Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.562
Filtrar
1.
Anal Chem ; 96(26): 10724-10731, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952276

RESUMO

Carboxylesterase (CE), an enzyme widely present in organisms, is involved in various physiological and pathological processes. Changes in the levels of CEs in the liver may predict the presence of type 2 diabetes mellitus (T2DM). Here, a novel dicyanoisophorone (DCI)-based proximity-labeled far-red fluorescent probe DCI2F-Ac with endoplasmic reticulum targeting was proposed for real-time monitoring and imaging of the CEs activity. DCI2F-Ac featured very low cytotoxicity and biotoxicity and was highly selective and sensitive for CEs. Compared with traditional CEs probes, DCI2F-Ac was covalently anchored directly to CEs, thus effectively reducing the loss of in situ fluorescent signals due to diffusion. Through the "on-off" fluorescence signal readout, DCI2F-Ac was able to distinguish cell lines and screen for CEs inhibitors. In terms of endoplasmic reticulum (ER) stress, it was found that thapsigargin (Tg) induced upregulation of CEs levels but not tunicamycin (Tm), which was related to the calcium homeostasis of the ER. DCI2F-Ac could efficiently detect downregulated CEs in the livers of T2DM, and the therapeutic efficacy of metformin, acarbose, and a combination of these two drugs was assessed by tracking the fluctuation of CEs levels. The results showed that combining metformin and acarbose could restore CEs levels to near-normal levels with the best antidiabetic effect. Thus, the DCI2F-Ac probe provides a great opportunity to explore the untapped potential of CEs in liver metabolic disorders and drug efficacy assessment.


Assuntos
Carboxilesterase , Diabetes Mellitus Tipo 2 , Retículo Endoplasmático , Corantes Fluorescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Carboxilesterase/metabolismo , Carboxilesterase/antagonistas & inibidores , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Animais , Camundongos , Imagem Óptica , Células Hep G2 , Estresse do Retículo Endoplasmático/efeitos dos fármacos
2.
World J Gastroenterol ; 30(23): 2964-2980, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38946874

RESUMO

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a hepatic manifestation of the metabolic syndrome. It is one of the most common liver diseases worldwide and shows increasing prevalence rates in most countries. MAFLD is a progressive disease with the most severe cases presenting as advanced fibrosis or cirrhosis with an increased risk of hepatocellular carcinoma. Gut microbiota play a significant role in the pathogenesis and progression of MAFLD by disrupting the gut-liver axis. The mechanisms involved in maintaining gut-liver axis homeostasis are complex. One critical aspect involves preserving an appropriate intestinal barrier permeability and levels of intestinal lumen metabolites to ensure gut-liver axis functionality. An increase in intestinal barrier permeability induces metabolic endotoxemia that leads to steatohepatitis. Moreover, alterations in the absorption of various metabolites can affect liver metabolism and induce liver steatosis and fibrosis. Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are a class of drugs developed for the treatment of type 2 diabetes mellitus. They are also commonly used to combat obesity and have been proven to be effective in reversing hepatic steatosis. The mechanisms reported to be involved in this effect include an improved regulation of glycemia, reduced lipid synthesis, ß-oxidation of free fatty acids, and induction of autophagy in hepatic cells. Recently, multiple peptide receptor agonists have been introduced and are expected to increase the effectiveness of the treatment. A modulation of gut microbiota has also been observed with the use of these drugs that may contribute to the amelioration of MAFLD. This review presents the current understanding of the role of the gut-liver axis in the development of MAFLD and use of members of the GLP-1 RA family as pleiotropic agents in the treatment of MAFLD.


Assuntos
Microbioma Gastrointestinal , Receptor do Peptídeo Semelhante ao Glucagon 1 , Fígado , Humanos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Animais , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Síndrome Metabólica/microbiologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Incretinas/uso terapêutico , Incretinas/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon
3.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950317

RESUMO

Glucose plays a key role in shaping pancreatic ß cell function. Thus, deciphering the mechanisms by which this nutrient stimulates ß cells holds therapeutic promise for combating ß cell failure in type 2 diabetes (T2D). ß Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining ß cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient ß cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient ß cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Células Secretoras de Insulina , Insulina , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Humanos , Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Insulina/metabolismo , Secreção de Insulina , Camundongos Knockout , Masculino , Adaptação Fisiológica
4.
Front Endocrinol (Lausanne) ; 15: 1406793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957443

RESUMO

Background: Limited research has been conducted to quantitatively assess the impact of systemic inflammation in metabolic dysfunction-associated fatty liver disease (MAFLD) and sub-clinical carotid atherosclerosis (SCAS). The systemic immune-inflammation index (SII), which integrates inflammatory cells, has emerged as a reliable measure of local immune response and systemic inflammation Therefore, this study aims to assess the mediating role of SII in the association between MAFLD and SCAS in type 2 diabetes mellitus (T2DM). Method: This study prospectively recruited 830 participants with T2DM from two centers. Unenhanced abdominal CT scans were conducted to evaluate MAFLD, while B-mode carotid ultrasonography was performed to assess SCAS. Weighted binomial logistic regression analysis and restricted cubic splines (RCS) analyses were employed to analyze the association between the SII and the risk of MAFLD and SCAS. Mediation analysis was further carried out to explore the potential mediating effect of the SII on the association between MAFLD and SCAS. Results: The prevalence of both MAFLD and SCAS significantly increased as the SII quartiles increased (P<0.05). MAFLD emerged as an independent factor for SCAS risk across three adjusted models, exhibiting odds ratios of 2.15 (95%CI: 1.31-3.53, P < 0.001). Additionally, increased SII quartiles and Ln (SII) displayed positive associations with the risk of MAFLD and SCAS (P < 0.05). Furthermore, a significant dose-response relationship was observed (P for trend <0.001). The RCS analyses revealed a linear correlation of Ln (SII) with SCAS and MAFLD risk (P for nonlinearity<0.05). Importantly, SII and ln (SII) acted as the mediators in the association between MAFLD and SCAS following adjustments for shared risk factors, demonstrating a proportion-mediated effect of 7.8% and 10.9%. Conclusion: SII was independently correlated with MAFLD and SCAS risk, while also acting as a mediator in the relationship between MAFLD and SCAS.


Assuntos
Doenças das Artérias Carótidas , Diabetes Mellitus Tipo 2 , Inflamação , Análise de Mediação , Humanos , Masculino , Feminino , Doenças das Artérias Carótidas/diagnóstico por imagem , Doenças das Artérias Carótidas/epidemiologia , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/metabolismo , Pessoa de Meia-Idade , Inflamação/metabolismo , Inflamação/imunologia , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicações , Estudos Prospectivos , Idoso , Fatores de Risco , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia
5.
J Neuroinflammation ; 21(1): 166, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956653

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS: A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS: Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS: HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.


Assuntos
Ansiedade , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Hipóxia , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta , Receptores Imunológicos , Transdução de Sinais , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Ansiedade/etiologia , Ansiedade/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/complicações , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicologia , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Microglia/metabolismo , Fator de Transcrição STAT1/metabolismo , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/psicologia
6.
Front Endocrinol (Lausanne) ; 15: 1377918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962677

RESUMO

With changes in lifestyle behaviors, including dietary structure and habits, the prevalence of Youth-onset Type 2 Diabetes Mellitus (YODM) has increased 2 to 3 times compared to 30 years ago. YODM patients experience complications earlier, progress faster, and exhibit more severe symptoms. However, limited and inconclusive direct evidence, coupled with poor patient compliance, poses challenges in the clinical management of YODM. Apart from the continuous decline in pancreatic ß-cell function and quantity, tissue-specific insulin resistance (IR) is also a typical characteristic of YODM. The main mechanisms of IR in YODM involve different aspects such as obesity, dietary imbalance, abnormal substance metabolism, chronic inflammation, oxidative stress, and hormonal fluctuations during adolescence. For the comprehensive management of YODM, besides achieving good control of blood glucose levels, it may be necessary to apply the most appropriate methods considering the uniqueness of the patient population and the specifics of the disease. Early identification and detection of the disease are crucial. Precise screening of patients with well-functioning pancreatic insulin ß-cells, primarily characterized by IR and obesity, represents the population most likely to achieve diabetes remission or reversal through lifestyle modifications, medications, or even surgical interventions. Additionally, considering potential emotional disorders or the impact of adolescent hormones in these patients, health education for patients and caregivers is essential to make them aware of the long-term benefits of well-controlled blood glucose. In conclusion, adopting comprehensive management measures to achieve diabetes remission or reversal is the ideal goal. Controlling high blood glucose, obesity, and other risk factors related to diabetes complications is the next priority to delay the occurrence and progression of complications. A comprehensive perspective on IR provides insights and references for identifying YODM and its management strategies.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/terapia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Adolescente , Gerenciamento Clínico , Estilo de Vida , Obesidade/terapia , Obesidade/epidemiologia , Células Secretoras de Insulina/metabolismo
7.
Genome Biol ; 25(1): 174, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961511

RESUMO

BACKGROUND: The gut microbiota controls broad aspects of human metabolism and feeding behavior, but the basis for this control remains largely unclear. Given the key role of human dipeptidyl peptidase 4 (DPP4) in host metabolism, we investigate whether microbiota DPP4-like counterparts perform the same function. RESULTS: We identify novel functional homologs of human DPP4 in several bacterial species inhabiting the human gut, and specific associations between Parabacteroides and Porphyromonas DPP4-like genes and type 2 diabetes (T2D). We also find that the DPP4-like enzyme from the gut symbiont Parabacteroides merdae mimics the proteolytic activity of the human enzyme on peptide YY, neuropeptide Y, gastric inhibitory polypeptide (GIP), and glucagon-like peptide 1 (GLP-1) hormones in vitro. Importantly, administration of E. coli overexpressing the P. merdae DPP4-like enzyme to lipopolysaccharide-treated mice with impaired gut barrier function reduces active GIP and GLP-1 levels, which is attributed to increased DPP4 activity in the portal circulation and the cecal content. Finally, we observe that linagliptin, saxagliptin, sitagliptin, and vildagliptin, antidiabetic drugs with DPP4 inhibitory activity, differentially inhibit the activity of the DPP4-like enzyme from P. merdae. CONCLUSIONS: Our findings confirm that proteolytic enzymes produced by the gut microbiota are likely to contribute to the glucose metabolic dysfunction that underlies T2D by inactivating incretins, which might inspire the development of improved antidiabetic therapies.


Assuntos
Diabetes Mellitus Tipo 2 , Dipeptidil Peptidase 4 , Microbioma Gastrointestinal , Incretinas , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Animais , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Incretinas/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Masculino
8.
Front Endocrinol (Lausanne) ; 15: 1386471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966213

RESUMO

Diabetes mellitus (DM), is a chronic disorder characterized by impaired glucose homeostasis that results from the loss or dysfunction of pancreatic ß-cells leading to type 1 diabetes (T1DM) and type 2 diabetes (T2DM), respectively. Pancreatic ß-cells rely to a great degree on their endoplasmic reticulum (ER) to overcome the increased secretary need for insulin biosynthesis and secretion in response to nutrient demand to maintain glucose homeostasis in the body. As a result, ß-cells are potentially under ER stress following nutrient levels rise in the circulation for a proper pro-insulin folding mediated by the unfolded protein response (UPR), underscoring the importance of this process to maintain ER homeostasis for normal ß-cell function. However, excessive or prolonged increased influx of nascent proinsulin into the ER lumen can exceed the ER capacity leading to pancreatic ß-cells ER stress and subsequently to ß-cell dysfunction. In mammalian cells, such as ß-cells, the ER stress response is primarily regulated by three canonical ER-resident transmembrane proteins: ATF6, IRE1, and PERK/PEK. Each of these proteins generates a transcription factor (ATF4, XBP1s, and ATF6, respectively), which in turn activates the transcription of ER stress-inducible genes. An increasing number of evidence suggests that unresolved or dysregulated ER stress signaling pathways play a pivotal role in ß-cell failure leading to insulin secretion defect and diabetes. In this article we first highlight and summarize recent insights on the role of ER stress and its associated signaling mechanisms on ß-cell function and diabetes and second how the ER stress pathways could be targeted in vitro during direct differentiation protocols for generation of hPSC-derived pancreatic ß-cells to faithfully phenocopy all features of bona fide human ß-cells for diabetes therapy or drug screening.


Assuntos
Estresse do Retículo Endoplasmático , Células Secretoras de Insulina , Resposta a Proteínas não Dobradas , Células Secretoras de Insulina/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Animais , Resposta a Proteínas não Dobradas/fisiologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia
9.
Front Endocrinol (Lausanne) ; 15: 1289653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978616

RESUMO

Background: Type 1 (T1D) and type 2 (T2D) diabetes lead to an aberrant metabolism of sialoglycoconjugates and elevated free serum sialic acid (FSSA) level. The present study evaluated sialidase and sialyltranferase activities in serum and some organs relevant to diabetes at early and late stages of T1D and T2D. Methods: Sialic acid level with sialidase and sialyltransferase activities were monitored in the serum, liver, pancreas, skeletal muscle and kidney of diabetic animals at early and late stages of the diseases. Results: The FSSA and activity of sialidase in the serum were significantly increased at late stage of both T1D and T2D while sialic acid level in the liver was significantly decreased in the early and late stages of T1D and T2D, respectively. Furthermore, the activity of sialidase was significantly elevated in most of the diabetes-relevant organs while the activity of sialyltransferase remained largely unchanged. A multiple regression analysis revealed the contribution of the liver to the FSSA while pancreas and kidney contributed to the activity of sialidase in the serum. Conclusions: We concluded that the release of hepatic sialic acid in addition to pancreatic and renal sialidase might (in)directly contribute to the increased FSSA during both types of diabetes mellitus.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ácido N-Acetilneuramínico , Neuraminidase , Sialiltransferases , Animais , Neuraminidase/metabolismo , Sialiltransferases/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratos , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/sangue , Fígado/metabolismo , Fígado/enzimologia , Ratos Wistar , Pâncreas/metabolismo , Pâncreas/enzimologia , Rim/metabolismo , Músculo Esquelético/metabolismo
10.
Front Endocrinol (Lausanne) ; 15: 1402583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978621

RESUMO

Obesity is a chronic, multifactorial disease in which accumulated excess body fat has a negative impact on health. Obesity continues to rise among the general population, resulting in an epidemic that shows no significant signs of decline. It is directly involved in development of cardiometabolic diseases, ischemic coronary heart disease peripheral arterial disease, heart failure, and arterial hypertension, producing global morbidity and mortality. Mainly, abdominal obesity represents a crucial factor for cardiovascular illness and also the most frequent component of metabolic syndrome. Recent evidence showed that Tirzepatide (TZP), a new drug including both Glucagon Like Peptide 1 (GLP-1) and Glucose-dependent Insulinotropic Polypeptide (GIP) receptor agonism, is effective in subjects with type 2 diabetes (T2D), lowering body weight, fat mass and glycated hemoglobin (HbA1c) also in obese or overweight adults without T2D. This review discusses the pathophysiological mechanisms and clinical aspects of TZP in treating obesity.


Assuntos
Resistência à Insulina , Obesidade , Humanos , Obesidade/tratamento farmacológico , Obesidade/complicações , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Animais , Receptor do Peptídeo Semelhante ao Glucagon 2 , Polipeptídeo Inibidor Gástrico
11.
Int J Nanomedicine ; 19: 6643-6658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979532

RESUMO

Purpose: Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods: Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results: H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion: These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Metabolismo dos Lipídeos , Fígado , Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células Hep G2 , Glucose/metabolismo , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Resistência à Insulina , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo
12.
J Pharm Pharm Sci ; 27: 13210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38988822

RESUMO

Recent literature extensively investigates the crucial role of energy metabolism in determining the inflammatory response and polarization status of macrophages. This rapidly expanding area of research highlights the importance of understanding the link between energy metabolism and macrophage function. The metabolic pathways in macrophages are intricate and interdependent, and they can affect the polarization of macrophages. Previous studies suggested that glucose flux through cytosolic glycolysis is necessary to trigger pro-inflammatory phenotypes of macrophages, and fatty acid oxidation is crucial to support anti-inflammatory responses. However, recent studies demonstrated that this understanding is oversimplified and that the metabolic control of macrophage polarization is highly complex and not fully understood yet. How the metabolic flux through different metabolic pathways (glycolysis, glucose oxidation, fatty acid oxidation, ketone oxidation, and amino acid oxidation) is altered by obesity- and type 2 diabetes (T2D)-associated insulin resistance is also not fully defined. This mini-review focuses on the impact of insulin resistance in obesity and T2D on the metabolic flux through the main metabolic pathways in macrophages, which might be linked to changes in their inflammatory responses. We closely evaluated the experimental studies and methodologies used in the published research and highlighted priority research areas for future investigations.


Assuntos
Diabetes Mellitus Tipo 2 , Macrófagos , Obesidade , Humanos , Obesidade/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Macrófagos/metabolismo , Animais , Resistência à Insulina , Metabolismo Energético
13.
Cells ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38994965

RESUMO

High-density lipoprotein (HDL) is a group of small, dense, and protein-rich lipoproteins that play a role in cholesterol metabolism and various cellular processes. Decreased levels of HDL and HDL dysfunction are commonly observed in individuals with type 2 diabetes mellitus (T2DM), which is also associated with an increased risk for cardiovascular disease (CVD). Due to hyperglycemia, oxidative stress, and inflammation that develop in T2DM, HDL undergoes several post-translational modifications such as glycation, oxidation, and carbamylation, as well as other alterations in its lipid and protein composition. It is increasingly recognized that the generation of HDL modifications in T2DM seems to be the main cause of HDL dysfunction and may in turn influence the development and progression of T2DM and its related cardiovascular complications. This review provides a general introduction to HDL structure and function and summarizes the main modifications of HDL that occur in T2DM. Furthermore, the potential impact of HDL modifications on the pathogenesis of T2DM and CVD, based on the altered interactions between modified HDL and various cell types that are involved in glucose homeostasis and atherosclerotic plaque generation, will be discussed. In addition, some perspectives for future research regarding the T2DM-related HDL modifications are addressed.


Assuntos
Diabetes Mellitus Tipo 2 , Lipoproteínas HDL , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Lipoproteínas HDL/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/patologia , Processamento de Proteína Pós-Traducional
14.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000309

RESUMO

Autoreactivity of the complement system may escalate the development of diabetic nephropathy. We used the BTBR OB mouse model of type 2 diabetes to investigate the role of the complement factor mannan-binding lectin (MBL) in diabetic nephropathy. Female BTBR OB mice (n = 30) and BTBR non-diabetic WT mice (n = 30) were included. Plasma samples (weeks 12 and 21) and urine samples (week 19) were analyzed for MBL, C3, C3-fragments, SAA3, and markers for renal function. Renal tissue sections were analyzed for fibrosis, inflammation, and complement deposition. The renal cortex was analyzed for gene expression (complement, inflammation, and fibrosis), and isolated glomerular cells were investigated for MBL protein. Human vascular endothelial cells cultured under normo- and hyperglycemic conditions were analyzed by flow cytometry. We found that the OB mice had elevated plasma and urine concentrations of MBL-C (p < 0.0001 and p < 0.001, respectively) and higher plasma C3 levels (p < 0.001) compared to WT mice. Renal cryosections from OB mice showed increased MBL-C and C4 deposition in the glomeruli and increased macrophage infiltration (p = 0.002). Isolated glomeruli revealed significantly higher MBL protein levels (p < 0.001) compared to the OB and WT mice, and no renal MBL expression was detected. We report that chronic inflammation plays an important role in the development of DN through the binding of MBL to hyperglycemia-exposed renal cells.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Modelos Animais de Doenças , Inflamação , Lectina de Ligação a Manose , Animais , Lectina de Ligação a Manose/metabolismo , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/sangue , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Inflamação/metabolismo , Inflamação/patologia , Feminino , Humanos , Rim/metabolismo , Rim/patologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia
15.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000356

RESUMO

The glucose-lowering drug metformin alters the composition of the gut microbiome in patients with type 2 diabetes mellitus (T2DM) and other diseases. Nevertheless, most studies on the effects of this drug have relied on fecal samples, which provide limited insights into its local effects on different regions of the gut. Using a high-fat diet (HFD)-induced mouse model of T2DM, we characterize the spatial variability of the gut microbiome and associated metabolome in response to metformin treatment. Four parts of the gut as well as the feces were analyzed using full-length sequencing of 16S rRNA genes and targeted metabolomic analyses, thus providing insights into the composition of the microbiome and associated metabolome. We found significant differences in the gut microbiome and metabolome in each gut region, with the most pronounced effects on the microbiomes of the cecum, colon, and feces, with a significant increase in a variety of species belonging to Akkermansiaceae, Lactobacillaceae, Tannerellaceae, and Erysipelotrichaceae. Metabolomics analysis showed that metformin had the most pronounced effect on microbiome-derived metabolites in the cecum and colon, with several metabolites, such as carbohydrates, fatty acids, and benzenoids, having elevated levels in the colon; however, most of the metabolites were reduced in the cecum. Thus, a wide range of beneficial metabolites derived from the microbiome after metformin treatment were produced mainly in the colon. Our study highlights the importance of considering gut regions when understanding the effects of metformin on the gut microbiome and metabolome.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Modelos Animais de Doenças , Microbioma Gastrointestinal , Metaboloma , Metformina , Metformina/farmacologia , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos , Metaboloma/efeitos dos fármacos , Masculino , Fezes/microbiologia , RNA Ribossômico 16S/genética , Hipoglicemiantes/farmacologia , Camundongos Endogâmicos C57BL , Ceco/microbiologia , Ceco/metabolismo , Ceco/efeitos dos fármacos , Colo/metabolismo , Colo/efeitos dos fármacos , Colo/microbiologia , Metabolômica/métodos
16.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000541

RESUMO

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Hiperlipidemias , Metabolismo dos Lipídeos , Fígado , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Polissacarídeos Fúngicos/farmacologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Termitomyces/metabolismo , Glicemia/metabolismo , Polissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
17.
Clinics (Sao Paulo) ; 79: 100430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991370

RESUMO

INTRODUCTION: Type 2 Diabetes (T2D) is associated with fractures, despite preserved Bone Mineral Density (BMD). This study aimed to evaluate the relationship between BMD and trabecular bone score (TBS) with the reallocation of fat within muscle in individuals with eutrophy, obesity, and T2D. METHODS: The subjects were divided into three groups: eutrophic controls paired by age and sex with the T2D group (n = 23), controls diagnosed with obesity paired by age, sex, and body mass index with the T2D group (n = 27), and the T2D group (n = 29). BMD and body fat percentage were determined using dual-energy X-Ray absorptiometry. TBS was determined using TBS iNsight software. Intra and extramyocellular lipids in the soleus were measured using proton magnetic resonance spectroscopy. RESULTS: TBS was lower in the T2D group than in the other two groups. Glycated hemoglobin (A1c) was negatively associated with TBS. Body fat percentage was negatively associated with TBS and Total Hip (TH) BMD. TH BMD was positively associated with intramuscular lipids. A trend of negative association was observed between intramuscular lipids and TBS. CONCLUSION: This study showed for the first time that the reallocation of lipids within muscle has a negative association with TBS. Moreover, these results are consistent with previous studies showing a negative association between a parameter related to insulin resistance (intramuscular lipids) and TBS.


Assuntos
Absorciometria de Fóton , Tecido Adiposo , Densidade Óssea , Osso Esponjoso , Diabetes Mellitus Tipo 2 , Músculo Esquelético , Humanos , Diabetes Mellitus Tipo 2/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Densidade Óssea/fisiologia , Osso Esponjoso/diagnóstico por imagem , Estudos de Casos e Controles , Tecido Adiposo/diagnóstico por imagem , Adulto , Obesidade/fisiopatologia , Obesidade/metabolismo , Hemoglobinas Glicadas/análise , Índice de Massa Corporal , Idoso , Controle Glicêmico , Valores de Referência
18.
Sheng Wu Gong Cheng Xue Bao ; 40(7): 2052-2069, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39044575

RESUMO

Adiponectin, a cytokine associated with adipose tissue, is a recently defined adipocytokine involved in insulin, glucose, and adipocyte metabolism. Reduced adiponectin levels can increase the risk of developing metabolic syndrome (MS). Adiponectin is considered an important target for the treatment of type 2 diabetes mellitus (T2DM) and MS due to its anti-atherosclerotic and insulin-sensitizing effects. Therefore, the accurate determination of adiponectin concentrations in human plasma is necessary for the management of both T2DM and MS. A variety of biosensors have been developed for the detection of biomarkers such as adiponectin. This paper reviews the applications of electrochemical sensors, surface-enhanced Raman scattering sensors, and microfluidic chip-based chemiluminescence sensors in the detection of adiponectin and the recent research progress in the sensors for the detection of adiponectin, aiming to provide a reference for the research and application of sensors for adiponectin in the medical field.


Assuntos
Adiponectina , Técnicas Biossensoriais , Adiponectina/metabolismo , Técnicas Biossensoriais/métodos , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Análise Espectral Raman/métodos , Técnicas Eletroquímicas/métodos , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/metabolismo
19.
Front Endocrinol (Lausanne) ; 15: 1406442, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040677

RESUMO

Background: Diabetes ranks among the most widespread diseases globally, with the kidneys being particularly susceptible to its vascular complications. The identification of proteins for pathogenesis and novel drug targets remains imperative. This study aims to investigate roles of circulating inflammatory proteins in diabetic renal complications. Methods: Data on the proteins were derived from a genome-wide protein quantitative trait locus (pQTL) study, while data on diabetic renal complications came from the FinnGen study. In this study, proteome-wide Mendelian randomization (MR) and colocalization analyses were used to assess the relationship between circulating inflammatory proteins and diabetic renal complications. Results: MR approach indicated that elevated levels of interleukin 12B (IL-12B) (OR 1.691, 95%CI 1.179-2.427, P=4.34×10-3) and LIF interleukin 6 family cytokine (LIF) (OR 1.349, 95%CI 1.010-1.801, P=4.23×10-2) increased the risk of type 1 diabetes (T1D) with renal complications, while higher levels of fibroblast growth factor 19 (FGF19) (OR 1.202, 95%CI 1.009-1.432, P=3.93×10-2), fibroblast growth factor 23 (FGF23) (OR 1.379, 95%CI 1.035-1.837, P=2.82×10-2), C-C motif chemokine ligand 7 (CCL7) (OR 1.385, 95%CI 1.111-1.725, P=3.76×10-3), and TNF superfamily member 14 (TNFSF14) (OR 1.244, 95%CI 1.066-1.451, P=5.63×10-3) indicated potential risk factors for type 2 diabetes (T2D) with renal complications. Colocalization analysis supported these findings, revealing that most identified proteins, except for DNER, likely share causal variants with diabetic renal complications. Conclusion: Our study established associations between specific circulating inflammatory proteins and the risk of diabetic renal complications, suggesting these proteins as targets for further investigation into the pathogenesis and potential therapeutic interventions for T1D and T2D with renal complications.


Assuntos
Nefropatias Diabéticas , Análise da Randomização Mendeliana , Proteoma , Humanos , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/etiologia , Proteoma/metabolismo , Proteoma/análise , Masculino , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Locos de Características Quantitativas , Estudo de Associação Genômica Ampla , Inflamação/sangue , Inflamação/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Fatores de Crescimento de Fibroblastos/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Biomarcadores/sangue , Pessoa de Meia-Idade
20.
J Agric Food Chem ; 72(29): 16204-16220, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984968

RESUMO

The term type 3 diabetes mellitus (T3DM) has been considered for Alzheimer's disease (AD) due to the common molecular and cellular characteristics found between type 2 diabetes mellitus (T2DM) and cognitive deficits. However, the specific mechanism of T3DM remains elusive, especially the neuroprotective effects of dietary components in hyperglycemic individuals. In this study, a peptide, Leu-Val-Arg-Leu (LVRL), found in walnuts significantly improved memory decline in streptozotocin (STZ)- and high-fat-diet (HFD)-stimulated T2DM mouse models (p < 0.05). The LVRL peptide also mitigated hyperglycemia, enhanced synaptic plasticity, and ameliorated mitochondrial dysfunction, as demonstrated by Morris water maze tests, immunoblotting, immunofluorescence, immunohistochemistry, transmission electron microscopy, and cellular staining. A Wnt3a inhibitor, DKK1, was subsequently used to verify the possible role of the Wnt3a/ß-Catenin/GSK-3ß pathway in glucose-induced insulin resistance in PC12 cells. In vitro LVRL treatment dramatically modulated the protein expression of p-Tau (Ser404), Synapsin-1, and PSD95, elevated the insulin level, increased glucose consumption, and relieved the mitochondrial membrane potential, and MitoSOX (p < 0.05). These data suggested that peptides like LVRL could modulate the relationship between brain insulin and altered cognition status via the Wnt3a/ß-Catenin/GSK-3ß pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Glicogênio Sintase Quinase 3 beta , Juglans , Fármacos Neuroprotetores , Proteína Wnt3A , beta Catenina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , beta Catenina/metabolismo , beta Catenina/genética , Humanos , Ratos , Juglans/química , Proteína Wnt3A/metabolismo , Proteína Wnt3A/genética , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Células PC12 , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA