Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.681
Filtrar
1.
FASEB J ; 38(7): e23599, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572590

RESUMO

Diabetic nephropathy (DN) is the leading cause of end-stage renal disease globally. Currently, there are no effective drugs for the treatment of DN. Although several studies have reported the therapeutic potential of mesenchymal stem cells, the underlying mechanisms remain largely unknown. Here, we report that both human umbilical cord MSCs (UC-MSCs) and UC-MSC-derived exosomes (UC-MSC-exo) attenuate kidney damage, and inhibit epithelial-mesenchymal transition (EMT) and renal fibrosis in streptozotocin-induced DN rats. Strikingly, the Hedgehog receptor, smoothened (SMO), was significantly upregulated in the kidney tissues of DN patients and rats, and positively correlated with EMT and renal fibrosis. UC-MSC and UC-MSC-exo treatment resulted in decrease of SMO expression. In vitro co-culture experiments revealed that UC-MSC-exo reduced EMT of tubular epithelial cells through inhibiting Hedgehog/SMO pathway. Collectively, UC-MSCs inhibit EMT and renal fibrosis by delivering exosomes and targeting Hedgehog/SMO signaling, suggesting that UC-MSCs and their exosomes are novel anti-fibrotic therapeutics for treating DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Exossomos , Células-Tronco Mesenquimais , Humanos , Ratos , Animais , Nefropatias Diabéticas/metabolismo , Exossomos/metabolismo , Receptor Smoothened , Proteínas Hedgehog/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Diabetes Mellitus/metabolismo
2.
Cardiovasc Diabetol ; 23(1): 122, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580969

RESUMO

BACKGROUND: Histone modifications play a critical role in chromatin remodelling and regulate gene expression in health and disease. Histone methyltransferases EZH1, EZH2, and demethylases UTX, JMJD3, and UTY catalyse trimethylation of lysine 27 on histone H3 (H3K27me3). This study was designed to investigate whether H3K27me3 triggers hyperglycemia-induced oxidative and inflammatory transcriptional programs in the endothelium. METHODS: We studied human aortic endothelial cells exposed to high glucose (HAEC) or isolated from individuals with diabetes (D-HAEC). RT-qPCR, immunoblotting, chromatin immunoprecipitation (ChIP-qPCR), and confocal microscopy were performed to investigate the role of H3K27me3. We determined superoxide anion (O2-) production by ESR spectroscopy, NF-κB binding activity, and monocyte adhesion. Silencing/overexpression and pharmacological inhibition of chromatin modifying enzymes were used to modulate H3K27me3 levels. Furthermore, isometric tension studies and immunohistochemistry were performed in aorta from wild-type and db/db mice. RESULTS: Incubation of HAEC to high glucose showed that upregulation of EZH2 coupled to reduced demethylase UTX and JMJD3 was responsible for the increased H3K27me3. ChIP-qPCR revealed that repressive H3K27me3 binding to superoxide dismutase and transcription factor JunD promoters is involved in glucose-induced O2- generation. Indeed, loss of JunD transcriptional inhibition favours NOX4 expression. Furthermore, H3K27me3-driven oxidative stress increased NF-κB p65 activity and downstream inflammatory genes. Interestingly, EZH2 inhibitor GSK126 rescued these endothelial derangements by reducing H3K27me3. We also found that H3K27me3 epigenetic signature alters transcriptional programs in D-HAEC and aortas from db/db mice. CONCLUSIONS: EZH2-mediated H3K27me3 represents a key epigenetic driver of hyperglycemia-induced endothelial dysfunction. Targeting EZH2 may attenuate oxidative stress and inflammation and, hence, prevent vascular disease in diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Camundongos , Animais , Humanos , Histonas , NF-kappa B/metabolismo , Células Endoteliais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Metilação , Diabetes Mellitus/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Endotélio , Glucose/toxicidade , Glucose/metabolismo
3.
Arch Esp Urol ; 77(2): 183-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38583011

RESUMO

PURPOSE: This study aimed to determine the influence of miR-1297 on kidney injury in rats with diabetic nephropathy (DN) and its causal role. METHODS: A DN rat model was established through right kidney resection and intraperitoneal injection of streptozotocin (STZ). Sham rats did not undergo right kidney resection or STZ injection. The DN rats were divided into the DN model and antagomiR-1297 treatment groups. Kidney morphology was observed using hematoxylin and eosin staining. Renal function indices, including blood urea nitrogen (BUN), serum creatinine (SCr), and urinary protein, were measured using kits. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined through enzyme-linked immunosorbent assay (ELISA). Fibrin (FN), collagen type I (Col I), and α-smooth muscle actin (α-SMA) were assessed through western blotting and real-time reverse transcription-polymerase chain reaction. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. miR-1297 targets were predicted using bioinformatic software and verified through luciferase reporter assay. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway expression was analyzed through western blotting. RESULTS: AntagomiR-1297 reduced BUN (p = 0.005), SCr (p = 0.012), and urine protein (p < 0.001) levels and improved kidney tissue morphology. It prevented renal interstitial fibrosis by decreasing FN, Col I, and α-SMA protein levels (all p < 0.001). AntagomiR-1297 increased SOD (p = 0.001) and GSH-Px (p = 0.002) levels. Additionally, it reduced levels of cell inflammatory factors, including TNF-α, IL-6, and IL-1ß (all p < 0.001), and alleviated apoptosis (p < 0.001) in rat kidney tissue with DN. miR-1297 was pinpointed as a target for PTEN. AntagomiR-1297 increased PTEN expression and suppressed PI3K and AKT phosphorylation (all p < 0.001). CONCLUSIONS: AntagomiR-1297 can mitigate renal fibrosis, renal inflammation, apoptosis, and oxidative stress levels through the PTEN/PI3K/AKT pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Antagomirs/metabolismo , Antagomirs/farmacologia , Rim , MicroRNAs/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Diabetes Mellitus/metabolismo
4.
Am J Physiol Cell Physiol ; 326(4): C1237-C1247, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38581667

RESUMO

Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A (TMEM16A) gene expression. Our data indicate that a Snail-mediated repressor complex regulates arterial TMEM16A gene transcription. Snail expression was reduced in diabetic arteries while TMEM16A expression was upregulated. The TMEM16A promoter contained three canonical E-box sites. Electrophoretic mobility and super shift assays revealed that the -154 nt E-box was the binding site of the Snail repressor complex and binding of the repressor complex decreased in diabetic arteries. High glucose induced a biphasic contractile response in pressurized nondiabetic mouse hindlimb arteries incubated ex vivo. Hindlimb arteries incubated in high glucose also showed decreased phospho-protein kinase D1 and TMEM16A expression. In hindlimb arteries from nondiabetic mice, administration of a bolus dose of glucose activated protein kinase D1 signaling to induce Snail degradation. In both in vivo and ex vivo conditions, Snail expression exhibited an inverse relationship with the expression of protein kinase D1 and TMEM16A. In diabetic mouse arteries, phospho-protein kinase D1 increased while Akt2 and pGSK3ß levels declined. These results indicate that in nondiabetic mice, high glucose triggers a transient deactivation of the Snail repressor complex to increase arterial TMEM16A expression independently of insulin signaling. Conversely, insulin resistance activates GSK3ß signaling and enhances arterial TMEM16A channel expression. These data have uncovered the Snail-mediated regulation of arterial TMEM16A expression and its dysfunction during diabetes.NEW & NOTEWORTHY The calcium-activated chloride channel, TMEM16A, is upregulated in the diabetic vasculature to cause increased vasoconstriction. In this paper, we have uncovered that the TMEM16A gene expression is controlled by a Snail-mediated repressor complex that uncouples with both insulin-dependent and -independent pathways to allow for upregulated arterial protein expression thereby causing vasoconstriction. The paper highlights the effect of short- and long-term glucose-induced dysfunction of an ion channel expression as a causative factor in diabetic vascular disease.


Assuntos
Diabetes Mellitus , Insulinas , Camundongos , Animais , Receptor de Insulina/metabolismo , Artérias/metabolismo , Músculo Liso Vascular/metabolismo , Diabetes Mellitus/metabolismo , Anoctamina-1/metabolismo
5.
Mol Vis ; 30: 17-35, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38586604

RESUMO

Purpose: Diabetic macular edema (DME) is a sight-threatening complication of diabetes. Consequently, studying the proteome of DME may provide novel insights into underlying molecular mechanisms. Methods: In this study, aqueous humor samples from eyes with treatment-naïve clinically significant DME (n = 13) and age-matched controls (n = 11) were compared with label-free liquid chromatography-tandem mass spectrometry. Additional aqueous humor samples from eyes with treatment-naïve DME (n = 15) and controls (n = 8) were obtained for validation by enzyme-linked immunosorbent assay (ELISA). Best-corrected visual acuity (BCVA) was evaluated, and the severity of DME was measured as central subfield thickness (CST) employing optical coherence tomography. Control samples were obtained before cataract surgery. Significantly changed proteins were identified using a permutation-based calculation, with a false discovery rate of 0.05. A human donor eye with DME and a control eye were used for immunofluorescence. Results: A total of 101 proteins were differentially expressed in the DME. Regulated proteins were involved in complement activation, glycolysis, extracellular matrix interaction, and cholesterol metabolism. The highest-fold change was observed for the fibrinogen alpha chain (fold change = 17.8). Complement components C2, C5, and C8, fibronectin, and hepatocyte growth factor-like protein were increased in DME and correlated with best-corrected visual acuity (BCVA). Ceruloplasmin and complement component C8 correlated with central subfield thickness (CST). Hemopexin, plasma kallikrein, monocyte differentiation antigen CD14 (CD14), and lipopolysaccharide-binding protein (LBP) were upregulated in the DME. LBP was correlated with vascular endothelial growth factor. The increased level of LBP in DME was confirmed using ELISA. The proteins involved in desmosomal integrity, including desmocollin-1 and desmoglein-1, were downregulated in DME and correlated negatively with CST. Immunofluorescence confirmed the extravasation of fibrinogen at the retinal level in the DME. Conclusion: Elevated levels of pro-inflammatory proteins, including the complement components LBP and CD14, were observed in DME. DME was associated with the loss of basal membrane proteins, compromised desmosomal integrity, and perturbation of glycolysis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/tratamento farmacológico , Retinopatia Diabética/complicações , Proteoma/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Humor Aquoso/metabolismo , Tomografia de Coerência Óptica , Fibrinogênio/metabolismo , Injeções Intravítreas , Inibidores da Angiogênese/uso terapêutico , Diabetes Mellitus/metabolismo
6.
Islets ; 16(1): 2334044, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38533763

RESUMO

Pancreatic beta cells are among the slowest replicating cells in the human body and have not been observed to increase in number except during the fetal and neonatal period, in cases of obesity, during puberty, as well as during pregnancy. Pregnancy is associated with increased beta cell mass to meet heightened insulin demands. This phenomenon raises the intriguing possibility that factors present in the serum of pregnant individuals may stimulate beta cell proliferation and offer insights into expansion of the beta cell mass for treatment and prevention of diabetes. The primary objective of this study was to test the hypothesis that serum from pregnant donors contains bioactive factors capable of inducing human beta cell proliferation. An immortalized human beta cell line with protracted replication (EndoC-ßH1) was cultured in media supplemented with serum from pregnant and non-pregnant female and male donors and assessed for differences in proliferation. This experiment was followed by assessment of proliferation of primary human beta cells. Sera from five out of six pregnant donors induced a significant increase in the proliferation rate of EndoC-ßH1 cells. Pooled serum from the cohort of pregnant donors also increased the rate of proliferation in primary human beta cells. This study demonstrates that serum from pregnant donors stimulates human beta cell proliferation. These findings suggest the existence of pregnancy-associated factors that can offer novel avenues for beta cell regeneration and diabetes prevention strategies. Further research is warranted to elucidate the specific factors responsible for this effect.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Recém-Nascido , Humanos , Masculino , Feminino , Gravidez , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Linhagem Celular , Diabetes Mellitus/metabolismo , Proliferação de Células
7.
J Mol Cell Cardiol ; 189: 83-89, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484473

RESUMO

Diabetic heart disease morbidity and mortality is escalating. No specific therapeutics exist and mechanistic understanding of diabetic cardiomyopathy etiology is lacking. While lipid accumulation is a recognized cardiomyocyte phenotype of diabetes, less is known about glycolytic fuel handling and storage. Based on in vitro studies, we postulated the operation of an autophagy pathway in the myocardium specific for glycogen homeostasis - glycophagy. Here we visualize occurrence of cardiac glycophagy and show that the diabetic myocardium is characterized by marked glycogen elevation and altered cardiomyocyte glycogen localization. We establish that cardiac glycophagy flux is disturbed in diabetes. Glycophagy may represent a potential therapeutic target for alleviating the myocardial impacts of metabolic disruption in diabetic heart disease.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Humanos , Cardiomiopatias Diabéticas/tratamento farmacológico , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Glicogênio/metabolismo , Autofagia , Diabetes Mellitus/metabolismo
8.
Mol Cell Biol ; 44(3): 87-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38520226

RESUMO

Although LncRNA AA465934 expression is reduced in high glucose (HG)-treated podocytes, its role in HG-mediated podocyte injury and diabetic nephropathy (DN) remains unknown. Herein, we investigated the role of AA465934 in HG-mediated podocyte injury and DN using a spontaneous type II diabetic nephropathy (T2DN) model. The model was created by injecting AA465934 overexpressed adeno-associated virus (AAV) or control into mice. The levels of renal function, proteinuria, renal structural lesions, and podocyte apoptosis were then examined. Furthermore, AA465934 and autophagy levels, as well as tristetraprolin (TTP) and high mobility group box 1 (HMGB1) expression changes were detected. We also observed podocyte injury and the binding ability of TTP to E3 ligase proviral insertion in murine lymphomas 2 (PIM2), AA465934, or HMGB1. According to the results, AA465934 improved DN progression and podocyte damage in T2DN mice. In addition, AA465934 bound to TTP and inhibited its degradation by blocking TTP-PIM2 binding. Notably, TTP knock-down blocked the ameliorating effects of AA465934 and TTP bound HMGB1 mRNA, reducing its expression. Overexpression of HMGB1 inhibited the ability of AA465934 and TTP to improve podocyte injury. Furthermore, AA465934 bound TTP, inhibiting TTP-PIM2 binding, thereby suppressing TTP degradation, downregulating HMGB1, and reversing autophagy downregulation, ultimately alleviating HG-mediated podocyte injury and DN. Based on these findings, we deduced that the AA465934/TTP/HMGB1/autophagy axis could be a therapeutic avenue for managing podocyte injury and DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Proteína HMGB1 , Podócitos , RNA Longo não Codificante , Camundongos , Animais , Podócitos/metabolismo , Podócitos/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Regulação para Baixo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Apoptose , Diabetes Mellitus/metabolismo
9.
Mol Biol Rep ; 51(1): 434, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520585

RESUMO

BACKGROUND: The formation of advanced glycation end products (AGEs) is the central process contributing to diabetic complications in diabetic individuals with sustained and inconsistent hyperglycemia. Methylglyoxal, a reactive carbonyl species, is found to be a major precursor of AGEs, and its levels are elevated in diabetic conditions. Dysfunction of pancreatic beta cells and impairment in insulin secretion are the hallmarks of diabetic progression. Exposure to methylglyoxal-induced AGEs alters the function and maintenance of pancreatic beta cells. Hence, trapping methylglyoxal could be an ideal approach to alleviate AGE formation and its influence on beta cell proliferation and insulin secretion, thereby curbing the progression of diabetes to its complications. METHODS AND RESULTS: In the present study, we have explored the mechanism of action of (+)-Catechin against methylglyoxal-induced disruption in pancreatic beta cells via molecular biology techniques, mainly western blot. Methylglyoxal treatment decreased insulin synthesis (41.5%) via downregulating the glucose-stimulated insulin secretion pathway (GSIS). This was restored upon co-treatment with (+)-Catechin (29.9%) in methylglyoxal-induced Beta-TC-6 cells. Also, methylglyoxal treatment affected the autocrine function of insulin by disrupting the IRS1/PI3k/Akt pathway. Methylglyoxal treatment suppresses Pdx-1 and Maf A levels, which are responsible for beta cell maintenance and cell proliferation. (+)-Catechin could significantly augment the levels of these transcription factors. CONCLUSION: This is the first study to examine the impact of a natural compound on methylglyoxal with the insulin-mediated autocrine and paracrine activities of pancreatic beta cells. The results indicate that (+)-Catechin exerts a protective effect against methylglyoxal exposure in pancreatic beta cells and can be considered a potential anti-glycation agent in further investigations on ameliorating diabetic complications.


Assuntos
Catequina , Complicações do Diabetes , Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Catequina/farmacologia , Catequina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Complicações do Diabetes/metabolismo , Produtos Finais de Glicação Avançada/metabolismo
10.
Diabetes Res Clin Pract ; 209: 111605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453058

RESUMO

BACKGROUND: The persistent presence of inflammation is a recognized pathogenic mechanisms of diabetic foot ulcers (DFUs). We aimed to investigate the expression of PLIN1 in tissues from DFU patients and assess its potential association with inflammation-induced damage. METHODS: We performed transcriptome sequencing and correlation analysis of the foot skin from patients with or without DFUs. Additionally, we examined the correlation between PLIN1 and related inflammatory indicators by analyzing PLIN1 expression in tissue and serum samples and through high-glucose stimulation of keratinocytes (HaCaT cells). RESULTS: PLIN1 is upregulated in the tissue and serum from DFU patients. Additionally, PLIN1 shows a positive correlation with leukocytes, neutrophils, monocytes, C-reactive protein, and procalcitonin in the serum, as well as IL-1ß and TNF-α in the tissues. Experiments with Cells demonstrated that reduced expression of PLIN1 leads to significantly decreased expression of iNOS, IL-1ß, IL-6, IL-18, and TNF-α. PLIN1 may mediate wound inflammatory damage through the NF-κB signaling pathway. CONCLUSION: Our findings suggest that PLIN1 mediates the inflammatory damage in DFU, offering new prospects for the treatment of DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/genética , Pé Diabético/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Pele/patologia , Inflamação/metabolismo , Queratinócitos/metabolismo , Diabetes Mellitus/metabolismo , Perilipina-1/metabolismo
11.
Biochem Pharmacol ; 222: 116109, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458330

RESUMO

Angiotensin (Ang)-(1-7) stimulates vasoprotective functions of diabetic (DB) CD34+ hematopoietic stem/progenitor cells partly by decreasing reactive oxygen species (ROS), increasing nitric oxide (NO) levels and decreasing TGFß1 secretion. Telomerase reverse transcriptase (TERT) translocates to mitochondria and regulates ROS generation. Alternative splicing of TERT results in variants α-, ß- and α-ß-TERT, which may oppose functions of full-length (FL) TERT. This study tested if the protective functions of Ang-(1-7) or TGFß1-silencing are mediated by mitoTERT and that diabetes decreases FL-TERT expression by inducing splicing. CD34+ cells were isolated from the peripheral blood mononuclear cells of nondiabetic (ND, n = 68) or DB (n = 74) subjects. NO and mitoROS levels were evaluated by flow cytometry. TERT splice variants and mitoDNA-lesions were characterized by qPCR. TRAP assay was used for telomerase activity. Decoy peptide was used to block mitochondrial translocation (mitoXTERT). TERT inhibitor or mitoXTERT prevented the effects of Ang-(1-7) on NO or mitoROS levels in DB-CD34+ cells. FL-TERT expression and telomerase activity were lower and mitoDNA-lesions were higher in DB cells compared to ND and were reversed by Ang-(1-7) or TGFß1-silencing. The prevalence of TERT splice variants, with predominant ß-TERT expression, was higher and the expression of FL-TERT was lower in DB cells (n = 25) compared to ND (n = 30). Ang-(1-7) or TGFß1-silencing decreased TERT-splicing and increased FL-TERT. Blocking of ß-splicing increased FL-TERT and protected mitoDNA in DB-cells. The findings suggest that diabetes induces TERT-splicing in CD34+ cells and that ß-TERT splice variant largely contributes to the mitoDNA oxidative damage.


Assuntos
Angiotensina I , Diabetes Mellitus , Fragmentos de Peptídeos , Telomerase , Humanos , Telomerase/genética , Telomerase/metabolismo , Telomerase/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Leucócitos Mononucleares , Mitocôndrias/metabolismo , Diabetes Mellitus/metabolismo
12.
Int J Biol Macromol ; 264(Pt 2): 130761, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467213

RESUMO

Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.


Assuntos
Diabetes Mellitus , Angiopatias Diabéticas , Humanos , Sirtuína 1/metabolismo , Diabetes Mellitus/metabolismo , Estresse Oxidativo/fisiologia , Inflamação
13.
Free Radic Biol Med ; 216: 118-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479633

RESUMO

Anomalous vascular endothelium significantly contributes to various cardiovascular diseases. VE-cadherin plays a vital role in governing the endothelial barrier. Krüppel-like factor 4(KLF4), as a transcription factor, which binds the VE-cadherin promoter and enhances its transcription. Tumor necrosis factor receptor-associated factor 7 (TRAF7) is an E3 ubiquitin ligase that has been shown to modulate the degradation of KLF4. H2S can covalently modify cysteine residues on proteins through S-sulfhydration, thereby influencing the structure and functionality of the target protein. However, the role of S-sulfhydration on endothelial barrier integrity remains to be comprehensively elucidated. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates endothelial integrity and its underlying mechanism. In this study, we observed that protein S-sulfhydration was reduced in the endothelium during diabetes and TRAF7 was the main target. Overexpression of TRAF7-Cys327 mutant could mitigate the endothelial barrier damage by weakening TRAF7 interaction with KLF4 and reducing ubiquitination degradation of KLF4. In conclusion, our research demonstrates that H2S plays a pivotal role in regulating S-sulfhydration of TRAF7 at Cys327. This regulation effectively inhibits the ubiquitin-mediated degradation of KLF4, resulting in an upregulation of VE-cadherin levels. This molecular mechanism contributes to the prevention of endothelial barrier damage.


Assuntos
Diabetes Mellitus , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Ubiquitinação , Regulação da Expressão Gênica , Endotélio Vascular/metabolismo , Ubiquitina/metabolismo , Diabetes Mellitus/metabolismo
14.
Life Sci ; 344: 122579, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518842

RESUMO

AIMS: Generation of mature ß-cells from MSCs has been a challenge in the field of stem cell therapy of diabetes. Adipose tissue-derived mesenchymal stem cells (Ad-MSCs) have made their mark in regenerative medicine, and provide several advantages compared to other MSCs sources. Forkhead box protein O-1 (FOXO-1) is an important transcription factor for normal development of ß-cells, yet its over expression in ß-cells may cause glucose intolerance. In this study, we isolated, characterized Ad-MSCs from rat epididymal fat pads, differentiated these MSCs into insulin producing cells (IPCs) and studied the role of FOXO-1 in such differentiation. MATERIALS AND METHODS: We examined the expression of FOXO-1 and its nuclear cytoplasmic localization in the generated IPCs. Afterwards we knocked down FOXO-1 using siRNA targeting FOXO-1 (siFOXO-1). The differentiated siFOXO-1 IPCs were compared to non-targeting siRNA (siNT) IPCs regarding expression of ß-cell markers by qRT-PCR and western blotting, dithizone (DTZ) staining and glucose stimulated insulin secretion (GSIS). KEY FINDINGS: Isolated Ad-MSCs exhibited all characteristics of MSCs and can generate IPCs. FOXO-1 was initially elevated during differentiation followed by a decline towards end of differentiation. FOXO-1 was dephosphorylated and localized to the nucleus upon differentiation into IPCs. Knock down of FOXO-1 improved the expression of ß-cell markers in final differentiated IPCs, improved DTZ uptake and showed increased insulin secretion upon challenging with increased glucose concentration. SIGNIFICANCE: These results portray FOXO-1 as a hindering factor of generation of IPCs whose down-regulation can generate more mature IPCs for MSCs therapy of diabetes mellitus.


Assuntos
Diabetes Mellitus , Proteína Forkhead Box O1 , Células Secretoras de Insulina , Células-Tronco Mesenquimais , Animais , Ratos , Diferenciação Celular , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Forkhead Box O1/metabolismo
15.
Int J Biol Macromol ; 264(Pt 2): 130663, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453104

RESUMO

Diabetic nephropathy (DN) is a serious complication in patients with diabetes, whose expansion process is closely related to oxidative stress caused by hyperglycemia. Herein, we report a chitosan-targeted dagliflozin-loaded melanin nanoparticle (CSMDNPs) that can selectively accumulate in injured kidneys, reduce blood glucose, and alleviate the oxidative stress-induced damage. CSMDNPs possess good dispersion and physiological stability, responsive release at acidic pH, and strong scavenging activities for various reactive oxygen and reactive nitrogen radicals. Moreover, in vitro experiments confirm that CSMDNPs have good biocompatibility, enable targeted uptake in NRK-52E renal tubular cells, and also well alleviate high glucose-induced oxidative stress. In the STZ-induced DN model, CSMDNPs exhibit high targeting distribution and retention in the damaged kidneys of DN mice according to photoacoustic imaging. At the end of CSMDNPs treatment, DN mice show a decrease in fasting blood glucose and a return to near-normal urine and blood indices. H&E, PAS, and masson pathological staining also indicates that CSMDNPs significantly inhibit the expansion of renal interstitium, glycogen, and collagen deposition, showing excellent therapeutic effects. In addition, melanin acts as both drug carrier and antioxidant without exogenous carrier introduction, exhibiting better biosafety and translational prospects.


Assuntos
Quitosana , Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Animais , Camundongos , Nefropatias Diabéticas/patologia , Glicemia/metabolismo , Melaninas/metabolismo , Quitosana/farmacologia , Rim , Estresse Oxidativo , Diabetes Mellitus/metabolismo
16.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38442989

RESUMO

INTRODUCTION: Circulating omentin levels have been positively associated with insulin sensitivity. Although a role for adiponectin in this relationship has been suggested, underlying mechanisms remain elusive. In order to reveal the relationship between omentin and systemic metabolism, this study aimed to investigate associations of serum concentrations of omentin and metabolites. RESEARCH DESIGN AND METHODS: This study is based on 1124 participants aged 61-82 years from the population-based KORA (Cooperative Health Research in the Region of Augsburg) F4 Study, for whom both serum omentin levels and metabolite concentration profiles were available. Associations were assessed with five multivariable regression models, which were stepwise adjusted for multiple potential confounders, including age, sex, body mass index, waist-to-hip ratio, lifestyle markers (physical activity, smoking behavior and alcohol consumption), serum adiponectin levels, high-density lipoprotein cholesterol, use of lipid-lowering or anti-inflammatory medication, history of myocardial infarction and stroke, homeostasis model assessment 2 of insulin resistance, diabetes status, and use of oral glucose-lowering medication and insulin. RESULTS: Omentin levels significantly associated with multiple metabolites including amino acids, acylcarnitines, and lipids (eg, sphingomyelins and phosphatidylcholines (PCs)). Positive associations for several PCs, such as diacyl (PC aa C32:1) and alkyl-alkyl (PC ae C32:2), were significant in models 1-4, whereas those with hydroxytetradecenoylcarnitine (C14:1-OH) were significant in all five models. Omentin concentrations were negatively associated with several metabolite ratios, such as the valine-to-PC ae C32:2 and the serine-to-PC ae C32:2 ratios in most models. CONCLUSIONS: Our results suggest that omentin may influence insulin sensitivity and diabetes risk by changing systemic lipid metabolism, but further mechanistic studies investigating effects of omentin on metabolism of insulin-sensitive tissues are needed.


Assuntos
Citocinas , Proteínas Ligadas por GPI , Resistência à Insulina , Lectinas , Humanos , Adiponectina/metabolismo , Diabetes Mellitus/metabolismo , Insulina , Proteínas Ligadas por GPI/sangue , Lectinas/sangue , Citocinas/sangue
17.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485229

RESUMO

INTRODUCTION: Static incubation (static glucose-stimulated insulin secretion, sGSIS) is a measure of islet secretory function. The Stimulation Index (SI; insulin produced in high glucose/insulin produced in low glucose) is currently used as a product release criterion of islet transplant potency. RESEARCH DESIGN AND METHODS: Our hypothesis was that the Delta, insulin secreted in high glucose minus insulin secreted in low glucose, would be more predictive. To evaluate this hypothesis, sGSIS was performed on 32 consecutive human islet preparations, immobilizing the islets in a slurry of Sepharose beads to minimize mechanical perturbation. Simultaneous full-mass subrenal capsular transplants were performed in chemically induced diabetic immunodeficient mice. Logistic regression analysis was used to determine optimal cut-points for diabetes reversal time and the Fisher Exact Test was used to assess the ability of the Delta and the SI to accurately classify transplant outcomes. Receiver operating characteristic curve analysis was performed on cut-point grouped data, assessing the predictive power and optimal cut-point for each sGSIS potency metric. Finally, standard Kaplan-Meier-type survival analysis was conducted. RESULTS: In the case of the sGSIS the Delta provided a superior islet potency metric relative to the SI.ConclusionsThe sGSIS Delta value is predicitive of time to diabetes reversal in the full mass human islet transplant bioassay.


Assuntos
Diabetes Mellitus , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Secreção de Insulina , Glucose/farmacologia , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/fisiologia , Diabetes Mellitus/metabolismo , Insulina/metabolismo , Bioensaio
18.
Front Immunol ; 15: 1342837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487541

RESUMO

Diabetic kidney disease (DKD) is becoming the leading cause of chronic kidney disease, especially in the industrialized world. Despite mounting evidence has demonstrated that immunity and inflammation are highly involved in the pathogenesis and progression of DKD, the underlying mechanisms remain incompletely understood. Substantial molecules, signaling pathways, and cell types participate in DKD inflammation, by integrating into a complex regulatory network. Most of the studies have focused on individual components, without presenting their importance in the global or system-based processes, which largely hinders clinical translation. Besides, conventional technologies failed to monitor the different behaviors of resident renal cells and immune cells, making it difficult to understand their contributions to inflammation in DKD. Recently, the advancement of omics technologies including genomics, epigenomics, transcriptomics, proteomics, and metabolomics has revolutionized biomedical research, which allows an unbiased global analysis of changes in DNA, RNA, proteins, and metabolites in disease settings, even at single-cell and spatial resolutions. They help us to identify critical regulators of inflammation processes and provide an overview of cell heterogeneity in DKD. This review aims to summarize the application of multiple omics in the field of DKD and emphasize the latest evidence on the interplay of inflammation and DKD revealed by these technologies, which will provide new insights into the role of inflammation in the pathogenesis of DKD and lead to the development of novel therapeutic approaches and diagnostic biomarkers.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Nefropatias Diabéticas/patologia , Rim/patologia , Inflamação/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações , Genômica , Diabetes Mellitus/metabolismo
19.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474297

RESUMO

Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-ß (TGF-ß) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-ß signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-ß superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-ß signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-ß and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-ß superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/fisiologia , Retina/metabolismo , Diabetes Mellitus/metabolismo
20.
Cells ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474393

RESUMO

CD40 induces pro-inflammatory responses in endothelial and Müller cells and is required for the development of diabetic retinopathy (DR). CD40 is upregulated in these cells in patients with DR. CD40 upregulation is a central feature of CD40-driven inflammatory disorders. What drives CD40 upregulation in the diabetic retina remains unknown. We examined the role of advanced glycation end products (AGEs) in CD40 upregulation in endothelial cells and Müller cells. Human endothelial cells and Müller cells were incubated with unmodified or methylglyoxal (MGO)-modified fibronectin. CD40 expression was assessed by flow cytometry. The expression of ICAM-1 and CCL2 was examined by flow cytometry or ELISA after stimulation with CD154 (CD40 ligand). The expression of carboxymethyl lysine (CML), fibronectin, and laminin as well as CD40 in endothelial and Müller cells from patients with DR was examined by confocal microscopy. Fibronectin modified by MGO upregulated CD40 in endothelial and Müller cells. CD40 upregulation was functionally relevant. MGO-modified fibronectin enhanced CD154-driven upregulation of ICAM-1 and CCL2 in endothelial and Müller cells. Increased CD40 expression in endothelial and Müller cells from patients with DR was associated with increased CML expression in fibronectin and laminin. These findings identify AGEs as inducers of CD40 upregulation in endothelial and Müller cells and enhancers of CD40-dependent pro-inflammatory responses. CD40 upregulation in these cells is associated with higher CML expression in fibronectin and laminin in patients with DR. This study revealed that CD40 and AGEs, two important drivers of DR, are interconnected.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Fibronectinas/metabolismo , Células Ependimogliais/metabolismo , Células Endoteliais/metabolismo , Óxido de Magnésio/metabolismo , Retina/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Laminina/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Diabetes Mellitus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...