Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.672
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000592

RESUMO

Prostaglandin E2 (PGE2) is known to be effective in regenerating tissues, and bimatoprost, an analog of PGF2α, has been approved by the FDA as an eyelash growth promoter and has been proven effective in human hair follicles. Thus, to enhance PGE2 levels while improving hair loss, we found dihydroisoquinolinone piperidinylcarboxy pyrazolopyridine (DPP), an inhibitor of 15-hydroxyprostaglandin dehydrogenase (15-PGDH), using DeepZema®, an AI-based drug development program. Here, we investigated whether DPP improved hair loss in human follicle dermal papilla cells (HFDPCs) damaged by dihydrotestosterone (DHT), which causes hair loss. We found that DPP enhanced wound healing and the expression level of alkaline phosphatase in DHT-damaged HFDPCs. We observed that DPP significantly down-regulated the generation of reactive oxygen species caused by DHT. DPP recovered the mitochondrial membrane potential in DHT-damaged HFDPCs. We demonstrated that DPP significantly increased the phosphorylation levels of the AKT/ERK and activated Wnt signaling pathways in DHT-damaged HFDPCs. We also revealed that DPP significantly enhanced the size of the three-dimensional spheroid in DHT-damaged HFDPCs and increased hair growth in ex vivo human hair follicle organ culture. These data suggest that DPP exhibits beneficial effects on DHT-damaged HFDPCs and can be utilized as a promising agent for improving hair loss.


Assuntos
Folículo Piloso , Hidroxiprostaglandina Desidrogenases , Humanos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Hidroxiprostaglandina Desidrogenases/metabolismo , Hidroxiprostaglandina Desidrogenases/antagonistas & inibidores , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Derme/metabolismo , Derme/citologia , Derme/efeitos dos fármacos , Células Cultivadas , Via de Sinalização Wnt/efeitos dos fármacos , Alopecia/tratamento farmacológico , Alopecia/metabolismo , Cicatrização/efeitos dos fármacos , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia
2.
J Nanobiotechnology ; 22(1): 425, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030543

RESUMO

Hair follicle (HF) regeneration during wound healing continues to present a significant clinical challenge. Dermal papilla cell-derived exosomes (DPC-Exos) hold immense potential for inducing HF neogenesis. However, the accurate role and underlying mechanisms of DPC-Exos in HF regeneration in wound healing remain to be fully explained. This study, represents the first analysis into the effects of DPC-Exos on fibroblasts during wound healing. Our findings demonstrated that DPC-Exos could stimulate the proliferation and migration of fibroblasts, more importantly, enhance the hair-inducing capacity of fibroblasts. Fibroblasts treated with DPC-Exos were capable of inducing HF neogenesis in nude mice when combined with neonatal mice epidermal cells. In addition, DPC-Exos accelerated wound re-epithelialization and promoted HF regeneration during the healing process. Treatment with DPC-Exos led to increased expression levels of the Wnt pathway transcription factors ß-catenin and Lef1 in both fibroblasts and the dermis of skin wounds. Specifically, the application of a Wnt pathway inhibitor reduced the effects of DPC-Exos on fibroblasts and wound healing. Accordingly, these results offer evidence that DPC-Exos promote HF regeneration during wound healing by enhancing the hair-inducing capacity of fibroblasts and activating the Wnt/ß-catenin signaling pathway. This suggests that DPC-Exos may represent a promising therapeutic strategy for achieving regenerative wound healing.


Assuntos
Proliferação de Células , Exossomos , Fibroblastos , Folículo Piloso , Camundongos Nus , Regeneração , Vibrissas , Via de Sinalização Wnt , Cicatrização , beta Catenina , Animais , Camundongos , Fibroblastos/metabolismo , Exossomos/metabolismo , Vibrissas/fisiologia , beta Catenina/metabolismo , Derme/metabolismo , Movimento Celular , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo
3.
J Cell Biol ; 223(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-38990714

RESUMO

Dermal fibroblasts deposit type I collagen, the dominant extracellular matrix molecule found in skin, during early postnatal development. Coincident with this biosynthetic program, fibroblasts proteolytically remodel pericellular collagen fibrils by mobilizing the membrane-anchored matrix metalloproteinase, Mmp14. Unexpectedly, dermal fibroblasts in Mmp14-/- mice commit to a large-scale apoptotic program that leaves skin tissues replete with dying cells. A requirement for Mmp14 in dermal fibroblast survival is recapitulated in vitro when cells are embedded within, but not cultured atop, three-dimensional hydrogels of crosslinked type I collagen. In the absence of Mmp14-dependent pericellular proteolysis, dermal fibroblasts fail to trigger ß1 integrin activation and instead actuate a TGF-ß1/phospho-JNK stress response that leads to apoptotic cell death in vitro as well as in vivo. Taken together, these studies identify Mmp14 as a requisite cell survival factor that maintains dermal fibroblast viability in postnatal dermal tissues.


Assuntos
Apoptose , Sobrevivência Celular , Fibroblastos , Metaloproteinase 14 da Matriz , Animais , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Integrina beta1/metabolismo , Integrina beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Derme/metabolismo , Derme/citologia , Células Cultivadas , Matriz Extracelular/metabolismo , Camundongos Endogâmicos C57BL , Pele/metabolismo
4.
Sci Rep ; 14(1): 13899, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886354

RESUMO

The current investigation aims to study the embryonic dermis formed in the early stages of development and identify the initial interstitial components of the dermis that serve as biological and structural scaffolds for the development of the dermal tissue. To investigate the dermal structure, the current study used morphological and immunological techniques. TCs identified by TEM. They had a cell body and unique podomeres and podoms. They formed a 3D network spread throughout the dermis. Homocellular contact established between them, as well as heterocellular contacts with other cells. Immunohistochemical techniques using specific markers for TCss CD34, CD117, and VEGF confirmed TC identification. TCs represent the major interstitial component in the dermal tissue. They established a 3D network, enclosing other cells and structures. Expression of VEGF by TC promotes angiogenesis. TCs establish cellular contact with sprouting endothelial cells. At the site of cell junction with TCs, cytoskeletal filaments identified and observed to form the pseudopodium core that projects from endothelial cells. TCs had proteolytic properties that expressed MMP-9, CD68, and CD21. Proteolytic activity aids in the removal of components of the extracellular matrix and the phagocytosis of degraded remnants to create spaces to facilitate the development of new dermal structures. In conclusion, TCs organized the scaffold for the development of future dermal structures, including fibrous components and skin appendages. Studying dermal TCs would be interested in the possibility of developing therapeutic strategies for treating different skin disorders and diseases.


Assuntos
Derme , Imuno-Histoquímica , Telócitos , Telócitos/metabolismo , Telócitos/citologia , Derme/metabolismo , Derme/citologia , Humanos , Antígenos CD34/metabolismo , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos CD/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Molécula CD68
5.
Skin Res Technol ; 30(6): e13810, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887125

RESUMO

BACKGROUND: Human dermal fibroblasts secrete diverse proteins that regulate wound repair and tissue regeneration. METHODS: In this study, dermal fibroblast-conditioned medium (DFCM) proteins potentially regulating nerve restoration were bioinformatically selected among the 337 protein lists identified by quantitative liquid chromatography-tandem mass spectrometry. Using these proteins, protein-protein interaction network analysis was conducted. In addition, the roles of DFCM proteins were reviewed according to their protein classifications. RESULTS: Gene Ontology protein classification categorized these 57 DFCM proteins into various classes, including protein-binding activity modulator (N = 11), cytoskeletal protein (N = 8), extracellular matrix protein (N = 6), metabolite interconversion enzyme (N = 5), chaperone (N = 4), scaffold/adapter protein (N = 4), calcium-binding protein (N = 3), cell adhesion molecule (N = 2), intercellular signal molecule (N = 2), protein modifying enzyme (N = 2), transfer/carrier protein (N = 2), membrane traffic protein (N = 1), translational protein (N = 1), and unclassified proteins (N = 6). Further protein-protein interaction network analysis of 57 proteins revealed significant interactions among the proteins that varied according to the settings of confidence score. CONCLUSIONS: Our bioinformatic analysis demonstrated that DFCM contains many secretory proteins that form significant protein-protein interaction networks crucial for regulating nerve restoration. These findings underscore DFCM proteins' critical roles in various nerve restoration stages during the wound repair process.


Assuntos
Biologia Computacional , Fibroblastos , Regeneração Nervosa , Mapas de Interação de Proteínas , Humanos , Fibroblastos/metabolismo , Regeneração Nervosa/fisiologia , Mapas de Interação de Proteínas/fisiologia , Meios de Cultivo Condicionados , Cicatrização/fisiologia , Células Cultivadas , Espectrometria de Massas em Tandem , Derme/citologia , Derme/metabolismo
6.
In Vivo ; 38(4): 1767-1774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38936924

RESUMO

BACKGROUND/AIM: Dermal papilla (DP) stem cells are known for their remarkable regenerative capacity, making them a valuable model for assessing the effects of natural products on cellular processes, including stemness, and autophagy. MATERIALS AND METHODS: Autophagy and stemness characteristics were assessed using real-time RT-PCR to analyze mRNA levels, along with immunofluorescence and western blot techniques for protein level evaluation. RESULTS: Butterfly Pea, Emblica Fruits, Kaffir Lime, and Thunbergia Laurifolia extracts induced autophagy in DP cells. Kaffir Lime-treated cells exhibited increase in the OCT4, NANOG, and SOX2 mRNA (6-, 5, and 5.5-fold, respectively), and protein levels (4-, 3-, and 1.5-fold, respectively). All extracts activated the survival protein kinase B (Akt) in DP cells. CONCLUSION: Natural products are a promising source for promoting hair growth by rejuvenating hair stem cells.


Assuntos
Autofagia , Produtos Biológicos , Folículo Piloso , Extratos Vegetais , Células-Tronco , Autofagia/efeitos dos fármacos , Humanos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/citologia , Produtos Biológicos/farmacologia , Extratos Vegetais/farmacologia , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/citologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Derme/citologia , Derme/efeitos dos fármacos , Derme/metabolismo , Diferenciação Celular/efeitos dos fármacos
7.
Bull Exp Biol Med ; 176(5): 636-639, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38727953

RESUMO

Immunohistochemical detection of the LYVE-1 marker in healthy human full-thickness skin (the epidermis and the dermis) was carried out. LYVE-1 expression was found in the endothelium of lymphatic capillaries located in the papillary dermis, in the endothelium of larger lymphatic vessels of the reticular dermis, and in fibroblasts, which indicates their joint participation in hyaluronan metabolism. LYVE-1+ staining detected for the first time in cells of the stratum basale, the stratum spinosum, and the stratum granulosum of healthy human epidermis indicates their participation in hyaluronan metabolism and allows us to consider the spaces between epidermis cells as prelimphatics.


Assuntos
Epiderme , Ácido Hialurônico , Vasos Linfáticos , Pele , Proteínas de Transporte Vesicular , Humanos , Ácido Hialurônico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Pele/metabolismo , Vasos Linfáticos/metabolismo , Epiderme/metabolismo , Ligantes , Fibroblastos/metabolismo , Derme/metabolismo , Sistema Linfático/metabolismo , Adulto , Feminino , Masculino , Imuno-Histoquímica
8.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(5): 626-632, 2024 May 15.
Artigo em Chinês | MEDLINE | ID: mdl-38752252

RESUMO

Objective: To summarize the dynamic and synchronized changes between the hair cycle and dermal adipose tissue as well as the impact of dermal adipose tissue on hair growth, and to provide a new research idea for the clinical treatment of hair loss. Methods: An extensive review of relevant literature both domestic and international was conducted, analyzing and summarizing the impact of dermal adipose precursor cells, mature dermal adipocytes, and the processes of adipogenesis in dermal adipose tissue on the transition of hair cycle phases. Results: Dermal adipose tissue is anatomically adjacent to hair follicles and closely related to the changes in the hair cycle. The proliferation and differentiation of dermal adipose precursor cells promote the transition of hair cycle from telogen to anagen, while mature adipocytes can accelerate the transition from anagen to catagen of the hair cycle by expressing signaling molecules, with adipogenesis in dermal adipose tissue and hair cycle transition signaling coexistence. Conclusion: Dermal adipose tissue affects the transition of the hair cycle and regulates hair growth by secreting various signaling molecules. However, the quantity and depth of existing literature are far from sufficient to fully elucidate its prominent role in regulating the hair cycle, and the specific regulatory mechanisms needs to be further studied.


Assuntos
Tecido Adiposo , Diferenciação Celular , Cabelo , Animais , Humanos , Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Alopecia/metabolismo , Proliferação de Células , Derme/metabolismo , Derme/citologia , Cabelo/crescimento & desenvolvimento , Cabelo/metabolismo , Folículo Piloso/metabolismo , Transdução de Sinais
9.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786058

RESUMO

Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-α and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-α and IL-1ß and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1ß, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-ß genes. At the protein level, IL-1ß and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.


Assuntos
Colágeno , Polpa Dentária , Fibroblastos , Inflamassomos , Células-Tronco , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Fibroblastos/metabolismo , Humanos , Inflamassomos/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Colágeno/metabolismo , Técnicas de Cocultura , Matriz Extracelular/metabolismo , Células Cultivadas , Citocinas/metabolismo , Derme/citologia , Derme/metabolismo , Interleucina-1beta/metabolismo
10.
Commun Biol ; 7(1): 577, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755434

RESUMO

Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).


Assuntos
Calcinose , Elastina , Fibroblastos , Pseudoxantoma Elástico , Pseudoxantoma Elástico/metabolismo , Pseudoxantoma Elástico/patologia , Pseudoxantoma Elástico/genética , Humanos , Elastina/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Calcinose/metabolismo , Calcinose/patologia , Derme/metabolismo , Derme/patologia , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Células Cultivadas , Matriz Extracelular/metabolismo , Tecido Elástico/metabolismo , Tecido Elástico/patologia
11.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791217

RESUMO

The dermal-epidermal junction (DEJ) is essential for maintaining skin structural integrity and regulating cell survival and proliferation. Thus, DEJ rejuvenation is key for skin revitalization, particularly in age-related DEJ deterioration. Radiofrequency (RF) treatment, known for its ability to enhance collagen fiber production through thermal mechanisms and increase heat shock protein (HSP) expression, has emerged as a promising method for skin rejuvenation. Additionally, RF activates Piezo1, an ion channel implicated in macrophage polarization toward an M2 phenotype and enhanced TGF-ß production. This study investigated the impact of RF treatment on HSP47 and HSP90 expression, known stimulators of DEJ protein expression. Furthermore, using in vitro and aged animal skin models, we assessed whether RF-induced Piezo1 activation and the subsequent M2 polarization could counter age-related DEJ changes. The RF treatment of H2O2-induced senescent keratinocytes upregulated the expression of HSP47, HSP90, TGF-ß, and DEJ proteins, including collagen XVII. Similarly, the RF treatment of senescent macrophages increased Piezo1 and CD206 (M2 marker) expression. Conditioned media from RF-treated senescent macrophages enhanced the expression of TGF-ß and DEJ proteins, such as nidogen and collagen IV, in senescent fibroblasts. In aged animal skin, RF treatment increased the expression of HSP47, HSP90, Piezo1, markers associated with M2 polarization, IL-10, and TGF-ß. Additionally, RF treatment enhanced DEJ protein expression. Moreover, RF reduced lamina densa replication, disrupted lesions, promoted hemidesmosome formation, and increased epidermal thickness. Overall, RF treatment effectively enhanced DEJ protein expression and mitigated age-related DEJ structural changes by increasing HSP levels and activating Piezo1.


Assuntos
Epiderme , Animais , Epiderme/metabolismo , Epiderme/efeitos da radiação , Camundongos , Derme/metabolismo , Queratinócitos/metabolismo , Macrófagos/metabolismo , Envelhecimento da Pele/efeitos da radiação , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Humanos , Envelhecimento/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP47/metabolismo , Proteínas de Choque Térmico HSP47/genética
12.
Eur J Pharm Biopharm ; 200: 114305, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685437

RESUMO

The influence of the vehicle on the dermal penetration efficacy of three different active ingredient (AI) surrogates (hydrophilic, amphiphilic, lipophilic model drugs), that were incorporated into these vehicles, was investigated with the ex vivo porcine ear model, which allowed to assess time and space resolved dermal penetration profiles of the AI. Fifteen different vehicles, including classical vehicles (hydrogel, oleogel, o/w cream, w/o ointment, amphiphilic cream) and innovative vehicles were included into the study. Results show tremendous differences in the penetration efficacy of the AI among the different vehicles. The differences in the total amounts of penetrated AI between lowest and highest penetration were about 3-fold for the hydrophilic AI surrogate, 3.5-fold for the amphiphilic AI and almost 5-fold for the lipophilic AI. The penetration depth was also affected by the type of vehicle. Some vehicles allowed the AI to penetrate only into the upper layers of the stratum corneum, whereas others allowed the penetration of the AI into deeper layers of the viable dermis. Data therefore demonstrate that the vehicles in compounding medications cannot be exchanged against each other randomly if a constant and safe medication is desired. The data obtained in the study provide first information on which types of vehicles are exchangeable and which types of vehicles can be used for enhanced dermal penetration of AI, thus providing a first base for a science-based selection of vehicles that can provide both, efficient dermal drug delivery and skin barrier function maintenance/strengthening at the same time.


Assuntos
Fármacos Dermatológicos , Sistemas de Liberação de Medicamentos , Veículos Farmacêuticos , Veículos Farmacêuticos/química , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/química , Fármacos Dermatológicos/metabolismo , Animais , Suínos , Sistemas de Liberação de Medicamentos/métodos , Sistemas de Liberação de Medicamentos/normas , Interações Hidrofóbicas e Hidrofílicas , Derme/metabolismo
13.
Exp Dermatol ; 33(4): e15058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590080

RESUMO

Antibody-secreting cells (ASCs) produce immunoglobulin (Ig) G and IgE autoantibodies in secondary lymphoid organs. Evidence also suggests their existence in the skin in various chronic inflammatory conditions, and in association with CXCL12 and CXCL13, they regulate the recruitment/survival of ASCs and germinal center formation to generate ASCs, respectively. However, the presence of IgG and IgE in bullous pemphigoid (BP) lesions needs to be addressed. Here, we aimed to analyse BP skin for the presence of IgG and IgE and the factors contributing to their generation, recruitment, and persistence. Skin samples from 30 patients with BP were stained to identify ASCs and the immunoglobulin type they expressed. The presence of tertiary lymphoid organ (TLO) elements, which generate ASCs in non-lymphoid tissues, and the chemokines CXCL12 and CXCL13, which regulate the migration/persistence of ASCs in lymphoid tissues and formation of TLOs, respectively, were evaluated in BP skin. BP skin harboured ASCs expressing the two types of antibodies IgG and IgE. ASCs were found in high-grade cellular aggregates containing TLO elements: T cells, B cells, CXCL12+ cells, CXCL13+ cells and high endothelial venules. IgG+ ASCs were detected among these aggregates, whereas IgE+ ASCs were dispersed throughout the dermis. CXCL12+ fibroblast-like cells were located close to ASCs. The inflammatory microenvironment of BP lesions may contribute to the antibody load characteristic of the skin of patients with BP by providing a site for the presence of ASCs. CXCL13 and CXCL12 expression may contribute to the generation and recruitment/survival of ASCs, respectively.


Assuntos
Penfigoide Bolhoso , Humanos , Imunoglobulina E/metabolismo , Vesícula , Autoanticorpos/metabolismo , Imunoglobulina G/fisiologia , Linfócitos B , Derme/metabolismo , Autoantígenos , Colágenos não Fibrilares
14.
Int J Mol Sci ; 25(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674144

RESUMO

Mammalian melanin is produced in melanocytes and accumulated in melanosomes. Melanogenesis is supported by many factors derived from the surrounding tissue environment, such as the epidermis, dermis, and subcutaneous tissue, in addition to numerous melanogenesis-related genes. The roles of these genes have been fully investigated and the molecular analysis has been performed. Moreover, the role of paracrine factors derived from epidermis has also been studied. However, the role of dermis has not been fully studied. Thus, in this review, dermis-derived factors including soluble and insoluble components were overviewed and discussed in normal and abnormal circumstances. Dermal factors play an important role in the regulation of melanogenesis in the normal and abnormal mammalian skin.


Assuntos
Melaninas , Melanócitos , Melaninas/metabolismo , Melanócitos/metabolismo , Humanos , Animais , Pele/metabolismo , Derme/metabolismo , Epiderme/metabolismo , Melanogênese
15.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 158-163, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678608

RESUMO

Dermal papilla cell (DPC) belongs to a specialized mesenchymal stem cell for hair follicle regeneration. Maintaining the ability of DPCs to stimulate hair in vitro culture is important for hair follicle morphogenesis and regeneration. As the third generation of platelet concentrate, injectable platelet-rich fibrin (i-PRF) is a novel biomaterial containing many growth factors and showing promising effects on tissue reconstruction. We aimed to explore the influences of i-PRF on the proliferative, migratory, as well as trichogenic ability of DPCs and compared the effects of i-PRF and platelet-rich plasma (PRP), the first generation of platelet concentrate. Both PRP and i-PRF facilitated DPCs proliferation, and migration, along with trichogenic inductivity as well as stimulated the TGF-ß/Smad pathway, while the impacts of i-PRF were more significant than PRP. A small molecule inhibitor of TGF-beta receptor I, Galunisertib, was also applied to treat DPCs, and it rescued the impacts of i-PRF on the proliferative, migratory, trichogenic inductivity, and proteins-associated with TGF-ß/Smad pathway in DPCs. These findings revealed that i-PRF had better effects than PRP in enhancing the proliferative, migratory, and hair-inducing abilities of DPCs by the TGF-ß/Smad pathway, which indicated the beneficial role of i-PRF in hair follicle regeneration.


Assuntos
Movimento Celular , Proliferação de Células , Folículo Piloso , Fibrina Rica em Plaquetas , Transdução de Sinais , Proteínas Smad , Fator de Crescimento Transformador beta , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Proteínas Smad/metabolismo , Humanos , Fibrina Rica em Plaquetas/metabolismo , Movimento Celular/efeitos dos fármacos , Derme/citologia , Derme/metabolismo , Derme/efeitos dos fármacos , Células Cultivadas , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Plasma Rico em Plaquetas/metabolismo , Injeções
16.
J Dermatol ; 51(6): 816-826, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470170

RESUMO

Ultraviolet (UV)-induced skin photoaging is caused by qualitative and quantitative degradation of dermal extracellular matrix components such as collagen and elastic fibers. Elastic fibers are important for maintaining cutaneous elasticity, despite their small amount in the skin. Previously, microfibril-associated protein 4 (MFAP-4), which is downregulated in photoaging dermis, has been found to be essential for elastic fiber formation by interaction with both fibrillin-1 and elastin, which are core components of elastic fiber. In addition, enhanced cutaneous MFAP-4 expression in a human skin-xenografted murine photoaging model protects against UV-induced photodamage accompanied by the prevention of elastic fiber degradation and aggravated elasticity. We therefore hypothesized that the upregulation of MFAP-4 in dermal fibroblasts may more efficiently accelerate elastic fiber formation. We screened botanical extracts for MFAP-4 expression-promoting activity in normal human dermal fibroblasts (NHDFs). We found that rosemary extract markedly promotes early microfibril formation and mature elastic fiber formation along with a significant upregulation of not only MFAP-4 but also fibrillin-1 and elastin in NHDFs. Furthermore, rosmarinic acid, which is abundant in rosemary extract, accelerated elastic fiber formation via upregulation of transforming growth factor ß-1. This was achieved by the induction of cAMP response element-binding protein phosphorylation, demonstrating that rosmarinic acid represents one of the active ingredients in rosemary extract. Based on the findings in this study, we conclude that rosemary extract and rosmarinic acid represent promising materials that exert a preventive or ameliorative effect on skin photoaging by accelerating elastic fiber formation.


Assuntos
Cinamatos , Depsídeos , Tecido Elástico , Elastina , Fibrilina-1 , Fibroblastos , Extratos Vegetais , Ácido Rosmarínico , Envelhecimento da Pele , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Depsídeos/farmacologia , Fibrilina-1/metabolismo , Cinamatos/farmacologia , Extratos Vegetais/farmacologia , Elastina/metabolismo , Tecido Elástico/efeitos dos fármacos , Tecido Elástico/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Células Cultivadas , Rosmarinus/química , Regulação para Cima/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Pele/citologia , Pele/patologia , Pele/metabolismo , Derme/citologia , Derme/efeitos dos fármacos , Derme/metabolismo , Raios Ultravioleta/efeitos adversos , Proteínas da Matriz Extracelular/metabolismo , Adipocinas
17.
J Microbiol Biotechnol ; 34(4): 812-827, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38480001

RESUMO

Phloroglucinol (PG) is one of the abundant isomeric benzenetriols in brown algae. Due to its polyphenolic structure, PG exhibits various biological activities. However, the impact of PG on anagen signaling and oxidative stress in human dermal papilla cells (HDPCs) is unknown. In this study, we investigated the therapeutic potential of PG for improving hair loss. A non-cytotoxic concentration of PG increased anagen-inductive genes and transcriptional activities of ß-Catenin. Since several anagen-inductive genes are regulated by ß-Catenin, further experiments were performed to elucidate the molecular mechanism by which PG upregulates anagen signaling. Various biochemical analyses revealed that PG upregulated ß-Catenin signaling without affecting the expression of Wnt. In particular, PG elevated the phosphorylation of protein kinase B (AKT), leading to an increase in the inhibitory phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) at serine 9. Treatment with the selective phosphoinositide 3-kinase/AKT inhibitor, LY294002, restored the increased AKT/GSK3ß/ß-Catenin signaling and anagen-inductive proteins induced by PG. Moreover, conditioned medium from PG-treated HDPCs promoted the proliferation and migration of human epidermal keratinocytes via the AKT signaling pathway. Subsequently, we assessed the antioxidant activities of PG. PG ameliorated the elevated oxidative stress markers and improved the decreased anagen signaling in hydrogen peroxide (H2O2)-induced HDPCs. The senescence-associated ß-galactosidase staining assay also demonstrated that the antioxidant abilities of PG effectively mitigated H2O2-induced senescence. Overall, these results indicate that PG potentially enhances anagen signaling and improves oxidative stress-induced cellular damage in HDPCs. Therefore, PG can be employed as a novel therapeutic component to ameliorate hair loss symptoms.


Assuntos
Glicogênio Sintase Quinase 3 beta , Peróxido de Hidrogênio , Estresse Oxidativo , Floroglucinol , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , beta Catenina , Humanos , Floroglucinol/farmacologia , Floroglucinol/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosforilação/efeitos dos fármacos , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Folículo Piloso/citologia , Derme/citologia , Derme/metabolismo , Derme/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Alopecia/tratamento farmacológico , Alopecia/metabolismo
18.
Methods Mol Biol ; 2849: 149-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411889

RESUMO

Exosomes are small membrane-derived vesicles that transmit DNA constituents, mRNAs, microRNAs, and proteins from donor cells to a receiver cell. Various cells comprising of mesenchymal, immune, and cancer cells discharge exosomes. Cancer cell exosomes form the entry and reprogramming of essentials connected to a tumor environment. Melanoma-derived exosomes transport diverse proteins such as c-MET and RAB27a, which leave a melanoma mark. Increased mesenchymal epithelial transition (MET) expressions in serum exosomes have been considered an indicator of disease progression. Meanwhile, RAB27a has been identified as being involved in exosome discharge and trafficking. Decreased expressions of RAB27a in human melanoma cells have shown to diminish exosome release.We examined the effects of the downregulation and upregulation of RAB27a and c-MET in human dermal fibroblasts by utilizing the isolated exosomes of malignant melanoma cell lines. Melanoma exosomes derived from cancer cells conveyed information to healthy dermal fibroblasts and stem cells while inducing phenotypic change. In this chapter, we show optimized protocols that were used by our group for in vitro analysis with melanoma exosomes.


Assuntos
Exossomos , Fibroblastos , Melanoma , Fenótipo , Humanos , Exossomos/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Fibroblastos/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Proteínas rab27 de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP/genética , Derme/citologia , Derme/metabolismo , Derme/patologia
19.
FASEB J ; 38(4): e23476, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334392

RESUMO

The prevalence of alopecia has increased recently. Hair loss is often accompanied by the resting phase of hair follicles (HFs). Dermal papilla (DP) plays a crucial role in HF development, growth, and regeneration. Activating DP can revive resting HFs. Augmenting WNT/ß-catenin signaling stimulates HF growth. However, the factors responsible for activating resting HFs effectively are unclear. In this study, we investigated epidermal cytokines that can activate resting HFs effectively. We overexpressed ß-catenin in both in vivo and in vitro models to observe its effects on resting HFs. Then, we screened potential epidermal cytokines from GEO DATASETs and assessed their functions using mice models and skin-derived precursors (SKPs). Finally, we explored the molecular mechanism underlying the action of the identified cytokine. The results showed that activation of WNT/ß-catenin in the epidermis prompted telogen-anagen transition. Keratinocytes infected with Ctnnb1-overexpressing lentivirus enhanced SKP expansion. Subsequently, we identified endothelin 1 (ET-1) expressed higher in hair-growing epidermis and induced the proliferation of DP cells and activates telogen-phase HFs in vivo. Moreover, ET-1 promotes the proliferation and stemness of SKPs. Western blot analysis and in vivo experiments revealed that ET-1 induces the transition from telogen-to-anagen phase by upregulating the PI3K/AKT pathway. These findings highlight the potential of ET-1 as a promising cytokine for HF activation and the treatment of hair loss.


Assuntos
Folículo Piloso , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , Folículo Piloso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Endotelina-1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células Cultivadas , Proliferação de Células , Epiderme/metabolismo , Alopecia/metabolismo , Via de Sinalização Wnt , Derme/metabolismo , Citocinas/metabolismo
20.
Biosci Biotechnol Biochem ; 88(5): 522-528, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38341279

RESUMO

Pulsed electrical stimulation (PES) is known to affect cellular activities. We previously found PES to human dermal fibroblasts (HFs) promoted platelet-derived growth factor subunit A (PDGFA) gene expression, which enhanced proliferation. In this study, we investigated PES effects on fibroblast collagen production and differentiation into myofibroblasts. HFs were electrically stimulated at 4800 Hz and 5 V for 60 min. Imatinib, a specific inhibitor of PDGF receptors, was treated before PES. After 6 h of PES, PDGFA, α-smooth muscle actin (α-SMA), and collagen type I α1 chain gene expressions were upregulated in PES group. Imatinib suppressed the promoted expression except for PDGFA. Immunofluorescence staining and enzyme-linked immunosorbent assay showed the production of α-SMA and collagen I was enhanced in PES group but suppressed in PES + imatinib group at 48 h after PES. Therefore, PES promotes the production of α-SMA and collagen I in fibroblasts, which is triggered by PDGFA that is upregulated early after PES.


Assuntos
Actinas , Colágeno Tipo I , Estimulação Elétrica , Fibroblastos , Fator de Crescimento Derivado de Plaquetas , Humanos , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Actinas/metabolismo , Actinas/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Mesilato de Imatinib/farmacologia , Diferenciação Celular/efeitos dos fármacos , Pele/metabolismo , Pele/citologia , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Derme/citologia , Derme/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA