Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.850
Filtrar
1.
Cell Death Dis ; 14(3): 202, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934104

RESUMO

FBXW7 is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a main tumor suppressor due to its ability to control proteasome-mediated degradation of several oncoproteins such as c-Jun, c-Myc, Cyclin E1, mTOR, and Notch1-IC. FBXW7 inactivation in human cancers results from a somatic mutation or downregulation of its protein levels. This work describes a novel regulatory mechanism for FBXW7 dependent on the serine/threonine protein kinase DYRK2. We show that DYRK2 interacts with and phosphorylates FBXW7 resulting in its proteasome-mediated degradation. DYRK2-dependent FBXW7 destabilization is independent of its ubiquitin ligase activity. The functional analysis demonstrates the existence of DYRK2-dependent regulatory mechanisms for key FBXW7 substrates. Finally, we provide evidence indicating that DYRK2-dependent regulation of FBXW7 protein accumulation contributes to cytotoxic effects in response to chemotherapy agents such as Doxorubicin or Paclitaxel in colorectal cancer cell lines and to BET inhibitors in T-cell acute lymphoblastic leukemia cell lines. Altogether, this work reveals a new regulatory axis, DYRK2/FBXW7, which provides an understanding of the role of these two proteins in tumor progression and DNA damage responses.


Assuntos
Proteína 7 com Repetições F-Box-WD , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Humanos , Proteínas de Ciclo Celular/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
2.
Adv Rheumatol ; 63(1): 14, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949513

RESUMO

BACKGROUND: Rheumatoid arthritis is an autoimmune inflammatory disease that often leads patients to muscle impairment and physical disability. This study aimed to evaluate changes in the activity of proteasome system in skeletal muscles of mice with collagen-induced arthritis (CIA) and treated with etanercept or methotrexate. METHODS: Male DBA1/J mice were divided into four groups (n = 8 each): CIA-Vehicle (treated with saline), CIA-ETN (treated with etanercept, 5.5 mg/kg), CIA-MTX (treated with methotrexate, 35 mg/kg) and CO (healthy control group). Mice were treated two times a week for 6 weeks. Clinical score and hind paw edema were measured. Muscles were weighted after euthanasia and used to quantify proteasome activity, gene (MuRF-1, PMSα4, PSMß5, PMSß6, PSMß7, PSMß8, PSMß9, and PSMß10), and protein (PSMß1, PSMß5, PSMß1i, PSMß5i) expression of proteasome subunits. RESULTS: Both treatments slowed disease development, but only CIA-ETN maintained muscle weight compared to CIA-MTX and CIA-Vehicle groups. Etanercept treatment showed caspase-like activity of 26S proteasome similar to CO group, while CIA-Vehicle and CIA-MTX had higher activity compared to CO group (p: 0.0057). MuRF-1 mRNA expression was decreased after etanercept administration compared to CIA-Vehicle and CO groups (p: 0.002, p: 0.007, respectively). PSMß8 and PSMß9 mRNA levels were increased in CIA-Vehicle and CIA-MTX compared to CO group, while CIA-ETN presented no difference from CO. PMSß6 mRNA expression was higher in CIA-Vehicle and CIA-MTX groups than in CO group. Protein levels of the PSMß5 subunit were increased in CO group compared to CIA-Vehicle; after both etanercept and methotrexate treatments, PSMß5 expression was higher than in CIA-Vehicle group and did not differ from CO group expression (p: 0.0025, p: 0.001, respectively). The inflammation-induced subunit ß1 (LMP2) was enhanced after methotrexate treatment compared to CO group (p: 0.043). CONCLUSIONS: The results of CIA-Vehicle show that arthritis increases muscle proteasome activation by enhanced caspase-like activity of 26S proteasome and increased PSMß8 and PSMß9 mRNA levels. Etanercept treatment was able to maintain the muscle weight and to modulate proteasome so that its activity and gene expression were compared to CO after TNF inhibition. The protein expression of inflammation-induced proteasome subunit was increased in muscle of CIA-MTX group but not following etanercept treatment. Thus, anti-TNF treatment may be an interesting approach to attenuate the arthritis-related muscle wasting.


Assuntos
Antirreumáticos , Artrite Experimental , Masculino , Humanos , Camundongos , Animais , Etanercepte/farmacologia , Etanercepte/uso terapêutico , Metotrexato/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Quimioterapia Combinada , Resultado do Tratamento , Músculo Esquelético , Inflamação/tratamento farmacológico
3.
Front Immunol ; 14: 982720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936919

RESUMO

Introduction: Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods: In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results: Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion: Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.


Assuntos
Interferon Tipo I , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Inibidores de Proteassoma/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Morte Celular Imunogênica , Bortezomib/farmacologia
4.
Cell Mol Life Sci ; 80(4): 106, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36952018

RESUMO

Ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) is a unique component of the ubiquitin-proteasome system (UPS), which has multiple activities in maintaining intracellular ubiquitin levels. We previously reported the aberrant low expression of UCHL1 in podocytes of non-immune complex-mediated glomerulonephritis, and recent studies indicate that anti-UCHL1 antibody was responsible for the refractory minimal change disease (MCD), but the specific effect of UCHL1 to the podocytopathy has not been determined. Therefore, we generated podocyte-specific UCHL1 gene knockout (UCHL1cre/cre) rats model. Podocyte-specific UCHL1 knockout rats exhibited severe kidney damage, including segmental/global glomerulosclerosis, kidney function damage and severe proteinuria, compared with littermate control. Subsequently, by carrying out mass spectrometry analysis of isolated glomeruli of rats, abnormal protein accumulation of ECM-receptor Interaction was found in UCHL1cre/cre rats. Mechanistic studies in vivo and in vitro revealed that aberrant protein accumulation after UCHL1 deficiency induced endoplasmic reticulum (ER) stress, unfolded protein reaction (UPR) to reduce the protein level of podocyte skeleton proteins, and CHOP mediated apoptosis as well, which related to the dysfunction of the ubiquitin-proteasome system with decreased free monomeric ubiquitin level, thereby affecting protein ubiquitination and degradation. In addition, inhibition of ER stress by 4-PBA could attenuate the degree of ER stress and podocyte dysfunction. Our study indicates that UCHL1 is a potential target for preventing podocytes injury in some non-immune complex-mediated glomerulopathy.


Assuntos
Nefropatias , Podócitos , Ratos , Animais , Podócitos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Estresse do Retículo Endoplasmático/genética , Nefropatias/metabolismo , Ubiquitina Tiolesterase/metabolismo
5.
Parasit Vectors ; 16(1): 100, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922877

RESUMO

BACKGROUND: The proteasome in eukaryotic cells can degrade a variety of proteins and plays an important role in regulating the cell cycle, cell survival and apoptosis. The proteasome receives much attention as a potential chemotherapeutic target for treatment of a variety of infectious parasitic diseases, but few studies of proteasomes have been done on parasitic nematodes. METHODS: A proteasomal ß5 subunit encoding gene (named Hc-pbs-5) and its inferred product (Hc-PBS-5) in Haemonchus contortus were identified and characterized in this study. Then, the transcriptional profiles and anatomical expression were studied using an integrated molecular approach. Finally, a specific proteasome inhibitor bortezomib (BTZ), together with RNA interference (RNAi), was employed to assess the function of Hc-PBS-5. RESULTS: Bioinformatic analysis revealed that the coding sequence of Hc-pbs-5 was 855 bp long and encoded 284 amino acids (aa). The predicted protein (Hc-PBS-5) had core conservative sequences (65-250 aa) belonging to N-terminal nucleophile (Ntn) family of hydrolases. Real-time PCR results revealed that Hc-pbs-5 was continuously transcribed in eight developmental stages with higher levels at the infective third-stage larvae (L3s) and adult males of H. contortus. Immunohistochemical results revealed that Hc-PBS-5 was expressed in intestine, outer cuticle, muscle cells under the outer cuticle, cervical glands and seminal vesicles of male adults and also in intestine, outer cuticle, cervical glands, uterine wall, eggs and ovaries of female adults of H. contortus. BTZ could reduce proportions of egg hatching, and the fourth-stage larvae (L4s) developed from the exsheathed L3s (xL3s) of H. contortus. In addition, silencing Hc-pbs-5 by soaking the specific double-stranded RNA (dsRNA) could decrease the transcription of Hc-pbs-5 and result in fewer xL3s developing to L4s in vitro. CONCLUSIONS: These results indicate that proteasomal ß5 subunit plays an important role in the growth, development and life span of H. contortus.


Assuntos
Haemonchus , Animais , Feminino , Masculino , Haemonchus/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Longevidade , Interferência de RNA , Biologia Computacional , Larva/genética , Larva/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(12): e2218825120, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36917666

RESUMO

Interferons (IFNs) and the products of interferon-stimulated genes (ISGs) play crucial roles in host defense against virus infections. Although many ISGs have been characterized with respect to their antiviral activity, their target specificities and mechanisms of action remain largely unknown. Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that is linked to several human malignancies. Here, we used the genetically and biologically related virus, murine gammaherpesvirus 68 (MHV-68) and screened for ISGs with anti-gammaherpesvirus activities. We found that overexpression of RNF213 dramatically inhibited MHV-68 infection, whereas knockdown of endogenous RNF213 significantly promoted MHV-68 proliferation. Importantly, RNF213 also inhibited KSHV de novo infection, and depletion of RNF213 in the latently KSHV-infected iSLK-219 cell line significantly enhanced lytic reactivation. Mechanistically, we demonstrated that RNF213 targeted the Replication and Transcription Activator (RTA) of both KSHV and MHV-68, and promoted the degradation of RTA protein through the proteasome-dependent pathway. RNF213 directly interacted with RTA and functioned as an E3 ligase to ubiquitinate RTA via K48 linkage. Taken together, we conclude that RNF213 serves as an E3 ligase and inhibits the de novo infection and lytic reactivation of gammaherpesviruses by degrading RTA through the ubiquitin-proteasome pathway.


Assuntos
Gammaherpesvirinae , Infecções por Herpesviridae , Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Humanos , Adenosina Trifosfatases/metabolismo , Gammaherpesvirinae/genética , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/genética , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Latência Viral/genética , Replicação Viral
7.
J Nat Prod ; 86(3): 612-620, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36921317

RESUMO

New sulfur-bearing natural products, sadopeptins A and B (1 and 2), were discovered from Streptomyces sp. YNK18 based on a targeted search using the characteristic isotopic signature of sulfur in mass spectrometry analysis. Compounds 1 and 2 were determined to be new cyclic heptapeptides, bearing methionine sulfoxide [Met(O)] and 3-amino-6-hydroxy-2-piperidone (Ahp), based on 1D and 2D NMR spectroscopy along with IR, UV, and MS. The configurations of sadopeptins A and B (1 and 2) were established via the analysis of the ROESY NMR correlation, oxidation, Marfey's method, and circular dichroism (CD) spectroscopy. The bioinformatics analysis of the full Streptomyces sp. YNK18 genome identified a nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster (BGC), and a putative biosynthetic pathway is proposed. Sadopeptins A and B displayed proteasome-inhibitory activity without affecting cellular autophagic flux.


Assuntos
Piperidonas , Streptomyces , Complexo de Endopeptidases do Proteassoma , Streptomyces/química , Espectroscopia de Ressonância Magnética , Piperidonas/farmacologia , Sulfóxidos/metabolismo
8.
Bioorg Med Chem Lett ; 85: 129233, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36905968

RESUMO

The proteasome is an essential multi-catalytic enzyme in cells that is responsible for degrading proteins with a ubiquitin-dependent or -independent mechanism. Many activity-based probes, inhibitors, and stimulators have been developed to study or modulate the activity of the proteasome. The development of these proteasome probes or inhibitors have been based on their interaction with the amino acids of the ß5 substrate channel proceeding the catalytically active threonine residue. There is potential for positive interactions with a substrate to increase selectivity or cleavage rate with the ß5 substrate channel after the catalytic threonine as evidenced by the proteasome inhibitor belactosin. To study what moieties the proteasome could accept in its primed substrate channel, we developed a liquid chromatography- mass spectrometry (LC-MS) method to quantitate the cleavage of substrates by purified human proteasome. This method allowed us to rapidly evaluate proteasome substrates that contain a moiety that could interact with the S1' site of the ß5 proteasome channel. We were able to determine a preference for a polar moiety at the S1' substrate position. We believe this information can be used in the design of future inhibitors or activity-based probes for the proteasome.


Assuntos
Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Hidrólise , Inibidores de Proteassoma/farmacologia , Treonina , Especificidade por Substrato
9.
J Cell Biol ; 222(4)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36880596

RESUMO

Acute Promyelocytic Leukemia is caused by expression of the oncogenic Promyelocytic Leukemia (PML)-Retinoic Acid Receptor Alpha (RARA) fusion protein. Therapy with arsenic trioxide results in degradation of PML-RARA and PML and cures the disease. Modification of PML and PML-RARA with SUMO and ubiquitin precedes ubiquitin-mediated proteolysis. To identify additional components of this pathway, we performed proteomics on PML bodies. This revealed that association of p97/VCP segregase with PML bodies is increased after arsenic treatment. Pharmacological inhibition of p97 altered the number, morphology, and size of PML bodies, accumulated SUMO and ubiquitin modified PML and blocked arsenic-induced degradation of PML-RARA and PML. p97 localized to PML bodies in response to arsenic, and siRNA-mediated depletion showed that p97 cofactors UFD1 and NPLOC4 were critical for PML degradation. Thus, the UFD1-NPLOC4-p97 segregase complex is required to extract poly-ubiquitinated, poly-SUMOylated PML from PML bodies, prior to degradation by the proteasome.


Assuntos
Arsênio , Leucemia Promielocítica Aguda , Proteína com Valosina , Humanos , Arsênio/uso terapêutico , Citoplasma , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/genética , Complexo de Endopeptidases do Proteassoma , Fatores de Transcrição/genética , Ubiquitina , Proteína com Valosina/metabolismo , Proteínas de Fusão Oncogênica , Sumoilação
10.
Sci Rep ; 13(1): 4411, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932175

RESUMO

Chemotherapy resistance is still a major problem in the treatment of patients with non-small-cell-lung carcinoma (NSCLC), and novel concepts for the induction of cytotoxicity in NSCLC are highly warranted. Proteotoxicity, the induction of cytotoxicity by targeting the ubiquitin proteasome system, represents an appealing innovative strategy. The combination of the proteasome inhibitor bortezomib (BTZ) and the proteotoxic stress-inducing HIV drug nelfinavir (NFV) synergistically induces proteotoxicity and shows encouraging preclinical efficacy in NSCLC. The second-generation proteasome inhibitor carfilzomib (CFZ) is superior to BTZ and overcomes BTZ resistance in multiple myeloma patients. Here, we show that CFZ together with NFV is superior to the BTZ + NFV combination in inducing endoplasmic reticulum stress and proteotoxicity through the accumulation of excess proteasomal substrate protein in NSCLC in vitro and ex vivo. Interestingly, NFV increases the intracellular availability of CFZ through inhibition of CFZ export from NSCLC cells that express multidrug resistance (MDR) protein. Combining CFZ with NFV may therefore represent a future treatment option for NSCLC, which warrants further investigation.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Nelfinavir/farmacologia , Nelfinavir/uso terapêutico , Inibidores de Proteassoma/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mieloma Múltiplo/patologia , Complexo de Endopeptidases do Proteassoma , Neoplasias Pulmonares/tratamento farmacológico , Apoptose
11.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902309

RESUMO

Quercetin has been studied extensively for its anti-Alzheimer's disease (AD) and anti-aging effects. Our previous studies have found that quercetin and in its glycoside form, rutin, can modulate the proteasome function in neuroblastoma cells. We aimed to explore the effects of quercetin and rutin on intracellular redox homeostasis of the brain (reduced glutathione/oxidized glutathione, GSH/GSSG), its correlation with ß-site APP cleaving enzyme 1 (BACE1) activity, and amyloid precursor protein (APP) expression in transgenic TgAPP mice (bearing human Swedish mutation APP transgene, APPswe). On the basis that BACE1 protein and APP processing are regulated by the ubiquitin-proteasome pathway and that supplementation with GSH protects neurons from proteasome inhibition, we investigated whether a diet containing quercetin or rutin (30 mg/kg/day, 4 weeks) diminishes several early signs of AD. Genotyping analyses of animals were carried out by PCR. In order to determine intracellular redox homeostasis, spectrofluorometric methods were adopted to quantify GSH and GSSG levels using o-phthalaldehyde and the GSH/GSSG ratio was ascertained. Levels of TBARS were determined as a marker of lipid peroxidation. Enzyme activities of SOD, CAT, GR, and GPx were determined in the cortex and hippocampus. ΒACE1 activity was measured by a secretase-specific substrate conjugated to two reporter molecules (EDANS and DABCYL). Gene expression of the main antioxidant enzymes: APP, BACE1, a Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10), caspase-3, caspase-6, and inflammatory cytokines were determined by RT-PCR. First, overexpression of APPswe in TgAPP mice decreased GSH/GSSG ratio, increased malonaldehyde (MDA) levels, and, overall, decreased the main antioxidant enzyme activities in comparison to wild-type (WT) mice. Treatment of TgAPP mice with quercetin or rutin increased GSH/GSSG, diminished MDA levels, and favored the enzyme antioxidant capacity, particularly with rutin. Secondly, both APP expression and BACE1 activity were diminished with quercetin or rutin in TgAPP mice. Regarding ADAM10, it tended to increase in TgAPP mice with rutin treatment. As for caspase-3 expression, TgAPP displayed an increase which was the opposite with rutin. Finally, the increase in expression of the inflammatory markers IL-1ß and IFN-γ in TgAPP mice was lowered by both quercetin and rutin. Collectively, these findings suggest that, of the two flavonoids, rutin may be included in a day-to-day diet as a form of adjuvant therapy in AD.


Assuntos
Doença de Alzheimer , Rutina , Camundongos , Humanos , Animais , Rutina/farmacologia , Caspase 3/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Antioxidantes/farmacologia , Quercetina/farmacologia , Dissulfeto de Glutationa/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Oxirredução , Encéfalo/metabolismo , Camundongos Transgênicos , Dieta , Homeostase , Peptídeos beta-Amiloides/metabolismo
12.
Int J Mol Sci ; 24(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36902469

RESUMO

Sepsis-associated muscle wasting (SAMW) is characterized by decreased muscle mass, reduced muscle fiber size, and decreased muscle strength, resulting in persistent physical disability accompanied by sepsis. Systemic inflammatory cytokines are the main cause of SAMW, which occurs in 40-70% of patients with sepsis. The pathways associated with the ubiquitin-proteasome and autophagy systems are particularly activated in the muscle tissues during sepsis and may lead to muscle wasting. Additionally, expression of muscle atrophy-related genes Atrogin-1 and MuRF-1 are seemingly increased via the ubiquitin-proteasome pathway. In clinical settings, electrical muscular stimulation, physiotherapy, early mobilization, and nutritional support are used for patients with sepsis to prevent or treat SAMW. However, there are no pharmacological treatments for SAMW, and the underlying mechanisms are still unknown. Therefore, research is urgently required in this field.


Assuntos
Complexo de Endopeptidases do Proteassoma , Sepse , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Atrofia Muscular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ubiquitina/metabolismo , Sepse/metabolismo , Músculo Esquelético/metabolismo
13.
Nat Commun ; 14(1): 1290, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36894562

RESUMO

Acquired chemoresistance to proteasome inhibitors is a major obstacle in managing multiple myeloma but key regulators and underlying mechanisms still remain to be explored. We find that high level of HP1γ is associated with low acetylation modification in the bortezomib-resistant myeloma cells using SILAC-based acetyl-proteomics assay, and higher HP1γ level is positively correlated with poorer outcomes in the clinic. Mechanistically, elevated HDAC1 in the bortezomib-resistant myeloma cells deacetylates HP1γ at lysine 5 and consequently alleviates the ubiquitin-mediated protein degradation, as well as the aberrant DNA repair capacity. HP1γ interacts with the MDC1 to induce DNA repair, and simultaneously the deacetylation modification and the interaction with MDC1 enhance the nuclear condensation of HP1γ protein and the chromatin accessibility of its target genes governing sensitivity to proteasome inhibitors, such as CD40, FOS and JUN. Thus, targeting HP1γ stability by using HDAC1 inhibitor re-sensitizes bortezomib-resistant myeloma cells to proteasome inhibitors treatment in vitro and in vivo. Our findings elucidate a previously unrecognized role of HP1γ in inducing drug resistance to proteasome inhibitors of myeloma cells and suggest that targeting HP1γ may be efficacious for overcoming drug resistance in refractory or relapsed multiple myeloma patients.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Humanos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Inibidores de Proteassoma/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Fatores de Transcrição/farmacologia , Antineoplásicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo
14.
Cells ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36899853

RESUMO

RUNX3 is a transcription factor with regulatory roles in cell proliferation and development. While largely characterized as a tumor suppressor, RUNX3 can also be oncogenic in certain cancers. Many factors account for the tumor suppressor function of RUNX3, which is reflected by its ability to suppress cancer cell proliferation after expression-restoration, and its inactivation in cancer cells. Ubiquitination and proteasomal degradation represent a major mechanism for the inactivation of RUNX3 and the suppression of cancer cell proliferation. On the one hand, RUNX3 has been shown to facilitate the ubiquitination and proteasomal degradation of oncogenic proteins. On the other hand, RUNX3 can be inactivated through the ubiquitin-proteasome system. This review encapsulates two facets of RUNX3 in cancer: how RUNX3 suppresses cell proliferation by facilitating the ubiquitination and proteasomal degradation of oncogenic proteins, and how RUNX3 is degraded itself through interacting RNA-, protein-, and pathogen-mediated ubiquitination and proteasomal degradation.


Assuntos
Neoplasias , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo
15.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835292

RESUMO

The basic helix-loop-helix factors play a central role in neuronal differentiation and nervous system development, which involve the Notch and signal transducer and activator of transcription (STAT)/small mother against decapentaplegic signaling pathways. Neural stem cells differentiate into three nervous system lineages, and the suppressor of cytokine signaling (SOCS) and von Hippel-Lindau (VHL) proteins are involved in this neuronal differentiation. The SOCS and VHL proteins both contain homologous structures comprising the BC-box motif. SOCSs recruit Elongin C, Elongin B, Cullin5(Cul5), and Rbx2, whereas VHL recruits Elongin C, Elongin B, Cul2, and Rbx1. SOCSs form SBC-Cul5/E3 complexes, and VHL forms a VBC-Cul2/E3 complex. These complexes degrade the target protein and suppress its downstream transduction pathway by acting as E3 ligases via the ubiquitin-proteasome system. The Janus kinase (JAK) is the main target protein of the E3 ligase SBC-Cul5, whereas hypoxia-inducible factor is the primary target protein of the E3 ligase VBC-Cul2; nonetheless, VBC-Cul2 also targets the JAK. SOCSs not only act on the ubiquitin-proteasome system but also act directly on JAKs to suppress the Janus kinase-signal transduction and activator of transcription (JAK-STAT) pathway. Both SOCS and VHL are expressed in the nervous system, predominantly in brain neurons in the embryonic stage. Both SOCS and VHL induce neuronal differentiation. SOCS is involved in differentiation into neurons, whereas VHL is involved in differentiation into neurons and oligodendrocytes; both proteins promote neurite outgrowth. It has also been suggested that the inactivation of these proteins may lead to the development of nervous system malignancies and that these proteins may function as tumor suppressors. The mechanism of action of SOCS and VHL involved in neuronal differentiation and nervous system development is thought to be mediated through the inhibition of downstream signaling pathways, JAK-STAT, and hypoxia-inducible factor-vascular endothelial growth factor pathways. In addition, because SOCS and VHL promote nerve regeneration, they are expected to be applied in neuronal regenerative medicine for traumatic brain injury and stroke.


Assuntos
Neurogênese , Proteínas Supressoras da Sinalização de Citocina , Fator A de Crescimento do Endotélio Vascular , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Diferenciação Celular , Proteínas Culina/metabolismo , Elonguina/metabolismo , Janus Quinases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo
16.
Bioorg Chem ; 133: 106427, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841046

RESUMO

Cancer is a global health challenge that remains to be a field of extensive research aiming to find new anticancer therapeutics. The 20S proteasome complex is one of the targets of anticancerdrugs, as it is correlated with several cancer types. Herein, we aim to discuss the 20S proteasome subunits and investigatethe currently studied proteasome inhibitors targeting the catalytically active proteasome subunits. In this review, we summarize the proteindegradation mechanism of the 20S proteasome complex and compareit with the 26S proteasome complex. Afterwards, the localization of the 20S proteasome is summarized as well as its use as a diagnosticandprognostic marker. The FDA-approved proteasome inhibitors (PIs) under clinical trials are summarized and their current limited use in solid tumors is also reviewed in addition to the expression of theß5 subunit in differentcell lines. The review discusses in-silico analysis of the active subunit of the 20S proteasome complex. For development of new proteasome inhibitor drugs, the natural products inhibiting the 20S proteasome are summarized, as well as novel methodologies and challenges for the natural product discovery and current information about the biosynthetic gene clusters encoding them. We herein briefly summarize some resistancemechanismsto the proteasomeinhibitors. Additionally, we focus on the three main classes of proteasome inhibitors: 1] boronic acid, 2] beta-lactone and 3] epoxide inhibitor classes, as well as other PI classes, and their IC50 values and their structure-activity relationship (SAR). Lastly,we summarize several future prospects of developing new proteasome inhibitors towards the treatment of tumors, especially solid tumors.


Assuntos
Produtos Biológicos , Neoplasias , Medicamentos Sintéticos , Humanos , Produtos Biológicos/farmacologia , Neoplasias/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Medicamentos Sintéticos/farmacologia
17.
RMD Open ; 9(1)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36854567

RESUMO

BACKGROUND: Perifascicular atrophy is a unique pathological hallmark in dermatomyositis (DM)-affected muscles; however, the mechanism underlying this process remains unclear. In this study, we aimed to investigate the potential role of the immunoproteasome subunit ß5i and retinoic acid-inducible gene-I (RIG-I) in DM-associated muscle atrophy. METHODS: The expression of ß5i and RIG-I in the muscles of 16 patients with DM was examined by PCR, western blotting and immunohistochemistry. The associations between ß5i and RIG-I expression levels and muscle disease severity were evaluated. Lentivirus transduction was used to overexpress ß5i in human skeletal muscle myoblasts (HSMMs) and consequent cell functional changes were studied in vitro. RESULTS: ß5i and RIG-I expression in the muscle of patients with DM was significantly increased and closely associated with muscle disease severity. Immunohistochemistry and immunofluorescence analyses showed the marked colocalised expression of ß5i and RIG-I in perifascicular myofibres. ß5i overexpression in HSMMs significantly upregulated RIG-I, the muscle atrophy marker MuRF1, type I IFN-related proteins (MxA and IFNß) and NF-κB pathway-related proteins (pIκBα, pIRF3 and pNF-κBp65). In addition, the viability of HSMMs decreased significantly after ß5i overexpression and was partly recovered by treatment with a ß5i inhibitor (PR957). Moreover, activation of RIG-I by pppRNA upregulated IFNß and MuRF1 and reduced the cell viability of HSMMs. CONCLUSION: The immunoproteasome subunit ß5i promotes perifascicular muscle atrophy in DM via RIG-I upregulation; our findings suggest a pathomechanistic role of ß5i and RIG-I in DM-associated muscle damage, highlighting these components as potential therapeutic targets for the treatment of DM.


Assuntos
Proteína DEAD-box 58 , Dermatomiosite , Interferon Tipo I , Atrofia Muscular , Complexo de Endopeptidases do Proteassoma , Humanos , Dermatomiosite/metabolismo , Dermatomiosite/patologia , Músculo Esquelético , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo
18.
Sci Rep ; 13(1): 1956, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732356

RESUMO

The ubiquitin-proteasome system (UPS) is a proteolytic pathway that is essential for life maintenance and vital functions, and its disruption causes serious impairments, e.g., disease development. Thus, the UPS is properly regulated. Here we show novel UPS-related factors: the fragile X mental retardation 1 (FMR1) and Fmr1 autosomal homolog 1 (FXR1) proteins and discs large MAGUK scaffold protein 4 (Dlg4) mRNA, which are associated with Fragile X syndrome, are involved in UPS activity. Fmr1-, Fxr1- and Dlg4-knockdown and Fmr1- and Fxr1-knockdown resulted in increased ubiquitination and proteasome activity, respectively. FXR1 protein was further confirmed to be associated with proteasomes, and Dlg4 mRNA itself was found to be involved in the UPS. Knockdown of these genes also affected neurite outgrowth. These findings provide new insights into the regulatory mechanism of the UPS and into the interpretation of the pathogenesis of diseases in which these genes are involved as UPS-related factors.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Proteínas de Ligação a RNA/genética , Proteína 4 Homóloga a Disks-Large/metabolismo
19.
Sci Rep ; 13(1): 2129, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746983

RESUMO

Proteasome dependency is a feature of many cancers that can be targeted by proteasome inhibitors. For some cancer types, notably breast cancer and triple-negative breast cancer (TNBC), high mRNA expression of a modified form of the proteasome, called the immunoproteasome (ImP), correlates with better outcomes and higher expression of one ImP subunit was associated with slower tumor growth in a small patient cohort. While these findings are in line with an anti-tumoral role of the ImP in breast cancer, studies investigating ImP expression at the protein level in large patient cohorts are lacking. Furthermore, while ImPs can be found in both immune and non-immune cells, the cellular source is often ignored in correlative studies. In order to determine the impact of ImP expression on breast cancer outcomes, we assessed the protein expression and cellular source of the ImP subunits PSMB8 and PSMB9 in a cohort of 2070 patients. Our data show a clear correlation between high ImP expression and better outcomes, most notably for TNBC patients and when tumor cells rather than stromal or immune cells express PSMB8 or PSMB9. Our results therefore suggest that ImP expression by tumor cells could be used as prognostic markers of TNBC outcomes.


Assuntos
Complexo de Endopeptidases do Proteassoma , Neoplasias de Mama Triplo Negativas , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
20.
Brain Behav ; 13(3): e2922, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36793204

RESUMO

AIMS: Opioid addiction is a major public health issue, yet its underlying mechanism is still unknown. The aim of this study was to explore the roles of ubiquitin-proteasome system (UPS) and regulator of G protein signaling 4 (RGS4) in morphine-induced behavioral sensitization, a well-recognized animal model of opioid addiction. METHODS: We explored the characteristics of RGS4 protein expression and polyubiquitination in the development of behavioral sensitization induced by a single morphine exposure in rats, and the effect of a selective proteasome inhibitor, lactacystin (LAC), on behavioral sensitization. RESULTS: Polyubiquitination expression was increased in time-dependent and dose-related fashions during the development of behavioral sensitization, while RGS4 protein expression was not significantly changed during this phase. Stereotaxic administration of LAC into nucleus accumbens (NAc) core inhibited the establishment of behavioral sensitization. CONCLUSION: UPS in NAc core is positively involved in behavioral sensitization induced by a single morphine exposure in rats. Polyubiquitination was observed during the development phase of behavioral sensitization, while RGS4 protein expression was not significantly changed, indicating that other members of RGS family might be substrate proteins in UPS-mediated behavioral sensitization.


Assuntos
Morfina , Transtornos Relacionados ao Uso de Opioides , Animais , Ratos , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/farmacologia , Morfina/farmacologia , Morfina/metabolismo , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/farmacologia , Ubiquitina/metabolismo , Ubiquitina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...