Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.784
Filtrar
1.
Food Res Int ; 188: 114467, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823836

RESUMO

Cellulose-based packaging has received great attention due to its characteristics of biodegradability, sustainability, and recyclability. Natural polymer coatings are usually applied to the paper surface to enhance the barriers to water vapour and improve the mechanical properties. A chitosan-based coating for paper packaging was developed in this work to store specialty roasted coffee beans, evaluating two samples of chitosan (Sigma® and molasses chitosan), and following the physico-chemical and microbiological characteristics of coffee beans along a period of 60 days. Sensory tests (Ranking Descriptive Analysis and Preference Test) were applied to the beverage prepared with the roasted and ground coffee beans stored in each packaging. Thin chitosan films provided good coverage and adhesion on the paper. Improved mechanical properties and lower water permeability were observed in the chitosan-coated papers. The physicochemical and microbiological characteristics of the coffee beans were not influenced by the packaging along 60 days of storage. The molasses chitosan coating resulted in slightly darker roasted beans. In sensory evaluation, there is a clear difference between the chitosan samples, so that molasses chitosan-coated packaging had higher scores compared to Sigma® chitosan treatment for flavor and global impression in the preference analysis of the beverage. The molasses chitosan-coated packaging had three to four more consumers attributing the highest scores for the beverage prepared with the roasted beans stored in this type of packaging.


Assuntos
Quitosana , Embalagem de Alimentos , Papel , Quitosana/química , Embalagem de Alimentos/métodos , Café/química , Bebidas/análise , Sementes/química , Sementes/microbiologia , Humanos , Paladar , Coffea/química , Coffea/microbiologia , Comportamento do Consumidor , Permeabilidade
2.
Food Res Int ; 188: 114500, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823879

RESUMO

Located in Brazil's Central Plateau, the Cerrado Savannah is an emerging coffee-growing region with significant potential for the national coffee market. This study investigated the impact of potassium fertilization on Arabica coffee quality in the Cerrado, using three potassium sources (K2SO4, KCl, and KNO3) and five cultivars (Arara, Aranãs, IPR103, Catiguá and Topázio) across two consecutive harvests. We focused on productivity, granulometry, chemical composition, and sensory characteristics. No significant difference in productivity across the cultivars studied or potassium sources as isolated factors were observed. Regarding chemical parameters, potassium sources only affected NO3- and SO42- levels in the grains. Cultivar-specific differences were noted in caffeine (CAF), citric acid (CA), and sucrose (SUC), highlighting a strong genetic influence. K2SO4 improved productivity in Arara (15 %) and IPR103 (11 %), while KNO3 reduced flat grain percentage to 70 % in Catiguá. Sensory evaluation showed that all potassium sources and cultivars produced specialty coffees, with the Arara cultivar treated with K2SO4 achieving the highest SCA score (83.3) while IPR 103 treated with KCl scored the lowest at 78. Only three treatments were below but very close to the threshold (80). Multivariate analysis indicated a trend where specific treatments correlated with higher productivity and quality. Despite the subtle differences in productivity and quality among potassium sources, a cost-benefit analysis may favor KCl due to its affordability, suggesting its viability as a potassium fertilization option in coffee cultivation. Future research is needed to confirm these trends and optimize potassium source selection to enhance coffee quality in the Cerrado.


Assuntos
Coffea , Potássio , Brasil , Coffea/química , Coffea/crescimento & desenvolvimento , Potássio/análise , Sementes/química , Sementes/crescimento & desenvolvimento , Café/química , Paladar , Fertilizantes , Humanos , Cafeína/análise
3.
Sci Rep ; 14(1): 13342, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858425

RESUMO

Yemeni smallholder coffee farmers face several challenges, including the ongoing civil conflict, limited rainfall levels for irrigation, and a lack of post-harvest processing infrastructure. Decades of political instability have affected the quality, accessibility, and reputation of Yemeni coffee beans. Despite these challenges, Yemeni coffee is highly valued for its unique flavor profile and is considered one of the most valuable coffees in the world. Due to its exclusive nature and perceived value, it is also a prime target for food fraud and adulteration. This is the first study to identify the potential of Near Infrared Spectroscopy and chemometrics-more specifically, the discriminant analysis (PCA-LDA)-as a promising, fast, and cost-effective tool for the traceability of Yemeni coffee and sustainability of the Yemeni coffee sector. The NIR spectral signatures of whole green coffee beans from Yemeni regions (n = 124; Al Mahwit, Dhamar, Ibb, Sa'dah, and Sana'a) and other origins (n = 97) were discriminated with accuracy, sensitivity, and specificity ≥ 98% using PCA-LDA models. These results show that the chemical composition of green coffee and other factors captured on the spectral signatures can influence the discrimination of the geographical origin, a crucial component of coffee valuation in the international markets.


Assuntos
Coffea , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Coffea/química , Análise Discriminante , Café/química , Sementes/química
4.
Commun Biol ; 7(1): 714, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858451

RESUMO

The reality for conservation of biodiversity across our planet is that all ecosystems are modified by humans in some way or another. Thus, biodiversity conservation needs to be implemented in multifunctional landscapes. In this paper we use a fascinating coffee-dominated landscape in southwest Ethiopia as our lens to derive general lessons for biodiversity conservation in a post-wild world. Considering a hierarchy of scales from genes to multi-species interactions and social-ecological system contexts, we focus on (i) threats to the genetic diversity of crop wild relatives, (ii) the mechanisms behind trade-offs between biodiversity and agricultural yields, (iii) underexplored species interactions suppressing pest and disease levels, (iv) how the interactions of climate change and land-use change sometimes provide opportunities for restoration, and finally, (v) how to work closely with stakeholders to identify scenarios for sustainable development. The story on how the ecology and evolution of coffee within its indigenous distribution shape biodiversity conservation from genes to social-ecological systems can inspire us to view other landscapes with fresh eyes. The ubiquitous presence of human-nature interactions demands proactive, creative solutions to foster biodiversity conservation not only in remote protected areas but across entire landscapes inhabited by people.


Assuntos
Biodiversidade , Café , Conservação dos Recursos Naturais , Etiópia , Conservação dos Recursos Naturais/métodos , Mudança Climática , Agricultura/métodos , Coffea , Humanos , Ecossistema , Variação Genética , Produtos Agrícolas/genética
6.
Plant Sci ; 345: 112117, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750798

RESUMO

Coffee plants contain well-known xanthines as caffeine. Three Coffea species grown in a controlled greenhouse environment were the focus of this research. Coffea arabica and C. canephora are two first principal commercial species and commonly known as arabica and robusta, respectively. Originating in Central Africa, C. anthonyi is a novel species with small leaves. The xanthine metabolites in flower, fruit and leaf extracts were compared using both targeted and untargeted metabolomics approaches. We evaluated how the xanthine derivatives and FQA isomers relate to the expression of biosynthetic genes encoding N- and O-methyltransferases. Theobromine built up in leaves of C. anthonyi because caffeine biosynthesis was hindered in the absence of synthase gene expression. Despite this, green fruits expressed these genes and they produced caffeine. Given that C. anthonyi evolved successfully over time, these findings put into question the defensive role of caffeine in leaves. An overview of the histolocalisation of xanthines in the different flower parts of Coffea arabica was also provided. The gynoecium contained more theobromine than the flower buds or petals. This could be attributed to increased caffeine biosynthesis before fructification. The presence of theophylline and the absence of theobromine in the petals indicate that caffeine is catabolized more in the petals than in the gynoecium.


Assuntos
Cafeína , Coffea , Metabolômica , Metiltransferases , Folhas de Planta , Coffea/genética , Coffea/metabolismo , Coffea/enzimologia , Metiltransferases/genética , Metiltransferases/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Cafeína/metabolismo , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , Xantinas/metabolismo , Frutas/genética , Frutas/metabolismo , Teobromina/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Arch Microbiol ; 206(6): 279, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805051

RESUMO

Yeast, which plays a pivotal role in the brewing, food, and medical industries, exhibits a close relationship with human beings. In this study, we isolated and purified 60 yeast strains from the natural fermentation broth of Sidamo coffee beans to screen for indigenous beneficial yeasts. Among them, 25 strains were obtained through morphological characterization on nutritional agar medium from Wallerstein Laboratory (WL), with molecular biology identifying Saccharomyces cerevisiae strain YBB-47 and the remaining 24 yeast strains identified as Pichia kudriavzevii. We investigated the fermentation performance, alcohol tolerance, SO2 tolerance, pH tolerance, sugar tolerance, temperature tolerance, ester production capacity, ethanol production capacity, H2S production capacity, and other brewing characteristics of YBB-33 and YBB-47. The results demonstrated that both strains could tolerate up to 3% alcohol by volume at a high sucrose mass concentration (400 g/L) under elevated temperature conditions (40 ℃), while also exhibiting a remarkable ability to withstand an SO2 mass concentration of 300 g/L at pH 3.2. Moreover, S. cerevisiae YBB-47 displayed a rapid gas production rate and strong ethanol productivity. whereas P. kudriavzevii YBB-33 exhibited excellent alcohol tolerance. Furthermore, this systematic classification and characterization of coffee bean yeast strains from the Sidamo region can potentially uncover additional yeasts that offer high-quality resources for industrial-scale coffee bean production.


Assuntos
Etanol , Fermentação , Pichia , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Pichia/metabolismo , Pichia/isolamento & purificação , Pichia/genética , Pichia/classificação , Etanol/metabolismo , Concentração de Íons de Hidrogênio , Café/microbiologia , Coffea/microbiologia , Temperatura , Sementes/microbiologia , Sulfeto de Hidrogênio/metabolismo
8.
J Food Sci ; 89(6): 3455-3468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700315

RESUMO

Excessive accumulation of advanced glycation end products (AGEs) in the body is associated with diabetes and its complications. In this study, we aimed to explore the potential and mechanism of coffee leaf extract (CLE) in inhibiting the generation of AGEs and their precursors in an in vitro glycation model using bovine serum albumin and glucose (BSA-Glu) for the first time. High-performance liquid chromatography analysis revealed that CLE prepared with ultrasound pretreatment (CLE-U) contained higher levels of trigonelline, mangiferin, 3,5-dicaffeoylquinic acid, and γ-aminobutyric acid than CLE without ultrasound pretreatment (CLE-NU). The concentrations of these components, along with caffeine and rutin, were dramatically decreased when CLE-U or CLE-NU was incubated with BSA-Glu reaction mixture. Both CLE-U and CLE-NU exhibited a dose-dependent inhibition of fluorescent AGEs, carboxymethyllysine, fructosamine, 5-hydroxymethylfurfural, 3-deoxyglucosone, glyoxal, as well as protein oxidation products. Notably, CLE-U exhibited a higher inhibitory capacity compared to CLE-NU. CLE-U effectively quenched fluorescence intensity and increased the α-helix structure of the BSA-Glu complex. Molecular docking results suggested that the key bioactive compounds present in CLE-U interacted with the arginine residues of BSA, thereby preventing its glycation. Overall, this research sheds light on the possible application of CLE as a functional ingredient in combating diabetes by inhibiting the generation of AGEs.


Assuntos
Produtos Finais de Glicação Avançada , Extratos Vegetais , Folhas de Planta , Soroalbumina Bovina , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Soroalbumina Bovina/química , Coffea/química , Alcaloides/farmacologia , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Frutosamina , Cromatografia Líquida de Alta Pressão , Glioxal , Glucose/metabolismo , Simulação de Acoplamento Molecular , Glicosilação/efeitos dos fármacos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Rutina/farmacologia , Lisina/análogos & derivados , Cafeína/farmacologia , Desoxiglucose/análogos & derivados , Desoxiglucose/farmacologia , Xantonas
9.
J Food Sci ; 89(6): 3330-3346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752394

RESUMO

To enhance the flavor characteristics of milk coffee, steam distillation was applied to roasted ground coffee to obtain extracts that were then added to the hot water extract of the residue. The effects of different condensation temperatures for steam distillation on the volatile compounds of condensates and the flavor characteristics of the milk coffees prepared with each condensate were investigated. The volatile compounds were analyzed by gas chromatography/mass spectrometry, and principal component analysis (PCA) was performed on the mean peak areas of the volatiles that showed significant differences between the samples. The five types of milk coffees prepared with/without condensates were evaluated by consumer panelists using the check-all-that-apply question combined with the milk coffee flavor lexicon. The results showed that the concentration of volatile compounds tended to be higher in response to decreasing condensation temperature in steam distillation. The volatile compounds were grouped into four patterns based on their concentration in the condensates, which was affected by the volatility of the compounds and the duration of the condensation process in steam distillation. PCA clarified the characteristic volatile compounds that contribute to differences between the three condensates. The check-all-that-apply results indicated that the samples prepared with the condensates enhanced some specific coffee flavors, although acceptances for them were not enhanced. Implementing a steam distillation step in the milk coffee production process could lead to enhancing the coffee flavor strength of milk coffee products, and changing the condensation temperature for steam distillation was effective for providing different flavor characteristics of milk coffee. PRACTICAL APPLICATION: Changing the condensation temperature for steam distillation is effective in differentiating the flavor characteristics of milk coffee. Increasing the condensation temperature resulted in decreased concentrations of volatile compounds, which enhanced the milk and rich flavor. Decreasing the condensation temperature resulted in increased concentrations of volatile compounds, which provided a stronger coffee flavor to the milk coffee, possibly leading to a reduction in the use of coffee for milk coffee production. The check-all-that-apply question combined with the milk coffee flavor lexicon could effectively evaluate consumers' perceptions of the milk coffee flavor characteristics and their acceptances in a single survey.


Assuntos
Café , Destilação , Manipulação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Vapor , Paladar , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Café/química , Destilação/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Manipulação de Alimentos/métodos , Animais , Leite/química , Temperatura , Coffea/química , Feminino , Comportamento do Consumidor , Aromatizantes/análise , Temperatura Alta , Análise de Componente Principal , Adulto , Odorantes/análise , Masculino
10.
Vitae (Medellín) ; 31(1): 1-11, 2024-05-03. Ilustraciones
Artigo em Inglês | LILACS, COLNAL | ID: biblio-1553606

RESUMO

Background: Mild Colombian coffees are recognized worldwide for their high-quality coffee cup. However, there have been some failures in post-harvest practices, such as coffee grain fermentation. These failures could occasionally lead to defects and inconsistencies in quality products and economic losses for coffee farmers. In Colombia, one of the fermentation methods most used by coffee growers is wet fermentation, conducted by submerging the de-pulped coffee beans for enough time in water tanks to remove the mucilage. Objectives: We evaluated the effect of the water (g)/de-pulped coffee (g) ratio (I: 0/25, II: 10/25, III: 20/25) and final fermentation time (24, 48, and 72 hours) on the total number of microbial groups. We also identified microorganisms of interest as starter cultures. Methods: We used a completely randomized experimental design with two factors; the effect of the water (g)/de-pulped coffee (g) ratio (I: 0/25, II: 10/25, III: 20/25) and final fermentation time (24, 48, and 72 hours), for 9 treatments with two replicates. During the coffee fermentation (1,950 g), the pH and °Brix were monitored. Total counts of different microbial groups (mesophiles, coliforms, lactic-acid bacteria, acetic-acid bacteria, and yeasts) were performed. Various isolates of microorganisms of interest as starter cultures (lactic-acid bacteria and yeasts) were identified using molecular sequencing techniques. Results: 21 lactic-acid bacteria (LAB) isolates and 22 yeasts were obtained from the different mini-batch fermentation systems. The most abundant lactic-acid bacteria species found were Lactiplantibacillus plantarum (46%) and Levilactobacillus brevis (31%). Pichia kluivery (39%) and Torulaspora delbrueckii (22%) were the most abundant yeast species. Conclusion The studied factors did not have effect over the microorganism's development. The identified bacterial and yeasts species have potential as starter cultures for better-quality coffees and in fermentation-related applications.


Antecedentes: Los cafés suaves lavados colombianos son reconocidos a nivel mundial por su buena puntuación sensorial; sin embargo, se han detectado fallas en las prácticas de postcosecha, como lo es la fermentación de los granos de café. Dichas fallas pueden causar defectos y carecer de consistencia en la calidad del producto, ocasionando pérdidas económicas para los caficultores. En Colombia, uno de los métodos más usados por los caficultores es la fermentación húmeda, la cual consiste en sumergir los granos de café despulpado en tanques con agua por un período de tiempo que permita la remoción del mucílago. Objetivos: La presente investigación evaluó la incidencia que tienen la proporción agua/granos despulpados de café (I: 0/25, II: 10/25, III: 20/25) y el tiempo final de fermentación (24, 48 y 72 horas) en el recuento final de grupos microbianos. Por otra parte, se identificaron taxonómicamente microorganismos de interés para su uso como cultivos iniciadores. Métodos: Mini-lotes consistieron en café despulpado (1950 g) puesto en recipientes de plástico abiertos y sumergidos en agua. Se aplicó un diseño experimental completamente aleatorizado de dos factores (proporción agua/ granos de café despulpado y tiempo) a tres niveles, para un total de nueve tratamientos con dos replicas. Durante las fermentaciones de café (1,950 g), el pH y los grados ºBrix, fueron monitoreados. Se realizaron los recuentos totales de los diferentes grupos microbianos: mesófilos, coliformes, bacterias ácido-lácticas, bacterias ácido-acéticas y levaduras. Se identificaron molecularmente diferentes aislados con potencial para ser usados como cultivos iniciadores (bacterias ácido-lácticas y levaduras). Resultados: Los resultados obtenidos mostraron que no hubo diferencia estádisticamente significativa entre los tratamientos aplicados y el recuento final de microorganismos. Un total de 21 aislados de bacterias ácido-lácticas (BAL) y 22 levaduras lograron obtenerse a partir de los diferentes sistemas de fermentación en mini-lote. Las especies de bacterias ácido-lácticas con mayor porcentaje acorde a su identificación taxonómica, corresponden a Lactiplantibacillus plantarum (46%), Levilactobacillus brevis (31%). Las especies de levaduras con mayor porcentaje acorde a su identificación taxonómica corresponden a Pichia kluivery (39%) y Torulaspora delbrueckii (22%). Conclusión Los factores estudiados no afectaron el crecimiento de ninguno de los grupos microbianos presentes en la fermentacion del café. Las especies de microorganismos identificados tienen potencial para se usados como cultivos starter o en aplicaciones dentro de las ciencias de fermentación.


Assuntos
Humanos , Fermentação , Leveduras , Técnicas Microbiológicas , Coffea , Lactobacillales
12.
Food Res Int ; 186: 114333, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729693

RESUMO

Acrylamide is an amide formed in the Maillard reaction, with asparagine as the primary amino acid precursor. The intake of large amounts of acrylamide has induced genotoxic and carcinogenic effects in hormone-sensitive tissues of animals. The enzime asparaginase is one of the most effective methods for lowering the formation of acrylamide in foods such as potatoes. However, the reported sensory outcomes for coffee have been unsatisfactory so far. This study aimed to produce coffees with reduced levels of acrylamide by treating them with asparaginase while retaining their original sensory and bioactive profiles. Three raw samples of Coffea arabica, including two specialty coffees, and one of Coffea canephora were treated with 1000, 2000, and 3000 ASNU of the enzyme. Asparagine and bioactive compounds (chlorogenic acids-CGA, caffeine, and trigonelline) were quantified in raw and roasted beans by HPLC and LC-MS, while the determination of acrylamide and volatile organic compounds was performed in roasted beans by CG-MS. Soluble solids, titratable acidity, and pH were also determined. Professional cupping by Q-graders and consumer sensory tests were also conducted. Results were analyzed by ANOVA-Fisher, MFA, PCA and Cluster analyses, with significance levels set at p ≤ 0.05. Steam treatment alone decreased acrylamide content by 18.4%, on average, and 6.1% in medium roasted arabica and canefora coffees. Average reductions of 32.5-56.0% in acrylamide formation were observed in medium roasted arabica beans when 1000-3000 ASNU were applied. In the canefora sample, 59.4-60.7% reductions were observed. However, steam treatment primarily caused 17.1-26.7% reduction of total CGA and lactones in medium roasted arabica samples and 13.9-22.0% in canefora sample, while changes in trigonelline, caffeine, and other evaluated chemical parameters, including the volatile profiles were minimal. Increasing enzyme loads slightly elevated acidity. The only sensory changes observed by Q-graders and or consumers in treated samples were a modest increase in acidity when 3000 ASNU was used in the sample with lower acidity, loss of mild off-notes in control samples, and increased perception of sensory descriptors. The former was selected given the similarity in chemical outcomes among beans treated with 2000 and 3000 ASNU loads.


Assuntos
Acrilamida , Asparaginase , Asparagina , Coffea , Café , Paladar , Acrilamida/análise , Asparagina/análise , Coffea/química , Café/química , Humanos , Compostos Orgânicos Voláteis/análise , Culinária/métodos , Alcaloides/análise , Ácido Clorogênico/análise , Cafeína/análise , Masculino , Manipulação de Alimentos/métodos , Reação de Maillard , Temperatura Alta , Cromatografia Líquida de Alta Pressão , Sementes/química , Feminino
13.
Food Res Int ; 186: 114346, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729720

RESUMO

Specialty coffee beans are those produced, processed, and characterized following the highest quality standards, toward delivering a superior final product. Environmental, climatic, genetic, and processing factors greatly influence the green beans' chemical profile, which reflects on the quality and pricing. The present study focuses on the assessment of eight major health-beneficial bioactive compounds in green coffee beans aiming to underscore the influence of the geographical origin and post-harvesting processing on the quality of the final beverage. For that, we examined the non-volatile chemical profile of specialty Coffea arabica beans from Minas Gerais state, Brazil. It included samples from Cerrado (Savannah), and Matas de Minas and Sul de Minas (Atlantic Forest) regions, produced by two post-harvesting processing practices. Trigonelline, theobromine, theophylline, chlorogenic acid derivatives, caffeine, caffeic acid, ferulic acid, and p-coumaric acid were quantified in the green beans by high-performance liquid chromatography with diode array detection. Additionally, all samples were roasted and subjected to sensory analysis for coffee grading. Principal component analysis suggested that Cerrado samples tended to set apart from the other geographical locations. Those samples also exhibited higher levels of trigonelline as confirmed by two-way ANOVA analysis. Samples subjected to de-pulping processing showed improved chemical composition and sensory score. Those pulped coffees displayed 5.8% more chlorogenic acid derivatives, with an enhancement of 1.5% in the sensory score compared to unprocessed counterparts. Multivariate logistic regression analysis pointed out altitude, ferulic acid, p-coumaric acid, sweetness, and acidity as predictors distinguishing specialty coffee beans obtained by the two post-harvest processing. These findings demonstrate the influence of regional growth conditions and post-harvest treatments on the chemical and sensory quality of coffee. In summary, the present study underscores the value of integrating target metabolite analysis with statistical tools to augment the characterization of specialty coffee beans, offering novel insights for quality assessment with a focus on their bioactive compounds.


Assuntos
Coffea , Café , Manipulação de Alimentos , Sementes , Brasil , Coffea/química , Sementes/química , Manipulação de Alimentos/métodos , Café/química , Alcaloides/análise , Cromatografia Líquida de Alta Pressão , Humanos , Paladar , Análise de Componente Principal
14.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38599638

RESUMO

Coffee leaf rust, caused by the fungus Hemileia vastatrix, has become a major concern for coffee-producing countries. Additionally, there has been an increase in the resistance of certain races of the fungus to fungicides and breeding cultivars, making producers use alternative control methods. In this work, we transplanted the leaf surface microbiota of rust-resistant coffee species (Coffea racemosa and Coffea stenophylla) to Coffea arabica and tested whether the new microbiota would be able to minimize the damage caused by H. vastatrix. It was seen that the transplant was successful in controlling rust, especially from C. stenophylla, but the protection depended on the concentration of the microbiota. Certain fungi, such as Acrocalymma, Bipolaris, Didymella, Nigrospora, Setophaeosphaeria, Simplicillium, Stagonospora and Torula, and bacteria, such as Chryseobacterium, Sphingobium and especially Enterobacter, had their populations increased and this may be related to the antagonism seen against H. vastatrix. Interestingly, the relative population of bacteria from genera Pantoea, Methylobacterium and Sphingomonas decreased after transplantation, suggesting a positive interaction between them and H. vastatrix development. Our findings may help to better understand the role of the microbiota in coffee leaf rust, as well as help to optimize the development of biocontrol agents.


Assuntos
Basidiomycota , Coffea , Resistência à Doença , Microbiota , Doenças das Plantas , Folhas de Planta , Coffea/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Basidiomycota/genética , Basidiomycota/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/classificação , Fungos/crescimento & desenvolvimento , Fungos/genética
15.
J Econ Entomol ; 117(3): 963-972, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38577920

RESUMO

A major challenge to area-wide management of coffee berry borer (Hypothenemus hampei Ferrari) (Coleoptera: Scolytidae) is understanding how a heterogeneous coffee-growing landscape affects coffee berry borer population dynamics across temporal and spatial scales. We examined coffee phenology, weather, coffee berry borer flight activity, infestation, coffee berry borer position within the fruit, and management across 14 commercial coffee farms from 2016 to 2018 on Hawaii Island to characterize variation among districts and elevations. Here we aim to determine whether the timing of pesticide applications might be optimized based on specific locations. We observed larger populations of coffee berry borer at low-elevation farms and in the Kona district compared to mid- and high-elevation farms and the Ka'u district. Temperature, relative humidity, and rainfall all differed significantly across districts and elevations. We also observed a trend of higher fruit production at low-elevation farms compared to high-elevation farms, and differences in the timing of fruit development. Infestation increased with higher pest pressure and air temperatures and reduced fruit availability early and late in the season. Lastly, the timing and number of management interventions varied among districts and elevations. Combining information on trap catch, infestation, coffee berry borer position, and plant phenology, we present an optimized pesticide spray schedule for each location and find that the number of sprays could be reduced by 33-75% in comparison to the existing integrated pest management recommendations while maintaining effective control. Implementing a coordinated area-wide approach refined by small-scale optimization will lead to improved management of coffee berry borer on individual farms and a reduction in pest pressure across the coffee-growing landscape.


Assuntos
Coffea , Controle de Insetos , Dinâmica Populacional , Animais , Havaí , Controle de Insetos/métodos , Coffea/crescimento & desenvolvimento , Gorgulhos/fisiologia , Inseticidas/farmacologia , Estações do Ano , Besouros/fisiologia
16.
J Food Sci ; 89(6): 3430-3444, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638068

RESUMO

The utilization of coffee leaves in kombucha production has intrigued researchers; however, the lack of understanding regarding the characteristics of coffee leaf kombucha (CK) and its differentiation from black tea kombucha (BK) has impeded its application in the beverage industry. Therefore, this study aimed to characterize and compare the physiochemical properties, phytochemical compositions, antioxidant activity, and α-glucosidase inhibitory ability of kombucha prepared from the leaves of Coffea arabica (CK) and black tea (Camellia sinensis, BK) and their extracts (CT and BT). After fermentation, pH and the contents of total sugars, reducing sugars, and free amino acids of BK and CK were decreased, whereas the levels of total acids and organic acids, such as gluconic, lactic, and acetic acid were increased. Notably, the concentration of vitamin C in CK was 48.9% higher than that in BK. HPLC analysis exhibited that 5-caffeoylquinic acid in CT was significantly decreased by 48.0% in CK, whereas the levels of 3-caffeoylquinic acid and 4-caffeoylquinic acid were significantly increased after fermentation. The content of caffeine was significantly (p < 0.05) reduced by 9.5% and 22.0% in BK and CK, respectively, whereas the theobromine level was significantly increased in CK. Notably, CK has superior total phenolic and flavonoid contents and antioxidant activity than BK, whereas BK possesses higher α-glucosidase inhibitory capacity. Electronic nose analysis demonstrated that sulfur-containing organics were the main volatiles in both kombuchas, and fermentation significantly increased their levels. Our study indicates that coffee leaves are a promising resource for preparing kombucha. PRACTICAL APPLICATION: This article investigates the differences in physicochemical properties, bioactive constituents, antioxidant activity, and α-glucosidase inhibitory activity of kombucha preparation from black tea and coffee leaves. We have found that after fermentation BK had brighter soup color and higher α-glucosidase inhibitory capacity, whereas CK had higher levels of total phenols, flavonoids, vitamin C, and antioxidants and lower contents of sugars. This study provides valuable information for the preparation of CK with high-quality attributes and antioxidant activity.


Assuntos
Antioxidantes , Camellia sinensis , Coffea , Extratos Vegetais , Folhas de Planta , Folhas de Planta/química , Antioxidantes/análise , Coffea/química , Camellia sinensis/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fermentação , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/análise , Chá de Kombucha/análise , Café/química , Compostos Fitoquímicos/análise , Chá/química , Ácido Ascórbico/análise , Fenóis/análise , Cafeína/análise , Ácido Quínico/análogos & derivados , Ácido Quínico/análise , Flavonoides/análise
17.
Genes (Basel) ; 15(4)2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38674393

RESUMO

To date, genomic and transcriptomic data on Coffea arabica L. in public databases are very limited, and there has been no comprehensive integrated investigation conducted on alternative splicing (AS). Previously, we have constructed and sequenced eighteen RNA-seq libraries of C. arabica at different ripening stages of fruit development. From this dataset, a total of 3824, 2445, 2564, 2990, and 3162 DSGs were identified in a comparison of different fruit ripening stages. The largest proportion of DSGs, approximately 65%, were of the skipped exon (SE) type. Biologically, 9 and 29 differentially expressed DSGs in the spliceosome pathway and carbon metabolism pathway, respectively, were identified. These DSGs exhibited significant variations, primarily in S1 vs. S2 and S5 vs. S6, and they involve many aspects of organ development, hormone transduction, and the synthesis of flavor components. Through the examination of research findings regarding the biological functions and biochemical pathways associated with DSGs and DEGs, it was observed that six DSGs significantly enriched in ABC transporters, namely, LOC113712394, LOC113726618, LOC113739972, LOC113725240, LOC113730214, and LOC113707447, were continually down-regulated at the fruit ripening stage. In contrast, a total of four genes, which were LOC113732777, LOC113727880, LOC113690566, and LOC113711936, including those enriched in the cysteine and methionine metabolism, were continually up-regulated. Collectively, our findings may contribute to the exploration of alternative splicing mechanisms for focused investigations of potential genes associated with the ripening of fruits in C. arabica.


Assuntos
Processamento Alternativo , Coffea , Frutas , Regulação da Expressão Gênica de Plantas , Transcriptoma , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Transcriptoma/genética , Coffea/genética , Coffea/crescimento & desenvolvimento , Coffea/metabolismo , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Sci Rep ; 14(1): 8028, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580811

RESUMO

Agroforestry is a management strategy for mitigating the negative impacts of climate and adapting to sustainable farming systems. The successful implementation of agroforestry strategies requires that climate risks are appropriately assessed. The spatial scale, a critical determinant influencing climate impact assessments and, subsequently, agroforestry strategies, has been an overlooked dimension in the literature. In this study, climate risk impacts on robusta coffee production were investigated at different spatial scales in coffee-based agroforestry systems across India. Data from 314 coffee farms distributed across the districts of Chikmagalur and Coorg (Karnataka state) and Wayanad (Kerala state) were collected during the 2015/2016 to 2017/2018 coffee seasons and were used to quantify the key climate drivers of coffee yield. Projected climate data for two scenarios of change in global climate corresponding to (1) current baseline conditions (1985-2015) and (2) global mean temperatures 2 °C above preindustrial levels were then used to assess impacts on robusta coffee yield. Results indicated that at the district scale rainfall variability predominantly constrained coffee productivity, while at a broader regional scale, maximum temperature was the most important factor. Under a 2 °C global warming scenario relative to the baseline (1985-2015) climatic conditions, the changes in coffee yield exhibited spatial-scale dependent disparities. Whilst modest increases in yield (up to 5%) were projected from district-scale models, at the regional scale, reductions in coffee yield by 10-20% on average were found. These divergent impacts of climate risks underscore the imperative for coffee-based agroforestry systems to develop strategies that operate effectively at various scales to ensure better resilience to the changing climate.


Assuntos
Coffea , Café , Índia , Agricultura , Fazendas , Mudança Climática
19.
PLoS One ; 19(4): e0299493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625928

RESUMO

Though facing significant challenges, coffee (Coffea arabica) grown in Haitian agroforestry systems are important contributors to rural livelihoods and provide several ecosystem services. However, little is known about their genetic diversity and the variety mixtures used. In light of this, there is a need to characterize Haitian coffee diversity to help inform revitalization of this sector. We sampled 28 diverse farms in historically important coffee growing regions of northern and southern Haiti. We performed KASP-genotyping of SNP markers and HiPlex multiplex amplicon sequencing for haplotype calling on our samples, as well as several Ethiopian and commercial accessions from international collections. This allowed us to assign Haitian samples to varietal groups. Our analyses revealed considerable genetic diversity in Haitian farms, higher in fact than many farmers realized. Notably, genetic structure analyses revealed the presence of clusters related to Typica, Bourbon, and Catimor groups, another group that was not represented in our reference accession panel, and several admixed individuals. Across the study areas, we found both mixed-variety farms and monovarietal farms with the historical and traditional Typica variety. This study is, to our knowledge, the first to genetically characterize Haitian C. arabica variety mixtures, and report the limited cultivation of C. canephora (Robusta coffee) in the study area. Our results show that some coffee farms are repositories of historical, widely-abandoned varieties while others are generators of new diversity through genetic mixing.


Assuntos
Coffea , Café , Humanos , Haiti , Ecossistema , Coffea/genética , Variação Genética
20.
Food Chem ; 449: 139223, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604032

RESUMO

Recently some major safety concerns have been raised on organic contaminants in widely consumed plants such as coffee. Hence, this study aimed to develop specifically optimized methods for determining organic contaminants, such as pesticides and polychlorinated biphenyls (PCBs), in coffee using GC-MS/MS and LC-MS/MS. QuEChERS method was used as a base extraction method, and 27 experiments were studied using design of experiments with categorical variables (extraction buffers, cleanup sorbents, and coffee roasting degree) to find the optimum method for each matrix type. The optimum method for green coffee was acetate buffer and chitosan for clean-up, while no-buffer extraction and the PSA + C18 method were ideal for light and dark-roasted coffee. The optimized methods were validated in accordance with SANTE/11312/2021. Furthermore, ten real samples (4 green, and 6 roasted) from the markets were analysed; ortho-phenylphenol was found in all the roasted coffee samples, and carbendazim was found in one green coffee sample.


Assuntos
Coffea , Café , Contaminação de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Café/química , Contaminação de Alimentos/análise , Coffea/química , Bifenilos Policlorados/análise , Bifenilos Policlorados/química , Cromatografia Líquida/métodos , Ensaios de Triagem em Larga Escala/métodos , Praguicidas/análise , Praguicidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...