Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.258
Filtrar
1.
Physiol Plant ; 176(1): e14215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38366670

RESUMO

High temperature affects the growth and production of cucumber. Selecting thermotolerant cucumber cultivars is conducive to coping with high temperatures and improving production. Thus, a quick and effective method for screening thermotolerant cucumber cultivars is needed. In this study, four cucumber cultivars were used to identify heat resistance indexes. The morphological, physiological and biochemical indexes were measured. When exposed to high temperatures, thermotolerant cucumber had a more stable photosystem, membrane, and oxidation-reduction systems. The impact of high temperatures on plants is multifaceted, and the accurate discrimination of heat resistance cannot be achieved solely based on a single or multiple indicators. Therefore, principal component analysis (PCA) was employed to comprehensively evaluate the heat resistance of cucumber plants. The results showed that the heat resistance obtained by PCA was significantly correlated with the heat injury index. In addition, the stepwise regression equation identified two heat-related indices, hydrogen peroxide content (H2 O2 ) and photosynthetic operating efficiency (Fq'/Fm'), and they can quickly distinguish the heat resistance of the other 8 cucumber cultivars. These results will help to accelerate the selection of thermotolerant resources and assist in cucumber breeding.


Assuntos
Cucumis sativus , Cucumis sativus/fisiologia , Fotossíntese/fisiologia
2.
Sci Rep ; 14(1): 2944, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316801

RESUMO

Optimum irrigation scheduling is important for ensuring high yield and water productivity in substrate-cultivated vegetables and is determined based on information such as substrate water content, meteorological parameters, and crop growth. The aim of this study was to determine a precise irrigation schedule for coconut coir culture in a solar greenhouse by comparing the irrigation, evapotranspiration (ET), substrate water content (VWC), as well as the crop growth indices and yield of cucumber, and irrigation water productivity (IWP) under three irrigation schedules: the soil moisture sensor-based method (T-VWC), the accumulated radiation combined with soil moisture sensor-based method (Rn-VWC), and the crop evapotranspiration estimated method using the hourly PM-ETo equation with an improved calculation of Kc (T-ETc). The results showed that the daily irrigation and evapotranspiration amount were the highest under T-VWC treatment, while the lowest under T-ETc treatment. In different meteorological environments, the change in irrigation amount was more consistent with the ET,and the VWC was relatively stable in T-ETc treatment compared with that under T-VWC or Rn-VWC treatments. The plant height, leaves number, leaf area, and stem diameter of T-VWC and Rn-VWC treatments were higher than those of the T-ETc treatments, but there was no significant difference in cucumber yield. Compared with the T-VWC treatment, total irrigation amount under Rn-VWC and T-ETc treatments significantly decreased by 25.75% and 34.04%, respectively ([Formula: see text]). The highest IWP values of 25.07 kg m[Formula: see text] was achieved from T-ETc treatment with significantly increasing by 44.33% compared to the T-VWC treatment (17.37 kg m[Formula: see text]). In summary, the T-ETc treatment allowed more reasonable irrigation management and was appropriate for growing cucumber in coconut coir culture.


Assuntos
Cucumis sativus , Lignina/análogos & derivados , Irrigação Agrícola/métodos , Cocos , Solo/química , Água/análise
3.
Physiol Plant ; 176(1): e14222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380715

RESUMO

Salinity and excess zinc are two main problems that have limited agriculture in recent years. Aquaporins are crucial in regulating the passage of water and solutes through cells and may be essential for mitigating abiotic stresses. In the present study, the adaptive response to moderate salinity (60 mM NaCl) and excess Zn (1 mM ZnSO4 ) were compared alone and in combination in Cucumis sativus L. and Solanum lycopersicum L. Water relations, gas exchange and the differential expression of all aquaporins were analysed. The results showed that cucumber plants under salinity maintained the internal movement of water through osmotic adjustment and the overexpression of specific PIPs aquaporins, following a "conservation strategy". As tomato has a high tolerance to salinity, the physiological parameters and the expression of most aquaporins remained unchanged. ZnSO4 was shown to be stressful for both plant species. While cucumber upregulated 7 aquaporin isoforms, the expression of aquaporins increased in a generalized manner in tomato. Despite the differences, water relations and transpiration were adjusted in both plants, allowing the RWC in the shoot to be maintained. The aquaporin regulation in cucumber plants facing NaCl+ZnSO4 stress was similar in the two treatments containing NaCl, evidencing the predominance of salt in stress. However, in tomato, the induced expression of specific isoforms to deal with the combined stress differed from independent stresses. The results clarify the key role of aquaporin regulation in facing abiotic stresses and their possible use as markers of tolerance to salinity and heavy metals in plants.


Assuntos
Aquaporinas , Cucumis sativus , Solanum lycopersicum , Cucumis sativus/fisiologia , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo , Solanum lycopersicum/genética , Salinidade , Zinco/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Água/metabolismo , Isoformas de Proteínas/metabolismo , Estresse Fisiológico
4.
Plant Cell Rep ; 43(2): 54, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315215

RESUMO

KEY MESSAGE: Arbuscular mycorrhizal fungi generated systemic acquired resistance in cucumber to Zucchini yellow mosaic virus, indicating their prospective application in the soil as a sustainable, environmentally friendly approach to inhibit the spread of pathogens. The wide spread of plant pathogens affects the whole world, causing several plant diseases and threatening national food security as it disrupts the quantity and quality of economically important crops. Recently, environmentally acceptable mitigating practices have been required for sustainable agriculture, restricting the use of chemical fertilizers in agricultural areas. Herein, the biological control of Zucchini yellow mosaic virus (ZYMV) in cucumber (Cucumis sativus L.) plants using arbuscular mycorrhizal (AM) fungi was investigated. Compared to control plants, ZYMV-infected plants displayed high disease incidence (DI) and severity (DS) with various symptoms, including severe yellow mosaic, mottling and green blisters of leaves. However, AM fungal inoculation exhibited 50% inhibition for these symptoms and limited DS to 26% as compared to non-colonized ones. The detection of ZYMV by the Enzyme-Linked Immunosorbent Assay technique exhibited a significant reduction in AM-inoculated plants (5.23-fold) compared with non-colonized ones. Besides, mycorrhizal root colonization (F%) was slightly reduced by ZYMV infection. ZYMV infection decreased all growth parameters and pigment fractions and increased the malondialdehyde (MDA) content, however, these parameters were significantly enhanced and the MDA content was decreased by AM fungal colonization. Also, the protein, proline and antioxidant enzymes (POX and CAT) were increased with ZYMV infection with more enhancements due to AM root colonization. Remarkably, defence pathogenesis-related (PR) genes such as PR-a, PR-b, and PR-10 were quickly expressed in response to AM treatment. Our findings demonstrated the beneficial function of AM fungi in triggering the plant defence against ZYMV as they caused systemic acquired resistance in cucumber plants and supported their potential use in the soil as an environment-friendly method of hindering the spread of pathogenic microorganisms sustainably.


Assuntos
Cucumis sativus , Vírus do Mosaico , Micorrizas , Potyvirus , Viroses , Micorrizas/fisiologia , Cucumis sativus/fisiologia , Simbiose , Verduras , Solo
5.
Funct Integr Genomics ; 24(1): 14, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236308

RESUMO

Cytochrome P450s are a large family of protein-encoding genes in plant genomes, many of which have not yet been comprehensively characterized. Here, a novel P450 gene, CYP82D47, was isolated and functionally characterized from cucumber (Cucumis sativus L.). Quantitative real-time reverse-transcription polymerase chain reaction analysis revealed that CYP82D47 expression was triggered by salicylic acid (SA) and ethephon (ETH). Expression analysis revealed a correlation between CYP82D47 transcript levels and plant defense responses against powdery mildew (PM) and Fusarium oxysporum f. sp. cucumerinum (Foc). Although no significant differences were observed in disease resistance between CYP82D47-RNAi and wild-type cucumber, overexpression (OE) of CYP82D47 enhanced PM and Foc resistance in cucumber. Furthermore, the expression levels of SA-related genes (PR1, PR2, PR4, and PR5) increased in CYP82D47-overexpressing plants 7 days post fungal inoculation. The levels of ETH-related genes (EIN3 and EBF2) were similarly upregulated. The observed enhanced resistance was associated with the upregulation of SA/ETH-signaling-dependent defense genes. These findings indicate the crucial role of CYP82D47 in pathogen defense in cucumber. CYP82D47-overexpressing cucumber plants exhibited heightened susceptibility to both diseases. The study results offer important insights that could aid in the development of disease-resistant cucumber cultivars and elucidate the molecular mechanisms associated with the functions of CYP82D47.


Assuntos
Cucumis sativus , Fusarium , Compostos Organofosforados , Cucumis sativus/genética , Regulação para Cima , Resistência à Doença/genética , Ácido Salicílico/farmacologia
6.
Sci Total Environ ; 918: 170449, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38290672

RESUMO

This study investigated the quality of anaerobic (AnE) and oxic/anoxic (O/A) effluents from a continuous-feed structured-bed hybrid baffled reactor (SBHBR) treating dairy wastewater impacts on lettuce and cucumber germination. While sustainable technologies like SBHBR have successfully removed organic matter and total nitrogen from dairy wastewater, residual concentrations may still represent a risk to water resources. Therefore, phytotoxicity bioassays were conducted with lettuce and cucumber seeds in contact with effluent during early stages to evaluate the potential implications of dairy wastewater reuse in agriculture. The study also explored the potential of SBHBR technology in promoting water resource preservation and creating a sustainable energy and nutrient cycling system. The physicochemical parameters of both effluents were characterized, and the phytotoxicity was evaluated by measuring the germination index (GI), root length (RL), the number of germinated seeds (SG), and epicotyl elongation (EE) for both lettuce and cucumber. The study revealed that the O/A effluent demonstrated lower phytotoxicity than the AnE effluent. The mean results indicate that the O/A zone wastewater was more conducive to cucumber germination than the AnE zone. Moreover, a positive influence of organic matter in the effluent on root growth and epicotyl elongation in cucumber, as well as the presence of nitrogen on the germination index, in both plant species. These findings emphasize the importance of considering effluent characteristics for suitable irrigation, highlighting SBHBR's potential as an effective solution for treating and reusing dairy wastewater in agriculture. This approach helps conserve water resources and promote a sustainable energy and nutrient cycling system.


Assuntos
Cucumis sativus , Águas Residuárias , Germinação , Plantas , Agricultura , Nitrogênio/farmacologia
7.
Plant Physiol Biochem ; 206: 108317, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171135

RESUMO

Cold stress (CS) significantly limits cucumber yield. However, it remains unclear whether and how sodium nitrophenolate (CSN) regulates plant responses to cold stress. Here, H2O, CSN, 24-epibrassinolide (EBR), and CSN + EBR were sprayed on cucumber seedlings before or after CS, and on control plants. We found that CSN, EBR, or EBR + CSN pre-treatment improved seedling growth under normal conditions (control condition) and cold tolerance under CS conditions. EBR pre-treatment promoted the expression of approximately half of the genes involved in BR synthesis and signaling and CsICE-CsCBF-CsCOR under CS. However, CSN pre-treatment promoted almost all the expression of BR synthesis and signaling genes, and CsICE-CsCBF-CsCOR genes, which showed the highest expression in early CS, remarkably improving the cold tolerance of cucumber. Interestingly, EBR and CSN had a superimposed effect on the expression of BR synthesis and signaling and CsICE-CsCBF-CsCOR genes, which rapidly increased their expression under normal temperature. Spraying EBR after CS accelerated seedling recovery, whereas CSN had the opposite effect. However, spraying CSN combined with EBR accelerated the recovery of CS-injured seedlings and was better than spraying EBR alone. Although CS-injured seedlings were negatively influenced by CSN, pre-treatment with CSN accelerated seedling growth and increased cold tolerance, suggesting that the effect of CSN was related to whether the seedlings were damaged by CS. In conclusion, we firstly found that CSN enhanced cold tolerance by activating BR signaling, contributing to the gene expression of ICE-CBF-COR and that CSN + EBR contributed to cold tolerance and CS-injured seedling recovery in cucumber.


Assuntos
Cucumis sativus , Esteroides Heterocíclicos , Brassinosteroides/farmacologia , Brassinosteroides/metabolismo , Plântula/metabolismo , Cucumis sativus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Sódio/metabolismo , Esteroides Heterocíclicos/farmacologia
8.
Food Chem ; 442: 138443, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241992

RESUMO

Degradation of trans-cinnamaldehyde and limonene in cucumber was evaluated under laboratory and greenhouse conditions. Two commercial biopesticides, one based on cinnamon extract and other from orange oil, were utilized. Compound degradation was monitored using gas chromatography (GC) and ultra-high-performance liquid chromatography (UHPLC) coupled to a quadrupole-high-resolution mass analyzer (Q-Orbitrap). In both studies, trans-cinnamaldehyde followed a second-order degradation kinetics, whereas limonene followed a first-order kinetics. The half-life values (DT50 or t1/2) for trans-cinnamaldehyde ranged from 2.02 to 2.49 h, while for limonene this value ranged from 0.49 to 6.17 h. Non-targeted analysis (suspect and unknown modes) allowed for the detection of trans-cinnamaldehyde and limonene metabolites. Benzyl alcohol, cinnamyl alcohol, cinnamic acid, p-tolylacetic acid and 4-hydoxycinnamic acid were tentatively identified as trans-cinnamaldehyde metabolites. While three limonene metabolites, carvone, limonene-1,2-epoxide, and perillyl alcohol, were tentatively identified. Greenhouse studies have not revealed any metabolites of these compounds because the parent compounds degrade more quickly.


Assuntos
Acroleína/análogos & derivados , Cucumis sativus , Limoneno , Cromatografia Líquida de Alta Pressão/métodos , Agentes de Controle Biológico , Alérgenos , Cromatografia Gasosa
9.
BMC Plant Biol ; 24(1): 24, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166490

RESUMO

BACKGROUND: Salinity stress is a major limiting factor for plant growth, particularly in arid and semi-arid environments. To mitigate the detrimental effects of salinity stress on vegetable production, selenium (Se) biofortification and grafting onto tolerant rootstocks have emerged as effective and sustainable cultivation practices. This study aimed to investigate the combined effects of Se biofortification and grafting onto tolerant rootstock on the yield of cucumber grown under salinity stress greenhouse conditions. The experiment followed a completely randomized factorial design with three factors: salinity level (0, 50, and 100 mM of NaCl), foliar Se application (0, 5, and 10 mg L-1 of sodium selenate) and grafting (grafted and non-grafted plants) using pumpkin (Cucurbita maxima) as the rootstock. Each treatment was triplicated. RESULTS: The results of this study showed that Se biofortification and grafting significantly enhanced salinity tolerance in grafted cucumbers, leading to increased yield and growth. Moreover, under salinity stress conditions, Se-Biofortified plants exhibited increased leaf relative water content (RWC), proline, total soluble sugars, protein, phenol, flavonoids, and antioxidant enzymes. These findings indicate that Se contributes to the stabilization of cucumber cell membrane and the reduction of ion leakage by promoting the synthesis of protective compounds and enhancing antioxidant enzyme activity. Moreover, grafting onto pumpkin resulted in increased salinity tolerance of cucumber through reduced Na uptake and translocation to the scion. CONCLUSION: In conclusion, the results highlight the effectiveness of Se biofortification and grafting onto pumpkin in improving cucumber salinity tolerance. A sodium selenate concentration of 10 mg L-1 is suggested to enhance the salinity tolerance of grafted cucumbers. These findings provide valuable insights for the development of sustainable cultivation practices to mitigate the adverse impact of salinity stress on cucumber production in challenging environments.


Assuntos
Cucumis sativus , Selênio , Antioxidantes , Tolerância ao Sal , Ácido Selênico , Biofortificação
10.
Theor Appl Genet ; 137(1): 20, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221593

RESUMO

KEY MESSAGE: A novel super compact mutant, scp-3, was identified using map-based cloning in cucumber. The CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase was the candidate gene of scp-3. Mining dwarf genes is important in understanding stem growth in crops. However, only a small number of dwarf genes have been cloned or characterized. Here, we characterized a cucumber (Cucumis sativus L.) dwarf mutant, super compact 3 (scp-3), which displays shortened internodes and dark green leaves with a wrinkled appearance. The photosynthetic rate of scp-3 is significantly lower than that of the wild type. The dwarf phenotype of scp-3 mutant can be partially rescued by the exogenous brassinolide (BL) application, and the endogenous brassinosteroids (BRs) levels in the scp-3 mutant were significantly lower compared to the wild type. Microscopic examination revealed that the reduced internode length in scp-3 resulted from a decrease in cell size. Genetic analysis showed that the dwarf phenotype of scp-3 was controlled by a single recessive gene. Combined with bulked segregant analysis and map-based cloning strategy, we delimited scp-3 locus into an 82.5 kb region harboring five putative genes, but only one non-synonymous mutation (A to T) was discovered between the mutant and its wild type in this region. This mutation occurred within the second exon of the CsGy4G017510 gene, leading to an amino acid alteration from Leu156 to His156. This gene encodes the CsDWF7 protein, an analog of the Arabidopsis DWF7 protein, which is known to be involved in the biosynthesis of BRs. The CsDWF7 protein was targeted to the cell membrane. In comparison to the wild type, scp-3 exhibited reduced CsDWF7 expression in different tissues. These findings imply that CsDWF7 is essential for both BR biosynthesis as well as growth and development of cucumber plants.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Esteróis , Mapeamento Cromossômico , Genes de Plantas , Mutação , Fenótipo , Ácidos Graxos Dessaturases/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
11.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38279332

RESUMO

Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and ß-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed.


Assuntos
Arabidopsis , Cucumis sativus , Arabidopsis/genética , Arabidopsis/metabolismo , Cucumis sativus/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hexoses/metabolismo , Pólen/genética , Pólen/metabolismo , Saccharomyces cerevisiae/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas
12.
Pestic Biochem Physiol ; 198: 105719, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225065

RESUMO

The cucumber target spot, caused by Corynespora cassiicola, is a major cucumber disease in China. Mefentrifluconazole, a new triazole fungicide, exhibits remarkable efficacy in controlling cucumber target spot. However, the resistance risk and mechanism remain unclear. In this study, the inhibitory activity of mefentrifluconazole against 101 C. cassiicola isolates was determined, and the results indicated that the EC50 values ranged between 0.15 and 12.85 µg/mL, with a mean of 4.76 µg/mL. Fourteen mefentrifluconazole-resistant mutants of C. cassiicola were generated from six parental isolates in the laboratory through fungicide adaptation or UV irradiation. The resistance was relatively stable after ten consecutive transfers on a fungicide-free medium. No cross-resistance was observed between mefentrifluconazole and pyraclostrobin, fluopyram, prochloraz, mancozeb, or difenoconazole. Investigations into the biological characteristics of the resistant mutants revealed that six resistant mutants exhibited an enhanced compound fitness index (CFI) compared to the parental isolates, while others displayed a reduced or comparable CFI. The overexpression of CcCYP51A and CcCYP51B was detected in the resistant mutants, regardless of the presence or absence of mefentrifluconazole. Additionally, a two-way mixture of mefentrifluconazole and prochloraz at a concentration of 7:3 demonstrated superior control efficacy against the cucumber target spot, achieving a protection rate of 80%. In conclusion, this study suggests that the risk of C. cassiicola developing resistance to mefentrifluconazole is medium, and the overexpression of CcCYP51A and CcCYP51B might be associated with mefentrifluconazole resistance in C. cassiicola. The mefentrifluconazole and prochloraz two-way mixture presented promising control efficacy against the cucumber target spot.


Assuntos
Ascomicetos , Cucumis sativus , Fluconazol/análogos & derivados , Fungicidas Industriais , Imidazóis , Fungicidas Industriais/farmacologia
13.
Food Res Int ; 177: 113851, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38225126

RESUMO

In the present study, naturally fermented and unpasteurized cucumbers (Cucumis sativus L.) collected from 4 producers located in different regions of Poland were studied. The fermented cucumbers were characterized by significant nutritional features in terms of polyphenols content and antioxidant activity. Microbiological analyses revealed active bacterial populations of lactococci, thermophilic cocci, lactobacilli, and coagulase-negative cocci. The microbiological characterization of cucumber and brine samples through metataxonomic analysis allowed the dominant species to be detected, being Lactococcus and Streptococcus in cucumbers, and Lactiplantibacillus, Leuconostoc, Pediococcus, Secundilactobacillus, and Lentilactobacillus in brine. The isolation activity offered a clear picture of the main active lactic acid bacteria at the end of fermentation, being Pediococcus parvulus and Lactiplantibacillus plantarum group. All the studied isolates showed a good attitude in fermenting a cucumber-based broth, thus suggesting their potential application as starter or adjunct cultures for guided cucumber fermentation. Moreover, for the same isolates, strong aminopeptidase activity (due to leucine arylamidase and valine arylamidase) was observed, with potential effect on the definition of the final sensory traits of the product. Only a few isolates showed the ability to produce exopolysaccharides in synthetic medium. Of note, the presence of the hdcA gene in some Pediococcus ethanolidurans isolates also confirmed the need for a thorough characterization of starter candidates to avoid undesired adverse effects on consumer's health. No isolate showed the production of bacteriocins against Listeria innocua used as surrogate for Listeria monocytogenes. Based on the results of Headspace Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry analysis, a rich and complex volatilome, composed by more than 80 VOCs, was recognized and characterized. In more detail, the detected compounds belonged to 9 main classes, being oxygenated terpenes, alcohols, terpenes, ketones, acids, aldehydes, esters, sulfur, and sesquiterpenes.


Assuntos
Cucumis sativus , Sais , Polônia , Microbiologia de Alimentos , Terpenos
14.
BMC Plant Biol ; 24(1): 26, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172661

RESUMO

To investigate the relationship between stem puncture mechanical characteristics and NK stress diagnosis, the microstructure, surface morphology, cellulose and lignin content, puncture mechanical characteristics, and epidermal cell morphology of cucumber stems were measured herein. The results indicated that the middle stem, which had a diameter of approximately 7000 µm, was more suitable for puncturing due to its lower amount of epidermal hair, and its gradual regularity in shape. Further, the cucumber stems were protected from puncture damage due to their ability to rapidly heal within 25 h.. The epidermal penetration of the cucumber stems increased with the increase in cellulose and lignin, though cellulose played a more decisive role. The epidermal break distance increased with an increase in N application and decreased with an increase in K+ application, but the change in intercellular space caused by K+ supply was the most critical factor affecting the epidermal break distance. In addition, a decrease in K+ concentration led to a decrease in epidermal brittleness, whereas the factors affecting epidermal toughness were more complex. Finally, we found that although the detection of epidermal brittleness and toughness on nutrient stress was poor under certain treatment, the puncture mechanical characteristics of the stem still had a significant indicative effect on N application rate. Therefore, elucidating of the relationship between the puncture mechanical characteristics of the stems and crop nutritional stress is not only beneficial for promoting stem stress physiology research but also for designing on-site nutritional testing equipment in the future.


Assuntos
Cucumis sativus , Cucumis sativus/fisiologia , Lignina , Celulose , Punções
15.
BMC Genomics ; 25(1): 36, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182984

RESUMO

BACKGROUND: Hollow heart is a kind of physiological defect that seriously affects the yield, quality, and economic value of cucumber. However, the formation of hollow hearts may relate to multiple factors in cucumber, and it is necessary to conduct analysis. RESULTS: In this study, hollow and non-hollow fruits of cucumber K07 were used for comparative transcriptome sequencing and analysis. 253 differentially expressed genes and 139 transcription factors were identified as being associated with the formation of hollow hearts. Hormone (auxin) signaling and cell wall biosynthesis were mainly enriched in GO and KEGG pathways. Expression levels of key genes involved in indole-3-acetic acid biosynthesis in carpel were lower in the hollow fruits than non-hollow fruits, while there was no difference in the flesh. The concentration of indole-3-acetic also showed lower in the carpel than flesh. The biosynthetic pathway and content analysis of the main components of the cell wall found that lignin biosynthesis had obvious regularity with hollow heart, followed by hemicellulose and cellulose. Correlation analysis showed that there may be an interaction between auxin and cell wall biosynthesis, and they collectively participate in the formation of hollow hearts in cucumber. Among the differentially expressed transcription factors, MYB members were the most abundant, followed by NAC, ERF, and bHLH. CONCLUSIONS: The results and analyses showed that the low content of auxin in the carpel affected the activity of enzymes related to cell wall biosynthesis at the early stage of fruit development, resulting in incomplete development of carpel cells, thus forming a hollow heart in cucumber. Some transcription factors may play regulatory roles in this progress. The results may enrich the theory of the formation of hollow hearts and provide a basis for future research.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Transcriptoma , Ácidos Indolacéticos , Perfilação da Expressão Gênica , Parede Celular , Fatores de Transcrição/genética
16.
In Vitro Cell Dev Biol Anim ; 60(1): 54-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123756

RESUMO

Postmenopausal osteoporosis (PMOP) is a common disease that endangers the health of elderly women. Cucumber seeds have shown excellent therapeutic effects on PMOP, but the mechanism of cucumber seed peptide (CSP) remains unclear. The expression levels of NF-κB and osteoclast-related genes were detected by RT-qPCR. The levels of apoptosis-related proteins were detected by Western blotting. Nuclear translocation of NF-κB p65 and osteoclast formation were detected by immunofluorescence and tartrate-resistant acid phosphatase (TRAP) staining, respectively. ELISA was used to detect the expression levels of OPG, M-CSF, and RANKL. Hematoxylin-eosin (H&E) and TRAP staining were used to observe the effects of CSP on bone formation. In RAW264.7 cells, CSP (0.4 mg/L, 4 mg/L, and 40 mg/L) effectively inhibited the expression of osteoclast-related genes (Cathepsin-K, MT1-MMP, MMP-9, and TRAP). TRAP-positive multinucleated giant cells gradually decreased. Furthermore, NF-κB pathway activation downstream of RANK was inhibited. In bone marrow stromal cells (BMSCs), the expression levels of M-CSF and RANKL gradually decreased, and OPG gradually increased with increasing CSP concentrations. Treatment of RAW264.7 cells with pyrrolidine dithiocarbamate (PDTC, an inhibitor of NF-κB) prevented the formation of osteoclasts. Treatment with different concentrations of CSP effectively decreased the levels of RANKL and M-CSF in rat serum and increased the expression of OPG in the oophorectomy (OVX) rat model. Furthermore, different concentrations of CSP could ameliorate the loss of bone structure and inhibit the formation of osteoclasts in rats. CSP inhibits osteoclastogenesis by regulating the OPG/RANKL/RANK pathway and inhibiting the NF-kB pathway.


Assuntos
Cucumis sativus , NF-kappa B , Animais , Feminino , Humanos , Ratos , Diferenciação Celular , Cucumis sativus/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , NF-kappa B/metabolismo , Osteoclastos/metabolismo , Osteogênese , Ligante RANK/metabolismo , Camundongos
17.
Sci Total Environ ; 912: 169462, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38141974

RESUMO

Organophosphate esters (OPEs) have been frequently detected in crops. However, few studies have focused on the uptake and translocation of OPEs in plants following foliar exposure. Herein, to investigate the foliar uptake, accumulation and translocation mechanisms of OPEs in plant, the cucumber (Cucumis sativus) was selected as a model plant for OPEs exposure via foliar application under control conditions. The results showed that the content of OPEs in the leaf cuticle was higher than that in the mesophyll on exposed leaf. Significant positive correlations were observed between the content of OPEs in the leaf cuticle and their log Kow and log Kcw values (P < 0.01), suggesting that OPEs with high hydrophobicity could not easily move from the cuticle to the mesophyll. The moderately hydrophobic OPEs, such as tris (2-chloroisopropyl) phosphate (TCPP, log Kow = 2.59), were more likely to move not only from the cuticle to the mesophyll but also from the mesophyll to the phloem. The majority of the transported OPEs accumulated in younger leaves (32-45 %), indicating that younger tissue was the primary target organ for OPEs accumulation after foliar exposure. Compared to chlorinated OPEs (except TCPP) and aryl OPEs, alkyl OPEs exhibited the strongest transport capacity in cucumber seedling due to their high hydrophilicity. Interestingly, tri-p-cresyl phosphate was found to be more prone to translocation compared to tri-m-cresyl phosphate and tri-o-cresyl phosphate, despite having same molecular weight and similar log Kow value. These results can contribute to our understanding of foliar uptake and translocation mechanism of OPEs by plant.


Assuntos
Cucumis sativus , Retardadores de Chama , Monitoramento Ambiental/métodos , Ésteres , Retardadores de Chama/análise , Organofosfatos , Fosfatos , China
18.
Plant Physiol Biochem ; 206: 108263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100887

RESUMO

The supply level of exogenous nitrogen has a very important influence on the growth and development of cucumber. Insufficient or excessive nitrogen application will lead to metabolic disorders in the body and affect the formation of yield. Therefore, it is of great scientific and practical significance to explore the corresponding mitigation measures. Melatonin (MT) is a multi-regulatory molecule with pleiotropic effects on plant growth and development. A large number of studies have shown that the appropriate amount of melatonin supplementation is beneficial to plant growth and development by promoting root development, delaying leaf senescence, and improving fruit yield. However, the study of MT function combined with a detailed physiological analysis of nitrogen (N) absorption and metabolism in cucumber plants needs further strengthening. We performed hydroponic tests at different nitrogen levels to determine the metabolic processes associated with the enhanced tolerance to nitrogen in melatonin-treated cucumber (Cucucumis sativus L.) seedlings. Cucumber seedlings were sprayed with 100 µM melatonin or water and treated with different nitrogen in the growth chamber for 7 days. Nitrogen deficiency significantly inhibited seedling growth, and this growth inhibition was partially alleviated by melatonin. The expression analysis of related carbon and nitrogen genes showed that the genes whose expression was significantly altered by melatonin were mainly related to carbon (C) and nitrogen (N) metabolism. By enzyme activity and reactive oxygen content data analysis, melatonin-treated cucumber seedlings showed relatively stable carbon and nitrogen levels compared to untreated ones. In conclusion, MT can repair the impaired growth and development situation by regulating the nitrogen assimilation capacity and the balance between oxidation and oxidative metabolism and carbon metabolism in the cucumber under different nitrogen levels.


Assuntos
Cucumis sativus , Melatonina , Plântula/metabolismo , Cucumis sativus/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
19.
New Phytol ; 241(4): 1866-1876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38124293

RESUMO

Image-based high-throughput phenotyping promises the rapid determination of functional traits in large plant populations. However, interpretation of some traits - such as those related to photosynthesis or transpiration rates - is only meaningful if the irradiance absorbed by the measured leaves is known, which can differ greatly between different parts of the same plant and within canopies. No feasible method currently exists to rapidly measure absorbed irradiance in three-dimensional plants and canopies. We developed a method and protocols to derive absorbed irradiance at any visible part of a canopy with a thermal camera, by fitting a leaf energy balance model to transient changes in leaf temperature. Leaves were exposed to short light pulses (30 s) that were not long enough to trigger stomatal opening but strong enough to induce transient changes in leaf temperature that was proportional to the absorbed irradiance. The method was successfully validated against point measurements of absorbed irradiance in plant species with relatively simple architecture (sweet pepper, cucumber, tomato, and lettuce). Once calibrated, the model was used to produce absorbed irradiance maps from thermograms. Our method opens new avenues for the interpretation of plant responses derived from imaging techniques and can be adapted to existing high-throughput phenotyping platforms.


Assuntos
Cucumis sativus , Folhas de Planta , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Plantas , Fenótipo
20.
Sci Total Environ ; 912: 169454, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123101

RESUMO

Using reclaimed water for agricultural irrigation is increasing worldwide to compensate for water scarcity. The aim of this work was to evaluate the uptake of some of the most commonly detected organic contaminants of emerging concern (CECs) and pesticides in regenerated water in a field study. Furthermore, it was studied their distribution and accumulation in the different parts of a crop (soil, plant and fruit). Three crops (cucumber, pepper and melon) were grown under controlled agronomic conditions in a greenhouse. In order to make an accurate evaluation of the process, "regenerated blank water" was spiked with 70 chemicals (including antibiotics, anti-inflammatories, analgesics, anaesthetics, anxiolytics, anticonvulsants, pesticides) at environmental concentrations (∼1 µg/L) and used for continuous crop irrigation. After crop season, the average total concentration of contaminants detected in the soil samples ranged from 132 to 232 µg/kg d.w depending of the crops type. Between 7 and 10 different contaminants were found in the harvested fruits, up to levels of 27.8 µg/kg f.w. cucumber, 12.4 µg/kg f.w. melon and 7.8 µg/kg f.w pepper. In general, cucumber fruit showed higher accumulation levels of contaminants than pepper and melon for most target analytes. The accumulation rates followed the order: root (0.2 %) < stem/leaf (1-4 %) < fruit (1-6 %) < soil (17-30 %). The experimental data obtained in this study were also used to assess the risk associated with the reuse of reclaimed water for crop irrigation as well to identify those contaminants that, due to their physicochemical properties, show higher accumulation rates and environmental impact.


Assuntos
Cucumis sativus , Praguicidas , Água , Produtos Agrícolas , Agricultura , Irrigação Agrícola , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...