Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.684
Filtrar
1.
Pediatr Surg Int ; 40(1): 185, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997605

RESUMO

PURPOSE: This study aimed to investigate the impact of hepatocyte growth factor (HGF) on colonic morphology and gut microbiota in a rat model of short bowel syndrome (SBS). METHODS: SD rats underwent jugular vein catheterization for total parenteral nutrition (TPN) and 90% small bowel resection [TPN + SBS (control group) or TPN + SBS + intravenous HGF (0.3 mg/kg/day, HGF group)]. Rats were harvested on day 7. Colonic morphology, gut microflora, tight junction, and Toll-like receptor-4 (TLR4) were evaluated. RESULTS: No significant differences were observed in the colonic morphological assessment. No significant differences were observed in the expression of tight junction-related genes in the proximal colon. However, the claudin-1 expression tended to increase and the claudin-3 expression tended to decrease in the distal colon of the HGF group. The Verrucomicrobiota in the gut microflora of the colon tended to increase in the HGF group. The abundance of most LPS-producing microbiota was lower in the HGF group than in the control group. The gene expression of TLR4 was significantly downregulated in the distal colon of the HGF group. CONCLUSION: HGF may enhance the mucus barrier through the tight junctions or gut microbiome in the distal colon.


Assuntos
Colo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Fator de Crescimento de Hepatócito , Ratos Sprague-Dawley , Síndrome do Intestino Curto , Animais , Ratos , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Colo/microbiologia , Colo/patologia , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/microbiologia , Masculino , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Claudina-1/metabolismo , Claudina-1/genética
2.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000356

RESUMO

The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local effects on different regions of the gut. Using a high-fat diet (HFD)-induced mouse model of T2DM, we characterize the spatial variability of the gut microbiome and associated metabolome in response to metformin treatment. Four parts of the gut as well as the feces were analyzed using full-length sequencing of 16S rRNA genes and targeted metabolomic analyses, thus providing insights into the composition of the microbiome and associated metabolome. We found significant differences in the gut microbiome and metabolome in each gut region, with the most pronounced effects on the microbiomes of the cecum, colon, and feces, with a significant increase in a variety of species belonging to Akkermansiaceae, Lactobacillaceae, Tannerellaceae, and Erysipelotrichaceae. Metabolomics analysis showed that metformin had the most pronounced effect on microbiome-derived metabolites in the cecum and colon, with several metabolites, such as carbohydrates, fatty acids, and benzenoids, having elevated levels in the colon; however, most of the metabolites were reduced in the cecum. Thus, a wide range of beneficial metabolites derived from the microbiome after metformin treatment were produced mainly in the colon. Our study highlights the importance of considering gut regions when understanding the effects of metformin on the gut microbiome and metabolome.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Modelos Animais de Doenças , Microbioma Gastrointestinal , Metaboloma , Metformina , Metformina/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos , Metaboloma/efeitos dos fármacos , Masculino , Fezes/microbiologia , RNA Ribossômico 16S/genética , Hipoglicemiantes/farmacologia , Camundongos Endogâmicos C57BL , Ceco/microbiologia , Ceco/metabolismo , Ceco/efeitos dos fármacos , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/microbiologia , Metabolômica/métodos
3.
J Agric Food Chem ; 72(29): 16221-16236, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38996349

RESUMO

A hundred million tons of young apples are thinned and discarded in the orchard per year, aiming to increase the yield and quality of apples. We fermented thinned young apples using a potential probiotic fungus, Eurotium cristatum, which notably disrupted the microstructure of raw samples, as characterized by the scanning electron microscope. Fermentation substantially altered the metabolite profiles of samples, which are predicted to alleviate colitis via regulating inflammatory response and response to lipopolysaccharide by using network pharmacology analysis. In vivo, oral gavage of water extracts of E. cristatum fermented young apples (E.YAP) effectively alleviated DSS-induced colitis, restored the histopathology damage, reduced the levels of inflammatory cytokines, and promoted colonic expressions of tight junction proteins. Moreover, E.YAP ameliorated gut dysbacteriosis by increasing abundances of Lactobacillus,Blautia, Muribaculaceae, and Prevotellaceae_UCG-001 while inhibiting Turicibacter, Alistipes, and Desulfovibrio. Importantly, E.YAP increased colonic bile acids, such as CA, TCA, DCA, TUDCA, and LCA, thereby alleviating colitis via PXR/NF-κB signaling. Furthermore, a synbiotic combination with Limosilactobacillus reuteri WX-94, a probiotic strain isolated from feces of healthy individuals with anti-inflammatory properties, augmented anticolitis capacities of E.YAP. Our findings demonstrate that E.YAP could be a novel, potent, food-based anti-inflammatory prebiotic for relieving inflammatory injuries.


Assuntos
Bactérias , Colite , Eurotium , Fermentação , Malus , Camundongos Endogâmicos C57BL , Animais , Malus/química , Camundongos , Colite/microbiologia , Colite/metabolismo , Colite/induzido quimicamente , Humanos , Masculino , Eurotium/metabolismo , Eurotium/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Probióticos/farmacologia , Frutas/química , Frutas/microbiologia , Colo/microbiologia , Colo/metabolismo , Colo/imunologia
4.
Nutrients ; 16(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999794

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is a major food-borne pathogen that causes human disease ranging from diarrhea to life-threatening complications. Accumulating evidence demonstrates that the Western diet enhances the susceptibility to enteric infection in mice, but the effect of diet on EHEC colonization and the role of human gut microbiota remains unknown. Our research aimed to investigate the effects of a Standard versus a Western diet on EHEC colonization in the human in vitro Mucosal ARtificial COLon (M-ARCOL) and the associated changes in the gut microbiota composition and activities. After donor selection using simplified fecal batch experiments, two M-ARCOL bioreactors were inoculated with a human fecal sample (n = 4) and were run in parallel, one receiving a Standard diet, the other a Western diet and infected with EHEC O157:H7 strain EDL933. EHEC colonization was dependent on the donor and diet in the luminal samples, but was maintained in the mucosal compartment without elimination, suggesting a favorable niche for the pathogen, and may act as a reservoir. The Western diet also impacted the bacterial short-chain fatty acid and bile acid profiles, with a possible link between high butyrate concentrations and prolonged EHEC colonization. The work demonstrates the application of a complex in vitro model to provide insights into diet, microbiota, and pathogen interactions in the human gut.


Assuntos
Colo , Dieta Ocidental , Escherichia coli Êntero-Hemorrágica , Fezes , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Dieta Ocidental/efeitos adversos , Colo/microbiologia , Fezes/microbiologia , Infecções por Escherichia coli/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Ácidos Graxos Voláteis/metabolismo , Ácidos e Sais Biliares/metabolismo , Escherichia coli O157
5.
J Appl Microbiol ; 135(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38986506

RESUMO

AIMS: This study aimed to compare the effects of linear and branched fructooligosaccharides (FOS) extracted from chicory and grass (Lolium perenne), respectively on human microbiota composition, diversity, and metabolism. METHODS AND RESULTS: To test the effects of linear and branched FOS on human microbiota we used the artificial in vitro human colon model (TIM-2). Microbiota composition and diversity were assessed by V3-V4 16S rRNA metagenomic sequencing, followed by differential taxa abundance and alpha/beta diversity analyses. SCFA/BCFA production was evaluated by gas chromatography-mass spectrometry. As a result, branched FOS had the most beneficial effects on microbial diversity and metabolite production. Also, branched FOS significantly increased the abundance of commensal bacteria associated with maintaining healthy gut functions and controlling inflammation, such as Butyricicoccus, Erysipelotrichaceae, Phascolarctobacterium, and Sutterella. Linear FOS also significantly increased the abundance of some other commensal gut bacteria (Anaerobutyricum, Lachnospiraceae, Faecalibacterium), but there were no differences in diversity metrics compared to the control. CONCLUSIONS: The study revealed that branched FOS had the most beneficial effects compared to the linear FOS in vitro, concerning microbiota modulation, and metabolite production, making this a good candidate for further studies in food biotechnology.


Assuntos
Bactérias , Colo , Microbioma Gastrointestinal , Oligossacarídeos , RNA Ribossômico 16S , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Humanos , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Colo/microbiologia , Colo/metabolismo , RNA Ribossômico 16S/genética , Lolium/microbiologia , Cichorium intybus , Fezes/microbiologia
6.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38995038

RESUMO

Fermentation of dietary and endogenous protein in the hindgut is generally considered detrimental to the health of pigs. We investigated the in vitro fermentation potential of porcine endogenous protein in ileal digesta and colonic mucus, using a N-free buffer with an excess of fermentable carbohydrates. Urea, whey protein isolate (WPI, positive control), WPI hydrolysate (WPIH), and combinations of the latter two were used to validate the assay. A new biphasic model, including a linear end simulation, fitted to the gas production data over a 48-h period identified the time point when substrate fermentation ended. A higher degree of hydrolysis of WPI resulted in a higher maximum gas production rate (Rmax, P < 0.01). Differences in Rmax and the time required to reach Rmax were observed among ileal digesta samples, with Rmax increasing with the insoluble protein content, and the highest Rmax occurring with colonic mucus samples (P < 0.05). The endogenous proteins entering the large intestine of pigs can ferment more rapidly compared to highly soluble and digestible protein sources, with Rmax positively correlated with decreasing solubility of endogenous nitrogenous components.


Protein fermentation in the hindgut of pigs can impact their health, affecting factors like growth rates and feed efficiency. Besides dietary protein, up to 50% of the protein entering the large intestine of growing pigs may be of endogenous origin. Therefore, we explored the fermentation potential of endogenous proteins compared to a well-known protein source, whey protein isolate (WPI). In developing and validating an in vitro gas production technique, we employed urea, WPI, WPI hydrolysate, and various combinations as substrates. The study introduces a new biphasic model for in vitro gas production, offering a detailed analysis of the fermentation process over a 48-h period. Our results revealed that porcine endogenous proteins can undergo rapid fermentation because the maximum gas production rate was higher compared to WPI. This insight is crucial for understanding the dynamics of protein fermentation in pigs. Additionally, we explored the solubility and molecular size of proteins, providing a comprehensive understanding of their fermentation characteristics. We found that endogenous proteins were less soluble compared to WPI but contained more smaller peptides. Unraveling the complexities of protein fermentation in pigs contributes to improvement of feed formulation for optimal gut health.


Assuntos
Proteínas Alimentares , Fermentação , Animais , Suínos , Proteínas Alimentares/metabolismo , Digestão/fisiologia , Íleo/metabolismo , Colo/metabolismo , Colo/microbiologia , Proteínas do Soro do Leite/metabolismo , Conteúdo Gastrointestinal/química
7.
Microbiol Res ; 286: 127812, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38954992

RESUMO

Clostridioides difficile infection (CDI) poses a significant health threat due to high recurrence rates. Antimicrobial agents are commonly used to manage CDI-related diarrhoea; however, by aggravating intestinal dysbiosis, antibiotics enable C. difficile spores germination and production of toxins, the main virulence factors. Therefore, the binding of exotoxins using adsorbents represents an attractive alternative medication for the prevention and treatment of relapses. In this study, we provided evidence that the natural insoluble polysaccharides, named ABR119, extracted by plant cell cultures, effectively trap C. difficile toxins. In our experiments, ABR119 exhibited no cytotoxicity in vitro and was safely administered in vivo. In the animal model of C. difficile-associated colitis, ABR119 (50 mg/kg body weight) significantly reduced the colonic myeloperoxidase activity and severity of inflammation, preventing body weight loss. These effects were not evident when we treated animals with wheat bran polysaccharides. We did not detect bacterial killing effects of ABR119 against C. difficile nor against bacterial species of the normal gut microbiota. Moreover, ABR119 did not interfere in vitro with the antimicrobial activities of most clinically used antibiotics. In summary, ABR119 holds promise for treating and preventing C. difficile colitis by trapping the bacterial toxins, warranting further studies to assess the ABR119 potential in human infections caused by C. difficile.


Assuntos
Antibacterianos , Toxinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Colite , Modelos Animais de Doenças , Polissacarídeos , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/patogenicidade , Animais , Colite/microbiologia , Colite/tratamento farmacológico , Colite/prevenção & controle , Colite/induzido quimicamente , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/microbiologia , Infecções por Clostridium/tratamento farmacológico , Toxinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Humanos , Células Vegetais , Camundongos , Colo/microbiologia , Colo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos
8.
Lab Chip ; 24(15): 3690-3703, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38973701

RESUMO

Changes in the abundance of certain bacterial species within the colorectal microbiota correlate with colorectal cancer (CRC) development. While carcinogenic mechanisms of single pathogenic bacteria have been characterized in vitro, limited tools are available to investigate interactions between pathogenic bacteria and both commensal microbiota and colonocytes in a physiologically relevant tumor microenvironment. To address this, we developed a microfluidic device that can be used to co-culture colonocyte spheroids and colorectal microbiota. The device was used to explore the effect of Fusobacterium nucleatum, an opportunistic pathogen associated with colorectal cancer development in humans, on colonocyte gene expression and microbiota composition. F. nucleatum altered the transcription of genes involved in cytokine production, epithelial-to-mesenchymal transition, and proliferation in colonocytes in a contact-independent manner; however, most of these effects were significantly diminished by the presence of commensal microbiota. Interestingly, F. nucleatum significantly altered the abundance of multiple bacterial clades associated with mucosal immune responses and cancer development in the colon. Our results highlight the importance of evaluating the potential carcinogenic activity of pathogens in the context of a commensal microbiota, and the potential to discover novel inter-species microbial interactions in the CRC microenvironment.


Assuntos
Técnicas de Cocultura , Colo , Neoplasias Colorretais , Fusobacterium nucleatum , Humanos , Técnicas de Cocultura/instrumentação , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Colo/microbiologia , Colo/patologia , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas/instrumentação , Transição Epitelial-Mesenquimal , Microbiota , Proliferação de Células
9.
Gut Microbes ; 16(1): 2377570, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034613

RESUMO

Recent evidence indicates that repeated antibiotic usage lowers microbial diversity and ultimately changes the gut microbiota community. However, the physiological effects of repeated - but not recent - antibiotic usage on microbiota-mediated mucosal barrier function are largely unknown. By selecting human individuals from the deeply phenotyped Estonian Microbiome Cohort (EstMB), we here utilized human-to-mouse fecal microbiota transplantation to explore long-term impacts of repeated antibiotic use on intestinal mucus function. While a healthy mucus layer protects the intestinal epithelium against infection and inflammation, using ex vivo mucus function analyses of viable colonic tissue explants, we show that microbiota from humans with a history of repeated antibiotic use causes reduced mucus growth rate and increased mucus penetrability compared to healthy controls in the transplanted mice. Moreover, shotgun metagenomic sequencing identified a significantly altered microbiota composition in the antibiotic-shaped microbial community, with known mucus-utilizing bacteria, including Akkermansia muciniphila and Bacteroides fragilis, dominating in the gut. The altered microbiota composition was further characterized by a distinct metabolite profile, which may be caused by differential mucus degradation capacity. Consequently, our proof-of-concept study suggests that long-term antibiotic use in humans can result in an altered microbial community that has reduced capacity to maintain proper mucus function in the gut.


Assuntos
Antibacterianos , Bactérias , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Muco , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Camundongos , Muco/metabolismo , Muco/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Masculino , Feminino , Fezes/microbiologia , Adulto , Pessoa de Meia-Idade , Akkermansia , Camundongos Endogâmicos C57BL , Colo/microbiologia , Bacteroides fragilis/efeitos dos fármacos
10.
Sci Rep ; 14(1): 15335, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961176

RESUMO

Anastomotic leakage (AL) is a potentially life-threatening complication following colorectal cancer (CRC) resection. In this study, we aimed to unravel longitudinal changes in microbial structure before, during, and after surgery and to determine if microbial alterations may be predictive for risk assessment between sufficient anastomotic healing (AS) and AL prior surgery. We analysed the microbiota of 134 colon mucosal biopsies with 16S rRNA V1-V2 gene sequencing. Samples were collected from three location sites before, during, and after surgery, and patients received antibiotics after the initial collection and during surgery. The microbial structure showed dynamic surgery-related changes at different time points. Overall bacterial diversity and the abundance of some genera such as Faecalibacterium or Alistipes decreased over time, while the genera Enterococcus and Escherichia_Shigella increased. The distribution of taxa between AS and AL revealed significant differences in the abundance of genera such as Prevotella, Faecalibacterium and Phocaeicola. In addition to Phocaeicola, Ruminococcus2 and Blautia showed significant differences in abundance between preoperative sample types. ROC analysis of the predictive value of these genera for AL revealed an AUC of 0.802 (p = 0.0013). In summary, microbial composition was associated with postoperative outcomes, and the abundance of certain genera may be predictive of postoperative complications.


Assuntos
Fístula Anastomótica , Microbioma Gastrointestinal , Humanos , Masculino , Feminino , Idoso , Fístula Anastomótica/etiologia , Fístula Anastomótica/microbiologia , Pessoa de Meia-Idade , Microbioma Gastrointestinal/genética , Neoplasias Colorretais/cirurgia , Neoplasias Colorretais/microbiologia , RNA Ribossômico 16S/genética , Cirurgia Colorretal/efeitos adversos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Colo/microbiologia , Colo/cirurgia , Colo/patologia , Estudo de Prova de Conceito
11.
Gut Microbes ; 16(1): 2361493, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958039

RESUMO

The juxtaposition of well-oxygenated intestinal colonic tissue with an anerobic luminal environment supports a fundamentally important relationship that is altered in the setting of intestinal injury, a process likely to be relevant to diseases such as inflammatory bowel disease. Herein, using two-color phosphorometry to non-invasively quantify both intestinal tissue and luminal oxygenation in real time, we show that intestinal injury induced by DSS colitis reduces intestinal tissue oxygenation in a spatially defined manner and increases the flux of oxygen from the tissue into the gut lumen. By characterizing the composition of the microbiome in both DSS colitis-affected gut and in a bioreactor containing a stable human fecal community exposed to microaerobic conditions, we provide evidence that the increased flux of oxygen into the gut lumen augments glycan degrading bacterial taxa rich in glycoside hydrolases which are known to inhabit gut mucosal surface. Continued disruption of the intestinal mucus barrier through such a mechanism may play a role in the perpetuation of the intestinal inflammatory process.


Assuntos
Bactérias , Colite , Microbioma Gastrointestinal , Mucosa Intestinal , Oxigênio , Colite/microbiologia , Colite/induzido quimicamente , Colite/metabolismo , Animais , Humanos , Oxigênio/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Fezes/microbiologia , Camundongos Endogâmicos C57BL , Sulfato de Dextrana , Colo/microbiologia , Colo/metabolismo , Masculino
12.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38892368

RESUMO

Intestinal epithelium renewal strictly depends on fine regulation between cell proliferation, differentiation, and apoptosis. While murine intestinal microbiota has been shown to modify some epithelial cell kinetics parameters, less is known about the role of the human intestinal microbiota. Here, we investigated the rate of intestinal cell proliferation in C3H/HeN germ-free mice associated with human flora (HFA, n = 8), and in germ-free (n = 15) and holoxenic mice (n = 16). One hour before sacrifice, all mice were intraperitoneally inoculated with 5-bromodeoxyuridine (BrdU), and the number of BrdU-positive cells/total cells (labelling index, LI), both in the jejunum and the colon, was evaluated by immunohistochemistry. Samples were also observed by scanning electron microscopy (SEM). Moreover, the microbiota composition in the large bowel of the HFA mice was compared to that of of human donor's fecal sample. No differences in LI were found in the small bowels of the HFA, holoxenic, and germ-free mice. Conversely, the LI in the large bowel of the HFA mice was significantly higher than that in the germ-free and holoxenic counterparts (p = 0.017 and p = 0.048, respectively). In the holoxenic and HFA mice, the SEM analysis disclosed different types of bacteria in close contact with the intestinal epithelium. Finally, the colonic microbiota composition of the HFA mice widely overlapped with that of the human donor in terms of dominant populations, although Bifidobacteria and Lactobacilli disappeared. Despite the small sample size analyzed in this study, these preliminary findings suggest that human intestinal microbiota may promote a high proliferation rate of colonic mucosa. In light of the well-known role of uncontrolled proliferation in colorectal carcinogenesis, these results may deserve further investigation in a larger population study.


Assuntos
Proliferação de Células , Colo , Microbioma Gastrointestinal , Mucosa Intestinal , Animais , Humanos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Camundongos , Colo/microbiologia , Colo/metabolismo , Masculino , Vida Livre de Germes , Feminino , Camundongos Endogâmicos C3H , Fezes/microbiologia
13.
Nutrients ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38892504

RESUMO

Arabic gum, a high molecular weight heteropolysaccharide, is a promising prebiotic candidate as its fermentation occurs more distally in the colon, which is the region where most chronic colonic diseases originate. Baobab fiber could be complementary due to its relatively simple structure, facilitating breakdown in the proximal colon. Therefore, the current study aimed to gain insight into how the human gut microbiota was affected in response to long-term baobab fiber and Arabic gum supplementation when tested individually or as a combination of both, allowing the identification of potential complementary and/or synergetic effects. The validated Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), an in vitro gut model simulating the entire human gastrointestinal tract, was used. The microbial metabolic activity was examined, and quantitative 16S-targeted Illumina sequencing was used to monitor the gut microbial composition. Moreover, the effect on the gut microbial metabolome was quantitatively analyzed. Repeated administration of baobab fiber, Arabic gum, and their combination had a significant effect on the metabolic activity, diversity index, and community composition of the microbiome present in the simulated proximal and distal colon with specific impacts on Bifidobacteriaceae and Faecalibacterium prausnitzii. Despite the lower dosage strategy (2.5 g/day), co-supplementation of both compounds resulted in some specific synergistic prebiotic effects, including a biological activity throughout the entire colon, SCFA synthesis including a synergy on propionate, specifically increasing abundance of Akkermansiaceae and Christensenellaceae in the distal colon region, and enhancing levels of spermidine and other metabolites of interest (such as serotonin and ProBetaine).


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Goma Arábica , Prebióticos , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Goma Arábica/farmacologia , Fibras na Dieta/farmacologia , Suplementos Nutricionais , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Fermentação , Bactérias/efeitos dos fármacos , Bactérias/classificação
14.
Nutrients ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38892520

RESUMO

Serum-derived bovine immunoglobulin (SBI) prevents translocation and inflammation via direct binding of microbial components. Recently, SBI also displayed potential benefits through gut microbiome modulation. To confirm and expand upon these preliminary findings, SBI digestion and colonic fermentation were investigated using the clinically predictive ex vivo SIFR® technology (for 24 human adults) that was, for the first time, combined with host cells (epithelial/immune (Caco-2/THP-1) cells). SBI (human equivalent dose (HED) = 2 and 5 g/day) and the reference prebiotic inulin (IN; HED = 2 g/day) significantly promoted gut barrier integrity and did so more profoundly than a dietary protein (DP), especially upon LPS-induced inflammation. SBI also specifically lowered inflammatory markers (TNF-α and CXCL10). SBI and IN both enhanced SCFA (acetate/propionate/butyrate) via specific gut microbes, while SBI specifically stimulated valerate/bCFA and indole-3-propionic acid (health-promoting tryptophan metabolite). Finally, owing to the high-powered cohort (n = 24), treatment effects could be stratified based on initial microbiota composition: IN exclusively stimulated (acetate/non-gas producing) Bifidobacteriaceae for subjects classifying as Bacteroides/Firmicutes-enterotype donors, coinciding with high acetate/low gas production and thus likely better tolerability of IN. Altogether, this study strongly suggests gut microbiome modulation as a mechanism by which SBI promotes health. Moreover, the SIFR® technology was shown to be a powerful tool to stratify treatment responses and support future personalized nutrition approaches.


Assuntos
Microbioma Gastrointestinal , Inflamação , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Bovinos , Adulto , Animais , Masculino , Feminino , Células CACO-2 , Imunoglobulinas , Colo/microbiologia , Colo/metabolismo , Colo/efeitos dos fármacos , Inulina/farmacologia , Células THP-1 , Fermentação , Pessoa de Meia-Idade , Prebióticos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo
15.
Biophys J ; 123(13): 1838-1845, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824388

RESUMO

The gastrointestinal tract is inhabited by a vast community of microorganisms, termed the gut microbiota. Large colonies can pose a health threat, but the gastrointestinal mucus system protects epithelial cells from microbiota invasion. The human colon features a bilayer of mucus lining. Due to imbalances in intestinal homeostasis, bacteria may successfully penetrate the inner mucus layer, which can lead to severe gut diseases. However, it is hard to tease apart the competing mechanisms that lead to this penetration. To probe the conditions that permit bacteria penetration into the inner mucus layer, we develop an agent-based model consisting of bacteria and an inner mucus layer subject to a constant flux of nutrient fields feeding the bacteria. We find that there are three important variables that determine bacterial invasion: the bacterial reproduction rate, the contact energy between bacteria and mucus, and the rate of bacteria degrading the mucus. Under healthy conditions, all bacteria are naturally eliminated by the constant removal of mucus. In diseased states, imbalances between the rates of bacterial degradation and mucus secretion lead to bacterial invasion at certain junctures. We conduct uncertainty quantification and sensitivity analysis to compare the relative impact between these parameters. The contact energy has the strongest influence on bacterial penetration, which, in combination with bacterial degradation rate and growth rate, greatly accelerates bacterial invasion of the human gut mucus lining. Our findings will serve as predictive indicators for the etiology of intestinal diseases and highlight important considerations when developing gut therapeutics.


Assuntos
Colo , Modelos Biológicos , Muco , Humanos , Colo/microbiologia , Muco/metabolismo , Muco/microbiologia , Bactérias/metabolismo , Microbioma Gastrointestinal
16.
PLoS Pathog ; 20(6): e1012316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905308

RESUMO

Histone demethylase JMJD2D (also known as KDM4D) can specifically demethylate H3K9me2/3 to activate its target gene expression. Our previous study has demonstrated that JMJD2D can protect intestine from dextran sulfate sodium (DSS)-induced colitis by activating Hedgehog signaling; however, its involvement in host defense against enteric attaching and effacing bacterial infection remains unclear. The present study was aimed to investigate the role of JMJD2D in host defense against enteric bacteria and its underlying mechanisms. The enteric pathogen Citrobacter rodentium (C. rodentium) model was used to mimic clinical colonic infection. The responses of wild-type and JMJD2D-/- mice to oral infection of C. rodentium were investigated. Bone marrow chimeric mice were infected with C. rodentium. JMJD2D expression was knocked down in CMT93 cells by using small hairpin RNAs, and Western blot and real-time PCR assays were performed in these cells. The relationship between JMJD2D and STAT3 was studied by co-immunoprecipitation and chromatin immunoprecipitation. JMJD2D was significantly up-regulated in colonic epithelial cells of mice in response to Citrobacter rodentium infection. JMJD2D-/- mice displayed an impaired clearance of C. rodentium, more body weight loss, and more severe colonic tissue pathology compared with wild-type mice. JMJD2D-/- mice exhibited an impaired expression of IL-17F in the colonic epithelial cells, which restricts C. rodentium infection by inducing the expression of antimicrobial peptides. Accordingly, JMJD2D-/- mice showed a decreased expression of ß-defensin-1, ß-defensin-3, and ß-defensin-4 in the colonic epithelial cells. Mechanistically, JMJD2D activated STAT3 signaling by inducing STAT3 phosphorylation and cooperated with STAT3 to induce IL-17F expression by interacting with STAT3 and been recruited to the IL-17F promoter to demethylate H3K9me3. Our study demonstrates that JMJD2D contributes to host defense against enteric bacteria through up-regulating IL-17F to induce ß-defensin expression.


Assuntos
Citrobacter rodentium , Colo , Infecções por Enterobacteriaceae , Interleucina-17 , Histona Desmetilases com o Domínio Jumonji , Camundongos Knockout , Regulação para Cima , beta-Defensinas , Animais , Camundongos , beta-Defensinas/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Interleucina-17/metabolismo , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Camundongos Endogâmicos C57BL , Colite/metabolismo , Colite/microbiologia , Fator de Transcrição STAT3/metabolismo
17.
Food Res Int ; 190: 114639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945585

RESUMO

The colonic fermentation metabolites of resistant starch (RS) are recognized to have various health benefits. However, the relationship between the structural variation of RS and the colonic fermentation properties, remains inadequately studied, especially for type 3 resistant starch. The in vitro fecal fermentation properties with multi-structure evolution of A- and B-type polymorphic resistant starch spherulites (RSS) were investigated. Both polymorphic types of RSS showed similar fermentation rate and total short-chain fatty acid profiles, while the butyrate concentration of the A-type RSS subjected to 24 h of fermentation was significantly higher compared to B-type RSS. In the case of recrystallized starch spherulites, irrespective of the polymorphic type, gut bacteria preferentially degraded the intermediate chains and crystalline regions, as the local molecule-ordered area potentially serves as suitable attachment sites or surfaces for microbial enzymes.


Assuntos
Ácidos Graxos Voláteis , Fezes , Fermentação , Amido , Fezes/microbiologia , Fezes/química , Amido/metabolismo , Amido/química , Ácidos Graxos Voláteis/metabolismo , Humanos , Microbioma Gastrointestinal/fisiologia , Amido Resistente/metabolismo , Colo/microbiologia , Colo/metabolismo , Butiratos/metabolismo
18.
Appl Microbiol Biotechnol ; 108(1): 380, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888634

RESUMO

Obstructive sleep apnea (OSA) can lead to intestinal injury, endotoxemia, and disturbance of intestinal flora. Additionally, as a crucial component of the endocannabinoid system, some studies have demonstrated that cannabinoid 1 (CB1) receptors are closely linked to the multiple organ dysfunction triggered by OSA. However, the role of the CB1 receptor in alleviating OSA-induced colon injury remains unclear. Here, through the construction of the OSA classic model, we found that the colon tissue of chronic intermittent hypoxia (CIH)-induced mice exhibited an overexpression of the CB1 receptor. The results of hematoxylin-eosin staining and transmission electron microscopy revealed that inhibition of the CB1 receptor could decrease the gap between the mucosa and muscularis mucosae, alleviate mitochondrial swelling, reduce microvilli shedding, and promote the recovery of tight junctions of CIH-induced mice. Furthermore, CB1 receptor inhibition reduced the levels of metabolic endotoxemia and inflammatory responses, exhibiting significant protective effects on the colon injury caused by CIH. At the molecular level, through western blotting and real-time polymerase chain reaction techniques, we found that inhibiting the CB1 receptor can significantly increase the expression of ZO-1 and Occludin proteins, which are closely related to the maintenance of intestinal mucosal barrier function. Through 16S rRNA high-throughput sequencing and short-chain fatty acid (SCFA) determination, we found that inhibition of the CB1 receptor increased the diversity of the microbial flora and controlled the makeup of intestinal flora. Moreover, butyric acid concentration and the amount of SCFA-producing bacteria, such as Ruminococcaceae and Lachnospiraceae, were both markedly elevated by CB1 receptor inhibition. The results of the spearman correlation study indicated that Lachnospiraceae showed a positive association with both ZO-1 and Occludin but was negatively correlated with the colon CB1 receptor, IL-1ß, and TNF-α. According to this study, we found that inhibiting CB1 receptor can improve CIH-induced colon injury by regulating gut microbiota, reducing mucosal damage and promoting tight junction recovery. KEY POINTS: •CIH leads to overexpression of CB1 receptor in colon tissue. •CIH causes intestinal flora disorder, intestinal mucosal damage, and disruption of tight junctions. •Inhibition of CB1 receptor can alleviate the colon injury caused by CIH through regulating the gut microbiota, reducing mucosal injury, and promoting tight junction recovery.


Assuntos
Colo , Modelos Animais de Doenças , Mucosa Intestinal , Receptor CB1 de Canabinoide , Animais , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/genética , Camundongos , Colo/patologia , Colo/microbiologia , Colo/metabolismo , Masculino , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Hipóxia/metabolismo , Camundongos Endogâmicos C57BL , Proteína da Zônula de Oclusão-1/metabolismo , Ocludina/metabolismo , Ocludina/genética , Microbioma Gastrointestinal , Junções Íntimas/metabolismo
19.
J Agric Food Chem ; 72(23): 13415-13430, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38824655

RESUMO

This study aimed to investigate the hypothesis that dietary konjac glucomannan (KGM) could alleviate Salmonella typhimurium-induced colitis by modulating intestinal microbiota. Mice were fed an isocaloric and isofibrous diet supplemented with either 7% KGM or cellulose and were treated with 5 × 108 CFU of S. typhimurium. The results showed that KGM had an average molecular weight of 936 kDa and predominantly consisted of mannose and glucose at a molar ratio of 1:1.22. In vivo studies demonstrated that dietary KGM effectively mitigated colonic lesions, oxidative stress, disruption of tight junction protein 2 and occludin, and the inflammatory response induced by S. typhimurium. Moreover, KGM administration alleviated the dramatic upregulation of toll-like receptor 2 (TLR2) and phosphonuclear factor κB (NF-κB) protein abundance, induced by Salmonella treatment. Notably, dietary KGM restored the reduced Muribaculaceae and Lactobacillus abundance and increased the abundance of Blautia and Salmonella in S. typhimurium-infected mice. Spearman correlation analysis revealed that the gut microbiota improved by KGM contribute to inhibit inflammation and oxidative stress. These results demonstrated the protective effects of dietary KGM against colitis by modulating the gut microbiota and the TLR2-NF-κB signaling pathway in response to Salmonella infection.


Assuntos
Colite , Colo , Microbioma Gastrointestinal , Mananas , NF-kappa B , Salmonella typhimurium , Transdução de Sinais , Receptor 2 Toll-Like , Animais , Mananas/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , NF-kappa B/metabolismo , NF-kappa B/genética , Colo/microbiologia , Colo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Colite/induzido quimicamente , Colite/metabolismo , Colite/microbiologia , Colite/dietoterapia , Masculino , Humanos , Camundongos Endogâmicos C57BL , Fibras na Dieta/farmacologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Bactérias/efeitos dos fármacos , Amorphophallus/química
20.
Int J Biol Macromol ; 272(Pt 1): 132906, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38851991

RESUMO

Sourdough bread enriched with soluble fiber (by in-situ exopolysaccharides production) and insoluble fiber (by gazpacho by-products addition) showed prebiotic effects an in vitro dynamic colonic fermentation performance with obese volunteer's microbiota. Bifidobacterium population was maintained whereas Lactobacillus increased throughout the colonic sections. Conversely, Enterobacteriaceae and Clostridium groups clearly decreased. Specific bacteria associated with beneficial effects increased in the ascending colon (Lactobacillus fermentum, Lactobacillus paracasei, Bifidobacterium longum and Bifidobacterium adolescentis) whereas Eubacterium eligens, Alistipes senegalensis, Prevotella copri and Eubacterium desmolans increased in the transversal and descending colon. Additionally, Blautia faecis and Ruminococcus albus increased in the transversal colon, and Bifidobacterium longum, Roseburia faecis and Victivallis vadensis in the descending colon. Bifidobacterium and Lactobacillus fermented the in-situ exopolysaccharides and released pectins from gazpacho by-products, as well as cellulosic degraded bacteria. This increased the short and medium chain fatty acids. Acetic acid, as well as butyric acid, increased throughout the colonic tract, which showed greater increases only in the transversal and descending colonic segments. Conversely, propionic acid was slightly affected by the colonic fermentation. These results show that sourdough bread is a useful food matrix for the enrichment of vegetable by-products (or other fibers) in order to formulate products with microbiota modulatory capacities.


Assuntos
Pão , Disbiose , Fermentação , Pão/microbiologia , Humanos , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Fibras na Dieta/metabolismo , Polissacarídeos Bacterianos/farmacologia , Colo/microbiologia , Colo/metabolismo , Bifidobacterium/metabolismo , Masculino , Lactobacillus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA