+ and metal ions) and BLM-fmix (including the competition between Mg2+ and metal ions, as well as between free metal ions). They were then used to predict the joint toxicity of Cu-Ni and Zn-Ni binary mixtures to wheat. Both of the extended BLMs could provide more accurate predictions of toxic effects of Cu-Ni and Zn-Ni than TUM. BLM-fmix performed best for the Zn-Ni binary mixture (r2 = 0.93; root-mean-square error, RMSE = 9.87). On the other hand, for the Cu-Ni mixture, the predictive effect based on BLM-TUf (r2 = 0.93; RMSE = 9.60) was similar to that of BLM-fmix (r2 = 0.93; RMSE = 9.56). The results provide a theoretical basis for the evaluation and remediation of soils contaminated with mixtures of heavy metals.


Assuntos
Cobre/toxicidade , Modelos Biológicos , Níquel/toxicidade , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Zinco/toxicidade , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Ligantes , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento
16.
Science ; 369(6505): 775-776, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32792386
17.
J Environ Manage ; 271: 111013, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778296

RESUMO

The copper production process causes waste and by-products called waste copper slag (WCS). A considerable amount of WCS is produced globally. This research aims to utilise WCS as an alternative to natural coarse aggregate in self-compacting concrete (SCC). To achieve this goal, WCS was utilised in different percentages (0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100%) as a natural coarse aggregate replacement in SCC production. Following this, the fresh, mechanical, and durability characteristics of SCCs incorporating WCS as a partial replacement of coarse aggregates were investigated in-depth. Incorporating 100% WCS as coarse aggregates in SCCs showed 27%, 29%, and 26% growth in compressive, split, and flexural strengths in 28 days, respectively. The reduction of free drying shrinkage of the mixture containing 100% WCS compared to the control mixture was approximately 36%, and the water absorption of all the specimens was less than 6%. Further, the increase in weight for the mixture containing 100% WCS as coarse aggregates was less than 15% compared to the control mixture. A cost analysis of the SCCs showed that incorporating WCS for all coarse aggregates reduced production costs by 19%. Investigating the economic index of concrete containing WCS as a coarse aggregate showed that utilising the WCS in green SCC was feasible.


Assuntos
Materiais de Construção , Cobre , Força Compressiva , Conservação dos Recursos Naturais , Água
18.
Ecotoxicol Environ Saf ; 202: 110913, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800248

RESUMO

Soil is considered as a sink for heavy metals. Human health is severely affected by the continuous intake of toxic heavy metals even in a very low concentration. In the present experiment, we determined the influence of nutritional status including control (fasted condition), glucose (fed state), plant protein (fed state), animal protein (fed state) and calcium (fed state) on soil cadmium (Cd) and copper (Cu) bioaccessibility using physiologically-based extraction test (PBET) method together with simulator of the human intestinal microbial ecosystem (SHIME) model. The bioaccessibility of Cd was 1.06-73.58%, 0.44-54.79% and 0-17.78% and Cu was 3.81-67.32%, 4.98-71.14%, and 0-17.54% in the phase-I, phase-II and Phase-III respectively (in this study gastric phase, small intestinal phase and colon phase were considered as phase-I, phase-II and Phase-III respectively). The outcomes showed that, the average Cd bioaccessibility was higher with animal protein addition compared with other treatments in different phases. So, the effect of animal protein on Cd bioaccessibility was higher than other treatments in the phase-I, phase-II and phase-III. Due to the addition of plant protein, the higher average bioaccessibility of Cu was noticed in phase-I and phase-II in comparison to other treatments. However, in phase-III, the higher average bioaccessibility of Cu was found due to control treatment comparing with other treatments. Therefore, the influence of plant protein was higher than other nutrients on Cu bioaccessibility in the phase-I and phase-II. Moreover, other nutrients showed variable influence on Cd and Cu bioaccessibility. So, nutritional status has a significant effect on bioaccessibility as well as human health risk assessment.


Assuntos
Cádmio/análise , Cobre/análise , Poluentes do Solo/análise , Ecossistema , Monitoramento Ambiental/métodos , Poluição Ambiental , Humanos , Intestinos/química , Metais Pesados , Nutrientes , Solo
19.
PLoS Pathog ; 16(8): e1008856, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845936

RESUMO

Copper and superoxide are used by the phagocytes to kill bacteria. Copper is a host effector encountered by uropathogenic Escherichia coli (UPEC) during urinary tract infection in a non-human primate model, and in humans. UPEC is exposed to higher levels of copper in the gut prior to entering the urinary tract. Effects of pre-exposure to copper on bacterial killing by superoxide has not been reported. We hypothesized that copper-replete E. coli is more sensitive to killing by superoxide in vitro, and in activated macrophages. We utilized wild-type UPEC strain CFT073, and its isogenic mutants lacking copper efflux systems, superoxide dismutases (SODs), regulators of a superoxide dismutase, and complemented mutants to address this question. Surprisingly, our results reveal that copper protects UPEC against killing by superoxide in vitro. This copper-dependent protection was amplified in the mutants lacking copper efflux systems. Increased levels of copper and manganese were detected in UPEC exposed to sublethal concentration of copper. Copper activated the transcription of sodA in a SoxR- and SoxS-dependent manner resulting in enhanced levels of SodA activity. Importantly, pre-exposure to copper increased the survival of UPEC within RAW264.7 and bone marrow-derived murine macrophages. Loss of SodA, but not SodB or SodC, in UPEC obliterated copper-dependent protection from superoxide in vitro, and from killing within macrophages. Collectively, our results suggest a model in which sublethal levels of copper trigger the activation of SodA and SodC through independent mechanisms that converge to promote the survival of UPEC from killing by superoxide. A major implication of our findings is that bacteria colonizing copper-rich milieus are primed for efficient detoxification of superoxide.


Assuntos
Cobre/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Superóxidos/toxicidade , Infecções Urinárias/tratamento farmacológico , Escherichia coli Uropatogênica/efeitos dos fármacos , Animais , Infecções por Escherichia coli/induzido quimicamente , Infecções por Escherichia coli/microbiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Superóxido Dismutase/genética , Infecções Urinárias/induzido quimicamente , Infecções Urinárias/microbiologia
20.
Ecotoxicol Environ Saf ; 205: 111089, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810645

RESUMO

Early molecular events after the exposure of heavy metals, such as aberrant DNA methylation, suggest that DNA methylation was important in regulating physiological processes for animals and accordingly could be used as environmental biomarkers. In the present study, we found that copper (Cu) exposure increased lipid content and induced the DNA hypermethylation at the whole genome level. Especially, Cu induced hypermethylation of glucose-regulated protein 78 (grp78) and peroxisome proliferator-activated receptor gamma coactivator-1α (pgc1α). CCAAT/enhancer binding protein α (C/EBPα) could bind to the methylated sequence of grp78, whereas C/EBPß could not bind to the methylated sequence of grp78. These synergistically influenced grp78 expression and increased lipogenesis. In contrast, DNA methylation of PGC1α blocked the specific protein 1 (SP1) binding and interfered mitochondrial function. Moreover, Cu increased reactive oxygen species (ROS) production, activated endoplasmic reticulum (ER) stress and damaged mitochondrial function, and accordingly increased lipid deposition. Notably, we found a new toxicological mechanism for Cu-induced lipid deposition at DNA methylation level. The measurement of DNA methylation facilitated the use of these epigenetic biomarkers for the evaluation of environmental risk.


Assuntos
Carpas/fisiologia , Cobre/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Carpas/metabolismo , Cobre/metabolismo , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Lipídeos , Metilação , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA