Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.464
Filtrar
1.
Monoclon Antib Immunodiagn Immunother ; 43(2): 59-66, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593439

RESUMO

The C-X-C motif chemokine receptor-1 (CXCR1) is a rhodopsin-like G-protein-coupled receptor, expressed on the cell surface of immune cells and tumors. CXCR1 interacts with some C-X-C chemokines, such as CXCL6, CXCL7, and CXCL8/interleukin-8, which are produced by various cells. Since CXCR1 is involved in several diseases including tumors and diabetes mellitus, drugs targeting CXCR1 have been developed. Therefore, the development of sensitive monoclonal antibodies (mAbs) for CXCR1 has been desired for the diagnosis and treatment. This study established a novel anti-mouse CXCR1 (mCXCR1) mAb, Cx1Mab-1 (rat IgG1, kappa), using the Cell-Based Immunization and Screening method. Cx1Mab-1 reacted with mCXCR1-overexpressed Chinese hamster ovary-K1 (CHO/mCXCR1) and mCXCR1-overexpressed LN229 glioblastoma (LN229/mCXCR1) in flow cytometry. Cx1Mab-1 demonstrated a high binding affinity for CHO/mCXCR1 and LN229/mCXCR1 with a dissociation constant of 2.6 × 10-9 M and 2.1 × 10-8 M, respectively. Furthermore, Cx1Mab-1 could detect mCXCR1 by Western blot analysis. These results indicated that Cx1Mab-1 is useful for detecting mCXCR1, and provides a possibility for targeting mCXCR1-expressing cells in vivo experiments.


Assuntos
Anticorpos Monoclonais , Neoplasias , Cricetinae , Animais , Ratos , Citometria de Fluxo , Células CHO , Cricetulus
2.
Monoclon Antib Immunodiagn Immunother ; 43(2): 53-58, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593441

RESUMO

The giant panda (Ailuropoda melanoleuca) is one of the important species in worldwide animal conservation. Because it is essential to understand the disease of giant panda for conservation, histopathological analyses of tissues are important to understand the pathogenesis. However, monoclonal antibodies (mAbs) against giant panda-derived proteins are limited. Podoplanin (PDPN) is an essential marker of lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. PDPN is also overexpressed in various human tumors, which are associated with poor prognosis. Here, an anti-giant panda PDPN (gpPDPN) mAb, PMab-314 (mouse IgG1, kappa) was established using the Cell-Based Immunization and Screening method. PMab-314 recognized N-terminal PA16-tagged gpPDPN-overexpressed Chinese hamster ovary-K1 cells (CHO/PA16-gpPDPN) in flow cytometry. The KD value of PMab-314 for CHO/PA16-gpPDPN was determined as 1.3 × 10-8 M. Furthermore, PMab-314 is useful for detecting gpPDPN in western blot analysis. These findings indicate that PMab-314 is a useful tool for the analyses of gpPDPN-expressed cells.


Assuntos
Anticorpos Monoclonais , Ursidae , Cricetinae , Camundongos , Animais , Humanos , Cricetulus , Células CHO , Células Endoteliais/metabolismo , Glicoproteínas de Membrana , Especificidade de Anticorpos , Fatores de Transcrição
3.
PDA J Pharm Sci Technol ; 78(2): 206-211, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38609149

RESUMO

The Cell Banks, Advanced Technologies (ATMPs, NGS) session at the 2023 Viral Clearance Symposium (VCS) focused on the assurance of high virus safety profiles of advanced technology medicinal products (ATMPs) by implementation of advanced virus detection methods using rapid and sensitive technologies, such as next-generation sequencing (NGS). All presentations in this session made the need to replace in vivo testing for viruses by new technologies that have been demonstrated to be incomparably broad in their detection capabilities and can even detect unknown viruses. An evaluation of historical data collected by the Consortium on Adventitious Agent Contamination in Biomanufacturing (CAACB) from their members' in vivo and in vitro adventitious virus test experience as well as on using NGS was presented. The data convincingly supported the necessity to replace in vivo testing with faster, broader, more sensitive, more accurate, and more specific virus detection methods. Additionally, a collaborative study-initiated by the CAACB-with the goal to revisit traditional adventitious agent testing by using targeted NGS to replace in vivo and in vitro tests for well-known and broadly used Chinese hamster ovary (CHO) cells was presented, including the planned risk-assessment approach using prior knowledge and historical data. Overall, this session demonstrated that the use of new virus detection methods, such as NGS, represents a great opportunity to provide sufficient viral safety margins, specifically, for ATMPs, where downstream virus clearance is not possible. This path forward is also supported by the final ICH Q5A(R2) guideline.


Assuntos
Contaminação de Medicamentos , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Cricetinae , Células CHO , Cricetulus , Contaminação de Medicamentos/prevenção & controle , Tecnologia
4.
Commun Biol ; 7(1): 393, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561432

RESUMO

Multimodal nanoparticles, utilizing quantum dots (QDs), mesoporous silica nanoparticles (MSNs), and gold nanoparticles (Au NPs), offer substantial potential as a smart and targeted drug delivery system for simultaneous cancer therapy and imaging. This method entails coating magnetic GZCIS/ZnS QDs with mesoporous silica, loading epirubicin into the pores, capping with Au NPs, PEGylation, and conjugating with epithelial cell adhesion molecule (EpCAM) aptamers to actively target colorectal cancer (CRC) cells. This study showcases the hybrid QD@MSN-EPI-Au-PEG-Apt nanocarriers (size ~65 nm) with comprehensive characterizations post-synthesis. In vitro studies demonstrate the selective cytotoxicity of these targeted nanocarriers towards HT-29 cells compared to CHO cells, leading to a significant reduction in HT-29 cell survival when combined with irradiation. Targeted delivery of nanocarriers in vivo is validated by enhanced anti-tumor effects with reduced side effects following chemo-radiotherapy, along with imaging in a CRC mouse model. This approach holds promise for improved CRC theranostics.


Assuntos
Neoplasias Colorretais , Nanopartículas Metálicas , Pontos Quânticos , Camundongos , Animais , Cricetinae , Ouro , Medicina de Precisão , Dióxido de Silício , Cricetulus , Neoplasias Colorretais/patologia , Quimiorradioterapia
5.
Appl Microbiol Biotechnol ; 108(1): 285, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573360

RESUMO

CHO cells are extensively employed in biological drug industry to manufacture therapeutic proteins. Nevertheless, production of biopharmaceuticals faces obstacles such as limited growth and inadequate productivity. Employing host cell engineering techniques for CHO cells serves as a valuable approach to address the constraints encountered in biologics manufacturing. Despite advancements, most techniques focus on specific genes to address individual cellular challenges. The significance of YAP, transcriptional co-activator, cannot be overstated due to its involvement in regulating organ size and tumor formation. YAP's influence extends to various cellular processes and is regulated by kinase cascade in the Hippo pathway, which phosphorylates serine residues in specific LATS recognition motifs. Activation of YAP has been observed to impact both the size and quantity of cells. This research investigates the effects of YAP5SA on proliferation, apoptosis, and productivity in CHO-K1 cells. YAP5SA, with mutations in all five LATS-target sites, is selected for its heightened activity and resistance to repression through the Hippo-LATS1/2 kinase signaling pathway. Plasmid harboring YAP5SA was transfected into EPO-CHO and the influence of YAP5SA overexpression was investigated. According to our findings, transfection of EPO-CHO cells with YAP5SA exhibited a substantial enhancement in CHO cell productivity, resulting in a 3-fold increase in total protein and EPO, as well as a 1.5-fold increase in specific productivity. Additionally, it significantly contributes in augmenting viability, size, and proliferation. Overall, the findings of this study exemplify the potential of utilizing YAP5SA to impact particular cellular mechanisms, thereby presenting an avenue for customizing cells to fulfill production demands. KEY POINTS: • YAP5SA in CHO cells boosts growth, reduces apoptosis, and significantly improves productivity. • YAP5SA regulates genes involved in proliferation, survival, and mTOR activation. • YAP5SA increases productivity by improving cell cycle, c-MYC expression, and mTOR pathway.


Assuntos
Proteínas Oncogênicas , Proteínas de Sinalização YAP , Animais , Cricetinae , Células CHO , Cricetulus , Fatores de Transcrição/genética , Divisão Celular , Serina-Treonina Quinases TOR
6.
Monoclon Antib Immunodiagn Immunother ; 43(2): 67-74, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512465

RESUMO

C-C motif chemokine receptor 1 (CCR1/CD191) is a member of G-protein-coupled receptors and is expressed on myeloid cells, such as neutrophils and macrophages. Because the CCR1 signaling promotes tumor expansion in the tumor microenvironment (TME), the modification of TME is an effective strategy for cancer therapy. Although CCR1 is an attractive target for solid tumors and hematological malignancies, therapeutic agents for CCR1 have not been approved. Here, we established a novel anti-mouse CCR1 (mCCR1) monoclonal antibody (mAb), C1Mab-6 (rat IgG2b, kappa), using the Cell-Based Immunization and Screening method. Flow cytometry and Western blot analyses showed that C1Mab-6 recognizes mCCR1 specifically. The dissociation constant of C1Mab-6 for mCCR1-overexpressed Chinese hamster ovary-K1 was determined as 3.9 × 10-9 M, indicating that C1Mab-6 possesses a high affinity to mCCR1. These results suggest that C1Mab-6 could be a useful tool for targeting mCCR1 in preclinical mouse models.


Assuntos
Anticorpos Monoclonais , Macrófagos , Animais , Cricetinae , Camundongos , Ratos , Anticorpos Monoclonais/farmacologia , Células CHO , Cricetulus
7.
Cell Biochem Funct ; 42(2): e3982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488412

RESUMO

Bone Morphogenetic Protein 2 (BMP2), a member of the Transforming Growth Factor-ß (TGF-ß) super family of proteins and is instrumental in the repair of fractures. The synthesis of BMP2 involves extensive post-translational processing and several studies have demonstrated the abysmally low production of rhBMP2 in eukaryotic systems, which may be due to the short half-life of the bioactive protein. Consequently, production costs of rhBMP2 are quite high, limiting its availability to the general populace. Therefore, there is an urgent need to identify better in-vitro systems for large scale production of rhBMP2. In the present study, we have carried out a comparative analysis of rhBMP2 production by the conventionally used Chinese Hamster ovarian cells (CHO) and goat mammary epithelial cells (GMEC), upon transfection with appropriate construct. Udder gland cells are highly secretory, and we reasoned that such cells may serve as a better in-vitro model for large scale production of rhBMP2. Our results indicated that the synthesis and secretion of bioactive rhBMP2 by goat mammary epithelial cells was significantly higher as compared to that by CHO-K1 cells. Our results provide strong evidence that GMECs may serve as a better alternative to other mammalian cells used for therapeutic protein production.


Assuntos
Proteína Morfogenética Óssea 2 , Cabras , Cricetinae , Animais , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Cricetulus , Fator de Crescimento Transformador beta , Proteínas Recombinantes/farmacologia , Células Epiteliais
8.
Vaccine ; 42(10): 2530-2542, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38503664

RESUMO

Chinese Hamster Ovary (CHO) cells, employed primarily for manufacturing monoclonal antibodies and other recombinant protein (r-protein) therapeutics, are emerging as a promising host for vaccine antigen production. This is exemplified by the recently approved CHO cell-derived subunit vaccines (SUV) against respiratory syncytial virus (RSV) and varicella-zoster virus (VZV), as well as the enveloped virus-like particle (eVLP) vaccine against hepatitis B virus (HBV). Here, we summarize the design, production, and immunogenicity features of these vaccine and review the most recent progress of other CHO-derived vaccines in pre-clinical and clinical development. We also discuss the challenges associated with vaccine production in CHO cells, with a focus on ensuring viral clearance for eVLP products.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacinas de Partículas Semelhantes a Vírus , Cricetinae , Animais , Humanos , Células CHO , Cricetulus , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Herpesvirus Humano 3 , Vacinas de Subunidades
9.
Proc Natl Acad Sci U S A ; 121(14): e2304897121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547061

RESUMO

While the existence and functional role of class C G-protein-coupled receptors (GPCR) dimers is well established, there is still a lack of consensus regarding class A and B GPCR multimerization. This lack of consensus is largely due to the inherent challenges of demonstrating the presence of multimeric receptor complexes in a physiologically relevant cellular context. The C-X-C motif chemokine receptor 4 (CXCR4) is a class A GPCR that is a promising target of anticancer therapy. Here, we investigated the potential of CXCR4 to form multimeric complexes with other GPCRs and characterized the relative size of the complexes in a live-cell environment. Using a bimolecular fluorescence complementation (BiFC) assay, we identified the ß2 adrenergic receptor (ß2AR) as an interaction partner. To investigate the molecular scale details of CXCR4-ß2AR interactions, we used a time-resolved fluorescence spectroscopy method called pulsed-interleaved excitation fluorescence cross-correlation spectroscopy (PIE-FCCS). PIE-FCCS can resolve membrane protein density, diffusion, and multimerization state in live cells at physiological expression levels. We probed CXCR4 and ß2AR homo- and heteromultimerization in model cell lines and found that CXCR4 assembles into multimeric complexes larger than dimers in MDA-MB-231 human breast cancer cells and in HCC4006 human lung cancer cells. We also found that ß2AR associates with CXCR4 multimers in MDA-MB-231 and HCC4006 cells to a higher degree than in COS-7 and CHO cells and in a ligand-dependent manner. These results suggest that CXCR4-ß2AR heteromers are present in human cancer cells and that GPCR multimerization is significantly affected by the plasma membrane environment.


Assuntos
Neoplasias , Receptores Adrenérgicos beta 2 , Receptores CXCR4 , Transdução de Sinais , Animais , Cricetinae , Humanos , Células CHO , Cricetulus , Proteínas de Membrana/metabolismo , Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Multimerização Proteica
10.
J Chromatogr A ; 1721: 464806, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38518514

RESUMO

Monoclonal antibodies (mAbs) continue to dominate the biopharmaceutical industry. Certain mAbs are prone to fragmentation and clipping and in these cases, adequate removal of these species is critical during manufacturing. Fragments can be generated during fermentation, purification, storage, formulation, and administration. Their addition to the acidic charge-variant of the purified mAb has been reported to decrease stability and potency of the final product. However, contrary to mAb aggregation, manufacturers have not given much attention to removal of fragments and clipped species and as a result most conventional mAb platforms offer at best limited capabilities for their removal. In this study, we propose a novel purification platform that uses multimodal chromatography and achieves complete removal of a range of mAb fragments and clipped products (25-120 kDa). The utility of the platform has been successfully demonstrated for 2 IgG1s and 2 IgG4s. Further, adequate removal of the various host cell impurities such as host cell proteins (<10 ppm) and host cell DNA (<5 ppb) has been achieved. Finally, the platform was able to deliver adequate removal of high molecular weight impurities (<1 %) and a 30 % clearance of the acidic charge variant. The proposed single step has been shown to deliver what the polishing chromatography and intermediate purification chromatography steps deliver in a traditional mAb platform.


Assuntos
Anticorpos Monoclonais , Cromatografia , Cricetinae , Animais , Peso Molecular , Comércio , Células CHO , Cricetulus
11.
Biotechnol Bioeng ; 121(5): 1716-1728, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38454640

RESUMO

Host cell proteins (HCPs) are process-related impurities of therapeutic proteins produced in for example, Chinese hamster ovary (CHO) cells. Protein A affinity chromatography is the initial capture step to purify monoclonal antibodies or Fc-based proteins and is most effective for HCP removal. Previously proposed mechanisms that contribute to co-purification of HCPs with the therapeutic protein are either HCP-drug association or leaching from chromatin heteroaggregates. In this study, we analyzed protein A eluates of 23 Fc-based proteins by LC-MS/MS to determine their HCP content. The analysis revealed a high degree of heterogeneity in the number of HCPs identified in the different protein A eluates. Among all identified HCPs, the majority co-eluted with less than three Fc-based proteins indicating a drug-specific co-purification for most HCPs. Only ten HCPs co-purified with over 50% of the 23 Fc-based proteins. A correlation analysis of HCPs identified across multiple protein A eluates revealed their co-elution as HCP groups. Functional annotation and protein interaction analysis confirmed that some HCP groups are associated with protein-protein interaction networks. Here, we propose an additional mechanism for HCP co-elution involving protein-protein interactions within functional networks. Our findings may help to guide cell line development and to refine downstream purification strategies.


Assuntos
Proteína Estafilocócica A , Espectrometria de Massas em Tandem , Cricetinae , Animais , Cricetulus , Cromatografia Líquida , Células CHO , Proteína Estafilocócica A/química , Anticorpos Monoclonais/química
12.
Appl Microbiol Biotechnol ; 108(1): 274, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530495

RESUMO

The pharmaceutical industry employs various strategies to improve cell productivity. These strategies include process intensification, culture media improvement, clonal selection, media supplementation and genetic engineering of cells. However, improved cell productivity has inherent risk of impacting product quality attributes (PQA). PQAs may affect the products' efficacy via stability, bioavailability, or in vivo bioactivity. Variations in manufacturing process may introduce heterogeneity in the products by altering the type and extent of N-glycosylation, which is a PQA of therapeutic proteins. We investigated the effect of different cell densities representing increasing process intensification in a perfusion cell culture on the production of an IgG1-κ monoclonal antibody from a CHO-K1 cell line. This antibody is glycosylated both on light chain and heavy chain. Our results showed that the contents of glycosylation of IgG1-κ mAb increased in G0F and fucosylated type glycans as a group, whereas sialylated type glycans decreased, for the mAb whole protein. Overall, significant differences were observed in amounts of G0F, G1F, G0, G2FS1, and G2FS2 type glycans across all process intensification levels. G2FS2 and G2 type N-glycans were predominantly quantifiable from light chain rather than heavy chain. It may be concluded that there is a potential impact to product quality attributes of therapeutic proteins during process intensification via perfusion cell culture that needs to be assessed. Since during perfusion cell culture the product is collected throughout the duration of the process, lot allocation needs careful attention to process parameters, as PQAs are affected by the critical process parameters (CPPs). KEY POINTS: • Molecular integrity may suffer with increasing process intensity. • Galactosylated and sialylated N-glycans may decrease. • Perfusion culture appears to maintain protein charge structure.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Cricetinae , Animais , Células CHO , Cricetulus , Perfusão , Polissacarídeos/química
13.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542369

RESUMO

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Assuntos
Arrestina , Histamina , Animais , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacologia , Histamina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais
14.
Neurosci Lett ; 826: 137723, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467272

RESUMO

Cannabidiol (CBD), a non-psychoactive compound derived from the cannabis plant, has been confirmed to induce anxiolytic-like and antipsychotic-like effects. However, the exact mechanisms remain unclear. This study substantiated CBD's interaction with the 5-HT1A receptor (5-HT1AR) in vitro (CHO cells expressing human 5-HT1AR) and in vivo (rat lower lip retraction test, LLR test). We then assessed the impact of CBD in mice using the stress-induced hyperthermia (SIH) model and the phencyclidine (PCP)-induced negative symptoms of schizophrenia model, respectively. Concurrently, we investigated whether WAY-100635, a typical 5-HT1AR antagonist, could attenuate these effects. Furthermore, the neurotransmitter changes through high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) were studied. Results revealed that CBD exhibits selective 5-HT1AR agonists-mediated effects in the rat lower lip retraction test, aligning with the robust agonistic (EC50 = 1.75 µM) profile observed in CHO cells. CBD at 3 mg/kg significantly reduced SIH (ΔT), a response that WAY-100635 abolished. Chronic administration of CBD at 100 mg/kg mitigated the increase in PCP-induced immobility time in the forced swim test (FST) and tail suspension test (TST). Moreover, it induced significant alterations in gamma-aminobutyric acid (GABA) and norepinephrine (NE) levels within the hippocampus (HPC). Thus, we concluded that the 5-HT1AR mediates CBD's anxiolytic-like effects. Additionally, CBD's effects on the negative symptoms of schizophrenia may be linked to changes in GABA and NE levels in the hippocampus. These findings offer novel insights for advancing the exploration of CBD's anxiolytic-like and antipsychotic-like effects.


Assuntos
Ansiolíticos , Antipsicóticos , Canabidiol , Cricetinae , Camundongos , Ratos , Humanos , Animais , Antipsicóticos/farmacologia , Ansiolíticos/farmacologia , Canabidiol/farmacologia , Serotonina , Cricetulus , Cromatografia Líquida , Espectrometria de Massas em Tandem , Ácido gama-Aminobutírico
15.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535792

RESUMO

Five peptides were isolated from the venom of the Mexican scorpion Centruroides bonito by chromatographic procedures (molecular weight sieving, ion exchange columns, and HPLC) and were denoted Cbo1 to Cbo5. The first four peptides contain 66 amino acid residues and the last one contains 65 amino acids, stabilized by four disulfide bonds, with a molecular weight spanning from about 7.5 to 7.8 kDa. Four of them are toxic to mice, and their function on human Na+ channels expressed in HEK and CHO cells was verified. One of them (Cbo5) did not show any physiological effects. The ones toxic to mice showed that they are modifiers of the gating mechanism of the channels and belong to the beta type scorpion toxin (ß-ScTx), affecting mainly the Nav1.6 channels. A phylogenetic tree analysis of their sequences confirmed the high degree of amino acid similarities with other known bona fide ß-ScTx. The envenomation caused by this venom in mice is treated by using commercially horse antivenom available in Mexico. The potential neutralization of the toxic components was evaluated by means of surface plasmon resonance using four antibody fragments (10FG2, HV, LR, and 11F) which have been developed by our group. These antitoxins are antibody fragments of single-chain antibody type, expressed in E. coli and capable of recognizing Cbo1 to Cbo4 toxins to various degrees.


Assuntos
Animais Venenosos , Perciformes , Peçonhas , Humanos , Cricetinae , Animais , Cavalos , Camundongos , Escorpiões , Cricetulus , Escherichia coli , Filogenia , Antivenenos , Aminoácidos , Fragmentos de Imunoglobulinas , Peptídeos
16.
Biotechnol J ; 19(3): e2400063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38528344

RESUMO

The effective design of perfusion cell culture is currently challenging regarding balancing the operating parameters associated with the hydrodynamic conditions due to increased system complexity. To address this issue, cellular responses of an industrial CHO cell line to different types of hydrodynamic stress in benchtop perfusion bioreactors originating from agitation, sparging, and hollow fibers (HF) in the cell retention devices were systematically investigated here with the analysis of cell lysis. It was found that cell lysis was very common and most associated with the sparging stress, followed by the HF and lastly the agitation, consequently heavily impacting the estimation of process descriptors related to biomass. The results indicated that the agitation stress led to a reduced cell growth with a shift toward a more productive phenotype, suggesting an energy redirection from biomass formation to product synthesis, whereas the sparging stress had a small impact on the intracellular metabolic flux distribution but increased the cell death rate drastically. For HF stress, a similar cell maintenance profile was found as the sparging while the activity of glycolysis and the TCA cycle was significantly impeded, potentially leading to the lack of energy and thus a substantial decrease in cell-specific productivity. Moreover, a novel concept of volume average shear stress was developed to further understand the relations of different types of stress and the observed responses for an improved insight for the perfusion cell culture.


Assuntos
Reatores Biológicos , Hidrodinâmica , Cricetinae , Animais , Técnicas de Cultura de Células/métodos , Células CHO , Cricetulus , Perfusão
17.
Sci Rep ; 14(1): 5440, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443482

RESUMO

This study aims to evaluate the safety of MK-7 produced by fermentation process using a Bacillus subtilis var. natto strain for human ingestion via acute oral toxicity, repeated dose 90-day oral toxicity, 28-day recovery test, and genotoxicity tests. The acute oral toxicity test results indicated that all subjects survived at the dose of 5000 mg/kg with no toxic effects. For the repeated dose 90-day oral toxicity test, MK-7 was administered to rats at 500, 1500, and 4500 mg/kg for 90 d. No abnormal findings were detected in clinical observations or in clinical pathological and histopathological examinations. The no-observed-adverse-effect level(NOAEL) was determined to be 4500 mg/kg/d, the maximum dose tested. For the evaluation of genotoxicity, reverse mutation, chromosomal aberration, and micronucleus tests were performed. In the reversion mutation test, vitamin K2 did not induce reversion in bacterial strains, and no chromosomal abnormality was observed in the chromosomal abnormality test using Chinese hamster lung cells. In the micronucleus test, micronuclei were not induced using ICR mouse bone marrow cells. All the toxicity test results suggest that vitamin K2 produced by fermentation processes using Bacillus subtilis var. natto induced no toxicological changes under the experimental conditions.


Assuntos
Bacillus subtilis , Aberrações Cromossômicas , Humanos , Camundongos , Cricetinae , Animais , Ratos , Camundongos Endogâmicos ICR , Vitamina K 2/toxicidade , Mutação , Cricetulus
18.
Sci Rep ; 14(1): 3044, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321124

RESUMO

The development of approaches based on genetically modified cells is accompanied by a constant intensive search for new effective and safe delivery systems and the study of existing ones. Recently, we developed a new plasmonic nanoparticle layers-mediated optoporation system that can be proposed for precisely controlled, high-performance laser transfection compatible with broad types of cells and delivered objects of interest. The main goal of the present study is to demonstrate the broad possibilities and advantages of our system for optoporation of several mammalian cells, classified as "easy-to-transfect" cells, namely HeLa and CHO lines, and "hard-to-transfect" cells, namely A431 and RAW 264.7 cells. We show the efficient delivery of various sized cargo molecules: from small molecular dyes propidium iodide (PI) with molecular mass 700 Da, control plasmids (3-10 kb) to fluorophore-labeled dextranes with masses ranging from 10 kDa up to 100 kDa. The performance of optoporation was investigated for two types of laser sources, 800-nm continuous-wave laser, and 1064-nm ns pulsed laser. We provided a comparative study between our system and commercial agent Lipofectamine for transient transfection and stable transfection of HeLa cells with plasmids encoding fluorescent proteins. The quantitative data analysis using flow cytometry, Alamar blue viability assay, and direct fluorescence microscopy revealed higher optoporation efficacy for hard-to-transfect A431 cells and Raw 264.7 cells than lipofection efficacy. Finally, we demonstrated the optoporation performance at the single-cell level by successful delivering PI to the individual CHO cells with revealed high viability for at least 72 h post-irradiation.


Assuntos
Ouro , Nanopartículas Metálicas , Cricetinae , Animais , Humanos , Células HeLa , Cricetulus , Transfecção , Corantes , Microscopia de Fluorescência
19.
Appl Microbiol Biotechnol ; 108(1): 224, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38376550

RESUMO

The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: •  The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. •  The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. •  Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.


Assuntos
Autofagia , Glicoproteínas , Animais , Cricetinae , Células CHO , Cricetulus , Glicoproteínas/genética , Nucleotídeos , Açúcares
20.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338745

RESUMO

Cryopreservation is an essential step for utilizing various cell types for biological research and medical purposes. At the same time, there is a lack of data on the effect of cryopreservation, especially when prolonged, on the karyotype of cells. In the present work, we analyzed the genetic stability of cells subjected to a cryopreservation procedure. The objects were immortalized Chinese hamster lung fibroblasts (CHL V-79 RJK line) and human endometrial mesenchymal stem/stromal cells (eMSCs). We showed that short-term cryopreservation in liquid nitrogen for up to 6 months did not affect the karyotype stability of CHL V-79 RJK and eMSCs. On the contrary, karyotyping of G-banded metaphase chromosomes in cells underwent 10-year cryopreservation, which revealed genomic instability in both cell lines associated with the variability of chromosome number in cells, random chromosomal rearrangements, and condensation disorder in homologs. In addition, we found out that long-term cryopreservation of eMSCs does not affect the expression of their typical surface markers and morphology, but results in a significant reduction in proliferative potential and early manifestation of cellular senescence features upon eMSCs culturing. Thus, we concluded that the long-term cryopreservation of cells of different types and biological origin can lead to irreversible changes of their karyotype and acceleration of cellular senescence.


Assuntos
Criopreservação , Instabilidade Genômica , Cricetinae , Animais , Humanos , Cariotipagem , Linhagem Celular , Cariótipo , Cricetulus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...