Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 677
Filtrar
1.
Food Funct ; 13(7): 4158-4170, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35316320

RESUMO

Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.


Assuntos
Lupinus , Pró-Proteína Convertase 9 , Animais , Apolipoproteínas E/genética , Dieta Ocidental/efeitos adversos , Fígado/metabolismo , Lupinus/metabolismo , Camundongos , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Hidrolisados de Proteína/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
2.
Psychoneuroendocrinology ; 139: 105706, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259592

RESUMO

Chronic psychosocial stress is associated with increased risk of many chronic diseases including type 2 diabetes mellitus. However, it is difficult to establish a causal relationship between stress and diabetes in human studies because stressors often are self-reported and may be distant in time from metabolic consequences. Macaques are useful models of the effects of chronic psychosocial stress on health and may develop obesity and diabetes similar to human beings. Thus, we studied the relationships between social subordination stress - a well-validated psychological stressor in macaques - and body composition and carbohydrate metabolism in socially housed, middle-aged female cynomolgus monkeys (Macaca fascicularis; n = 42). Following an 8-week baseline phase, the monkeys were fed a Western diet for 36 months (about equivalent to 10 human years). Social status was determined based on the outcomes of agonistic interactions (X¯= 33.3 observation hours/monkey). Phenotypes collected included plasma cortisol, body composition, circulating markers of glucose metabolism, activity levels, and heart rate variability measured as RMSSD (root of mean square of successive differences) and SDDN (standard deviation of beat to beat interval) after 1.5- and 3-years on diet. Mixed model analyses of variance revealed that aggression received, submissions sent, and cortisol were higher, and RMSSD and SDNN were lower in subordinates than dominants (social status: p < 0.05). After 3 years of Western diet consumption, fasting triglyceride, glucose and insulin concentrations, calculated insulin resistance (HOMA-IR), body weight and body fat mass increased in all animals (time: all p's < 0.05); however, the increase in fasting glucose and HOMA-IR was significantly greater in subordinates than dominants (time x social status: p's < 0.05). Impaired glucose metabolism, (glucose > 100 mg/dl) incidence was significantly higher in subordinates (23%) than dominants (0%) (Fisher's exact test, p < 0.05). These findings suggest that chronic psychosocial stress, on a Western diet background, significantly increases type 2 diabetes risk in middle-aged female primates.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Animais , Diabetes Mellitus Tipo 2/etiologia , Dieta Ocidental/efeitos adversos , Feminino , Humanos , Macaca fascicularis , Pessoa de Meia-Idade , Estresse Psicológico/psicologia
3.
Pharmacol Res ; 178: 106191, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35346845

RESUMO

Metabolic inflammation is a crucial factor in the pathogenesis of obesity and promotes related complications. Accumulating evidence has indicated that regulating intestinal integrity and the gut microbiota may be new treatment strategies for metabolic inflammation and obesity. Cordycepin has been reported to improve obesity, but the mechanism is not yet clear. Here, we showed that cordycepin considerably alleviated systemic inflammation while reducing body weight gain and metabolic disorders in Western diet (WD)-fed mice. Further investigations showed that cordycepin significantly ameliorated WD-induced damage to the intestinal barrier and decreased the leakage of lipopolysaccharide (LPS) into the blood in mice by suppressing intestinal inflammation, oxidative stress damage, and decreasing intestinal epithelial cell apoptosis and pyroptosis. In addition, by using metagenomic sequencing, we found that cordycepin could also regulate the homeostasis of intestinal flora, including selectively increasing the abundance of Akkermansia muciniphila and reducing the production of fecal LPS. Besides, we demonstrated that the intestinal flora partially mediated the beneficial effects of cordycepin on improving intestinal barrier function, and obesity-related symptoms in WD-fed mice by a fecal microbiota transplantation experiment. Hence, our findings provided new insights into the role of cordycepin in improving metabolic inflammation and obesity from the perspective of regulating the intestinal barrier function and intestinal flora, and further provided data support for the utility of cordycepin in the treatment of obesity and its complications.


Assuntos
Microbioma Gastrointestinal , Animais , Desoxiadenosinas , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Inflamação/complicações , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
4.
Sci Rep ; 12(1): 3612, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35256637

RESUMO

The World Health Organization determined cardiovascular disease to be the leading cause of death globally; atherosclerosis is the primary cause of the high morbidity and mortality rates. Regular physical activity is an effective strategy for maintaining endothelial health and function to prevent the development of atherosclerosis. Obesity is also a crucial risk factor for atherosclerotic progression in combination with various complications and systemic inflammation. Physiological homeostasis is modulated by the intestinal microbiota, but the mechanisms through which exercise attenuates atherosclerosis through the microbiota have not been elucidated. Therefore, we investigated the effects of endurance exercise on atherosclerosis induced by a Western diet (WD) and apolipoprotein E (ApoE) knockout in terms of microbiota parameters and metabolites. Genetically modified ApoE knockout mice (C57BL/6-Apoeem1Narl/Narl, ApoEKO) and wild-type mice (C57BL6/J) were divided into the following four groups (n = 6), namely, wild-type mice fed a chow diet (WT CD), ApoEKO mice fed a chow diet (ApoE CD), ApoEKO mice fed a WD (ApoE WD), and ApoEKO mice fed a WD and performing endurance exercise (ApoE WD EX), for a 12-week intervention. The WD significantly induced obesity and atherosclerotic syndrome in the ApoE WD group. Severe atherosclerotic lesions and arterial thickness were significantly elevated and accompanied by increases in VCAM-1, MCP-1, TNF-α, and IL-1ß for immune cell chemotaxis and inflammation during atherosclerotic pathogenesis in the ApoE WD group. In addition, dysbiosis in the ApoE WD group resulted in the lowest short-chain fatty acid (SCFA) production. Endurance exercise intervention (ApoE WD EX) significantly alleviated atherosclerotic syndrome by reducing obesity, significantly inhibiting VCAM-1, MCP-1, TNF-α, and IL-1ß expression, and increasing the production of SCFAs. Modulation of the microbiota associated with inflammation, such as Desulfovibrio, Tyzzerella, and Lachnospiraceae_ge, and increased SCFA production, particularly through an abundance of Rikenellaceae and Dubosiella, were also observed after exercise intervention. Endurance exercise can alleviate WD-induced atherosclerosis through the amelioration of obesity, inflammation, and chemotaxis signaling, which are modulated by the microbiota and derived SCFAs.


Assuntos
Aterosclerose , Microbioma Gastrointestinal , Animais , Apolipoproteínas E/genética , Aterosclerose/patologia , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Terapia por Exercício/efeitos adversos , Ácidos Graxos Voláteis , Humanos , Inflamação/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Fator de Necrose Tumoral alfa , Molécula 1 de Adesão de Célula Vascular
5.
Sci Rep ; 12(1): 4154, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264693

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is usually correlated with metabolic diseases, such as obesity, insulin resistance, and hyperglycemia. Herein, we investigated the inhibitory effects and underlying governing mechanism of clitorin in a western diet (WD)-induced hepatic steatosis mouse model, and in oleic acid-stimulated HepG2 cells. Male C57BL/6 mice were fed a normal diet, WD, WD + 10 or 20 mg/kg orlistat, and WD + 10 or 20 mg/kg clitorin. HepG2 cells were treated with 1 mM oleic acid to induce lipid accumulation with or without clitorin. Clitorin significantly alleviated body weight gain and hepatic steatosis features (NAFLD activity score, micro-, and macro-vesicular steatosis) in WD-induced hepatic steatosis mice. Additionally, clitorin significantly decreased protein expressions of sterol regulatory element-binding protein 1 (SREBP1), peroxisome proliferator-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα) in WD-induced hepatic steatosis mice. Moreover, clitorin significantly diminished the mRNA levels of SREBP1, acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and enhanced the mRNA levels of peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyltranserase-1 (CTP-1), as well as adenosine monophosphate-activated protein kinase (AMPK) in the liver of WD-induced hepatic steatosis mice and oleic acid-stimulated HepG2 cells. Overall, our findings demonstrated that clitorin can be a potentially efficacious candidate for NAFLD management.


Assuntos
Lipogênese , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Glicosídeos , Células Hep G2 , Humanos , Quempferóis , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , RNA Mensageiro/metabolismo
6.
Nutrients ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35276952

RESUMO

We investigated whether the long-term intake of a typical sugar-sweetened soft drink (sugar-sweetened beverage, SSB) alters markers for taste function when combined with a standard diet (chow) or a model chow mimicking a Western diet (WD). Adult male CD1 mice had ad libitum access to tap water or SSB in combination with either the chow or the WD for 24 weeks. Energy intake from fluid and food was monitored three times a week. Cardiometabolic markers (body weight and composition, waist circumference, glucose and lipid profile, and blood pressure) were analyzed at the end of the intervention, as was the number and size of the fungiform papillae as well as mRNA levels of genes associated with the different cell types of taste buds and taste receptors in the circumvallate papillae using a cDNA microarray and qPCR. Although the overall energy intake was higher in the WD groups, there was no difference in body weight or other cardiometabolic markers between the SSB and water groups. The chemosensory surface from the fungiform papillae was reduced by 36 ± 19% (p < 0.05) in the WD group after SSB compared to water intake. In conclusion, the consumption of the SSB reduced the chemosensory surface of the fungiform papillae of CD1 mice when applied in combination with a WD independent of body weight. The data suggest synergistic effects of a high sugar-high fat diet on taste dysfunction, which could further influence food intake and promote a vicious cycle of overeating and taste dysfunction.


Assuntos
Dieta Ocidental , Bebidas Adoçadas com Açúcar , Animais , Peso Corporal , Dieta Ocidental/efeitos adversos , Masculino , Camundongos , Açúcares , Paladar
7.
Nutrients ; 14(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35277054

RESUMO

The hepatic adiponectin and farnesoid X receptor (FXR) signaling pathways play multiple roles in modulating lipid and glucose metabolism, reducing hepatic inflammation and fibrosis, and altering various metabolic targets for the management of non-alcoholic fatty liver disease (NAFLD). Alisma orientale (AO, Ze xie in Chinese and Taeksa in Korean) is an herbal plant whose tubers are enriched with triterpenoids, which have been reported to exhibit various bioactive properties associated with NAFLD. Here, the present study provides a preclinical evaluation of the biological functions and related signaling pathways of AO extract for the treatment of NAFLD in a Western diet (WD)-induced mouse model. The findings showed that AO extract significantly reversed serum markers (liver function, lipid profile, and glucose) and improved histological features in the liver sections of mice fed WD for 52 weeks. In addition, it also reduced hepatic expression of fibrogenic markers in liver tissue and decreased the extent of collagen-positive areas, as well as inhibited F4/80 macrophage aggregation and inflammatory cytokine secretion. The activation of adiponectin and FXR expression in hepatic tissue may be a major mechanistic signaling cascade supporting the promising role of AO in NAFLD pharmacotherapy. Collectively, our results demonstrated that AO extract improves non-alcoholic steatohepatitis (NASH) resolution, particularly with respect to NASH-related fibrosis, along with the regulation of liver enzymes, postprandial hyperglycemia, hyperlipidemia, and weight loss, probably through the modulation of the hepatic adiponectin and FXR pathways.


Assuntos
Alisma , Dieta Ocidental , Hepatopatia Gordurosa não Alcoólica , Adiponectina/metabolismo , Alisma/química , Animais , Dieta Ocidental/efeitos adversos , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/etiologia , Extratos Vegetais/uso terapêutico
8.
Endocrinology ; 163(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192701

RESUMO

Hyperandrogenemia and obesity are common in women with polycystic ovary syndrome, but it is currently unclear how each alone or in combination contribute to reproductive dysfunction and female infertility. To distinguish the individual and combined effects of hyperandrogenemia and an obesogenic diet on ovarian function, prepubertal female rhesus macaques received a standard control (C) diet, testosterone (T) implants, an obesogenic Western-style diet (WSD), or both (T + WSD). After 5 to 6 years of treatment, the females underwent metabolic assessments and controlled ovarian stimulations. Follicular fluid (FF) was collected for steroid and cytokine analysis and the oocytes fertilized in vitro. Although the T + WSD females exhibited higher insulin resistance compared to the controls, there were no significant differences in metabolic parameters between treatments. Significantly higher concentrations of CXCL-10 were detected in the FF from the T group, but no significant differences in intrafollicular steroid levels were observed. Immunostaining of cleavage-stage embryos revealed multiple nuclear abnormalities in the T, WSD, and T + WSD groups. Single-cell DNA sequencing showed that while C embryos contained primarily euploid blastomeres, most cells in the other treatment groups were aneuploid. Despite yielding a higher number of mature oocytes, T + WSD treatment resulted in significantly reduced blastocyst formation rates compared to the T group. RNA sequencing analysis of individual blastocysts showed differential expression of genes involved in critical implantation processes between the C group and other treatments. Collectively, we show that long-term WSD consumption reduces the capacity of fertilized oocytes to develop into blastocysts and that the addition of T further impacts gene expression and embryogenesis.


Assuntos
Hiperandrogenismo , Animais , Blastocisto , Dieta Ocidental/efeitos adversos , Desenvolvimento Embrionário , Feminino , Humanos , Hiperandrogenismo/complicações , Macaca mulatta
9.
Am J Physiol Regul Integr Comp Physiol ; 322(3): R253-R262, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107025

RESUMO

Mineralocorticoid receptor (MR) activation plays an important role in hepatic insulin resistance. However, the precise mechanisms by which MR activation promotes hepatic insulin resistance remains unclear. Therefore, we sought to investigate the roles and mechanisms by which MR activation promotes Western diet (WD)-induced hepatic steatosis and insulin resistance. Six-week-old C57BL6J mice were fed either mouse chow or a WD, high in saturated fat and refined carbohydrates, with or without the MR antagonist spironolactone (1 mg/kg/day) for 16 wk. WD feeding resulted in systemic insulin resistance at 8 and 16 wk. WD also induced impaired hepatic insulin metabolic signaling via phosphoinositide 3-kinases/protein kinase B pathways, which was associated with increased hepatic CD36, fatty acid transport proteins, fatty acid-binding protein-1, and hepatic steatosis. Meanwhile, consumption of a WD-induced hepatic mitochondria dysfunction, oxidative stress, and inflammatory responses. These abnormalities occurring in response to WD feeding were blunted with spironolactone treatment. Moreover, spironolactone promoted white adipose tissue browning and hepatic glucose transporter type 4 expression. These data suggest that enhanced hepatic MR signaling mediates diet-induced hepatic steatosis and dysregulation of adipose tissue browning, and subsequent hepatic mitochondria dysfunction, oxidative stress, inflammation, as well as hepatic insulin resistance.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Animais , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Mineralocorticoides/metabolismo , Espironolactona/metabolismo , Espironolactona/farmacologia
10.
Cells ; 11(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35159313

RESUMO

It has been shown that the Western diet (WD) induces systemic inflammation and cognitive decline. Moreover, probiotic supplementation and antibiotic treatment reduce diet-induced hepatic inflammation. The current study examines whether shaping the gut microbes by Bifidobacterium infantis (B. infantis) supplementation and antibiotic treatment reduce diet-induced brain inflammation and improve neuroplasticity. Furthermore, the significance of bile acid (BA) signaling in regulating brain inflammation was studied. Mice were fed a control diet (CD) or WD for seven months. B. infantis was supplemented to WD-fed mice to study brain inflammation, lipid, metabolomes, and neuroplasticity measured by long-term potentiation (LTP). Broad-spectrum coverage antibiotics and cholestyramine treatments were performed to study the impact of WD-associated gut microbes and BA in brain inflammation. Probiotic B. infantis supplementation inhibited diet-induced brain inflammation by reducing IL6, TNFα, and CD11b levels. B. infantis improved LTP and increased brain PSD95 and BDNF levels, which were reduced due to WD intake. Additionally, B. infantis reduced cecal cholesterol, brain ceramide and enhanced saturated fatty acids. Moreover, antibiotic treatment, as well as cholestyramine, diminished WD-induced brain inflammatory signaling. Our findings support the theory that intestinal microbiota remodeling by B. infantis reduces brain inflammation, activates BA receptor signaling, and improves neuroplasticity.


Assuntos
Disfunção Cognitiva , Encefalite , Microbioma Gastrointestinal , Animais , Antibacterianos , Bifidobacterium , Resina de Colestiramina , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/prevenção & controle , Dieta Ocidental/efeitos adversos , Inflamação , Camundongos
11.
Annu Rev Food Sci Technol ; 13: 489-512, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-34990225

RESUMO

Diet exerts a major influence upon host immune function and the gastrointestinal microbiota. Although components of the human diet (including carbohydrates, fats, and proteins) are essential sources of nutrition for the host, they also influence immune function directly through interaction with innate and cell-mediated immune regulatory mechanisms. Regulation of the microbiota community structure also provides a mechanism by which food components influence host immune regulatory processes. Here, we consider the complex interplay between components of the modern (Western) diet, the microbiota, and host immunity in the context of obesity and metabolic disease, inflammatory bowel disease, and infection.


Assuntos
Microbioma Gastrointestinal , Microbiota , Dieta , Dieta Ocidental/efeitos adversos , Humanos , Estado Nutricional , Obesidade
12.
Nutrients ; 14(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35057536

RESUMO

The type of diet not only affects the composition of the oral microflora but is also one of the more critical factors associated with an increased risk of Parkinson's disease, PD. This study compared diet preferences and oral microbiota profiles in patients with PD vs. healthy controls. This study compared the oral microbiota composition of 59 patients with PD and 108 healthy controls (without neurodegeneration) using 16S rRNA gene amplicon sequencing. According to results, oral microbiota in patients with PD is different compared from healthy controls. In particular, decreased abundance of Proteobacteria, Pastescibacteria, and Tenercutes was observed. The oral cavity of patients with PD was characterized by the high relative abundance of bacteria from the genera Prevotella, Streptococcus, and Lactobaccillus. There were also differences in food preferences between patients with PD and healthy controls, which revealed significantly higher intake of margarine, fish, red meat, cereals products, avocado, and olives in the patients with PD relative to healthy controls. Strong positive and negative correlations between specific food products and microbial taxa were identified.


Assuntos
Dieta Ocidental/estatística & dados numéricos , Microbiota/genética , Boca/microbiologia , Doença de Parkinson/microbiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos Transversais , Dieta Ocidental/efeitos adversos , Feminino , Preferências Alimentares , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/análise
13.
Food Funct ; 13(2): 1000-1014, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35015019

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and its advanced stage, non-alcoholic steatohepatitis (NASH), are a major health issue throughout the world. Certain food components such as polyphenols are expected to possess preventive effects on NAFLD and NASH. In this study, the preventive effects of black soybean polyphenols were examined by using three NAFLD/NASH animal models. In a choline-deficient and L-amino acid-defined high-fat diet-induced NASH model, the intake of black soybean polyphenols decreased oxidative stress, but failed in attenuating liver injury and decreasing the expression of alpha-smooth muscle actin (α-SMA). In a Western diet with sucrose and fructose containing sweetened water-induced NAFLD model, black soybean polyphenols suppressed hepatic lipid accumulation, oxidative stress, aminotransferase activities in the plasma, inflammatory cytokine expression, and α-SMA expression accompanied by modulation of lipid metabolism. In a combination of Western diet and carbon tetrachloride model, black soybean polyphenols also suppressed hepatic lipid accumulation, oxidative stress, aminotransferase activities in the plasma, and α-SMA expression. In conclusion, black soybean is an attractive food for the prevention of NAFLD and NASH due to its strong antioxidant activity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Polifenóis/farmacologia , Soja/química , Ração Animal , Animais , Intoxicação por Tetracloreto de Carbono , Deficiência de Colina , Água Potável/química , Frutose/administração & dosagem , Frutose/química , Camundongos , Polifenóis/química , Distribuição Aleatória , Sacarose/administração & dosagem , Sacarose/química
14.
Sci Rep ; 12(1): 483, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013582

RESUMO

Protein arginine methyltransferase 3 (PRMT3) is a co-activator of liver X receptor capable of selectively modulating hepatic triglyceride synthesis. Here we investigated whether pharmacological PRMT3 inhibition can diminish the hepatic steatosis extent and lower plasma lipid levels and atherosclerosis susceptibility. Hereto, male hyperlipidemic low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet and injected 3 times per week intraperitoneally with PRMT3 inhibitor SGC707 or solvent control. Three weeks into the study, SGC707-treated mice developed severe pruritus and scratching-associated skin lesions, leading to early study termination. SGC707-treated mice exhibited 50% lower liver triglyceride stores as well as 32% lower plasma triglyceride levels. Atherosclerotic lesions were virtually absent in all experimental mice. Plasma metabolite analysis revealed that levels of taurine-conjugated bile acids were ~ threefold increased (P < 0.001) in response to SGC707 treatment, which was paralleled by systemically higher bile acid receptor TGR5 signalling. In conclusion, we have shown that SGC707 treatment reduces hepatic steatosis and plasma triglyceride levels and induces pruritus in Western-type diet-fed LDL receptor knockout mice. These findings suggest that pharmacological PRMT3 inhibition can serve as therapeutic approach to treat non-alcoholic fatty liver disease and dyslipidemia/atherosclerosis, when unwanted effects on cholesterol and bile acid metabolism can be effectively tackled.


Assuntos
Dieta Ocidental/efeitos adversos , Fígado Gorduroso/tratamento farmacológico , Isoquinolinas/efeitos adversos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Prurido/etiologia , Receptores de LDL/genética , Triglicerídeos/sangue , Animais , Fígado Gorduroso/metabolismo , Humanos , Isoquinolinas/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Prurido/genética , Prurido/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de LDL/deficiência
15.
PLoS One ; 17(1): e0263080, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35073378

RESUMO

BACKGROUND: Both insulin resistance and postprandial glucose spikes are known for their potential to induce vascular endothelial dysfunction in individuals with metabolic syndrome. However, these factors are inextricable, and therefore, their relative contributions to inducing endothelial dysfunction remain elusive. In this study, we aimed to disentangle the effects of these factors and clarify whether bardoxolone methyl (CDDO-Me), a novel nuclear factor erythroid 2-related factor 2 (Nrf2) activator, protects against glucose spike-induced endothelial dysfunction. METHODS: We induced glucose spikes twice daily for a duration of 1 week to rats fed a standard/control diet (CD) and Western-type diet (WTD). Endothelium-dependent relaxation (EDR) was evaluated using isolated thoracic aortas. Gene expression and dihydroethidium (DHE)-fluorescence studies were carried out; the effect of CDDO-Me on aortic endothelial dysfunction in vivo was also evaluated. RESULTS: Neither WTD-induced insulin resistance nor pure glucose spikes significantly deteriorated EDR. However, under high-glucose (20 mM) conditions, the EDR of thoracic aortas of WTD-fed rats subjected to glucose spikes was significantly impaired. In this group of rats, we observed significantly enhanced DHE fluorescence as a marker of reactive oxygen species, upregulation of an oxidative stress-related gene (NOX2), and downregulation of an antioxidant gene (SOD2) in the thoracic aortas. As expected, treatment of the thoracic aorta of this group of rats with antioxidant agents significantly improved EDR. We also noted that pretreatment of aortas from the same group with CDDO-Me attenuated endothelial dysfunction, accompanied by a correction of the redox imbalance, as observed in gene expression and DHE fluorescence studies. CONCLUSIONS: For the first time, we showed that insulin resistance and glucose spikes exert a synergistic effect on aortic endothelial dysfunction. Furthermore, our study reveals that CDDO-Me ameliorates endothelial dysfunction caused by glucose spikes in a rat model of metabolic syndrome.


Assuntos
Aorta Torácica/metabolismo , Glicemia/metabolismo , Endotélio Vascular/metabolismo , Resistência à Insulina , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Animais , Dieta Ocidental/efeitos adversos , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/metabolismo , Ácido Oleanólico/farmacologia , Ratos , Ratos Wistar
16.
Am J Clin Nutr ; 115(2): 364-377, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-34718382

RESUMO

BACKGROUND: Observational studies have linked pesticide exposure to various diseases, whereas organic food consumption has been associated with positive health outcomes. Organic farming standards prohibit the use of most pesticides, and organic food consumption may therefore reduce pesticide exposure. OBJECTIVES: To determine the effects of diet (Western compared with Mediterranean) and food type (conventional compared with organic) and sex on urinary pesticide residue excretion (UPRE), as well as associations between specific diet components and UPRE. METHODS: In this 2-wk, randomized dietary intervention trial, healthy adults were randomly allocated to an intervention (n = 13) or conventional (n = 14) group. Whereas participants in the intervention group consumed a Mediterranean diet (MedDiet) made entirely from organic foods, the conventional group consumed a MedDiet made entirely from conventional foods. Both groups consumed habitual Western diets made from conventional foods before and after the 2-wk intervention period. The primary outcome was UPRE. In addition, we assessed diet composition and pesticide residue profiles in foods eaten. Participants were aware of group assignment, but the study assessors were not. RESULTS: During the intervention period, total UPRE was 91% lower with organic (mean 17 µg/d; 95% CI: 15, 19) than with conventional (mean 180 µg/d; 95% CI: 153, 208) food consumption (P < 0.0001). In the conventional group, switching from the habitual Western diet to the MedDiet increased insecticide excretion from 7 to 25 µg/d (P < 0.0001), organophosphate excretion from 5 to 19 µg/d (P < 0.0001), and pyrethroid residue excretion from 2.0 to 4.5 µg/d (P < 0.0001). Small but significant effects of sex were detected for chlormequat, herbicide, and total pesticide residue excretion. CONCLUSIONS: Changing from a habitual Western diet to a MedDiet was associated with increased insecticide, organophosphate, and pyrethroid exposure, whereas organic food consumption reduced exposure to all groups of synthetic chemical pesticides. This may explain the positive health outcomes linked to organic food consumption in observational studies. This trial was registered at www.clinicaltrials.gov as NCT03254537.


Assuntos
Dieta Mediterrânea/efeitos adversos , Dieta Ocidental/efeitos adversos , Exposição Dietética/efeitos adversos , Alimentos Orgânicos/efeitos adversos , Resíduos de Praguicidas/urina , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Praguicidas/toxicidade , Fatores Sexuais , Adulto Jovem
17.
Geroscience ; 44(1): 229-252, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34642852

RESUMO

Obesity, the cessation of ovarian steroids with menopause, and age are risk factors for mood disorders, dementia, and Alzheimer's disease (AD). However, immediate hormone therapy (HT) after menopause may have beneficial effects in different brain regions involved in memory and cognition. To more closely replicate the age, endocrine, and metabolic environment of obese postmenopausal women, either on or off HT, middle-aged female rhesus macaques were ovariectomized/hysterectomized (OvH) and maintained on a high-fat, high-sugar, obesogenic Western-style diet (WSD) for 30 months; half of the animals received HT immediately after OvH and half served as placebo controls. RNAseq of the occipital (OC) and prefrontal cortex (PFC), hippocampus (HIP), and amygdala (AMG) identified 293, 379, 505, and 4993 differentially expressed genes (DEGs), respectively. Pathway enrichment analysis identified an activation of neuroinflammation in OC and HIP, but an inhibition in the AMG with HT. Synaptogenesis, circadian rhythm, mitochondrial dysfunction, mTOR, glutamate, serotonin, GABA, dopamine, epinephrine/norepinephrine, glucocorticoid receptor signaling, neuronal NOS, and amyloid processing were exclusively enriched in AMG. As compared to the placebo control group, most of these signaling pathways are downregulated after HT, suggesting a protective effect of HT in OvH females under a WSD. Overall, our results suggest that a chronic obesogenic diet may induce a wide range of alterations in multiple signaling pathways that are linked to age-associated brain pathology and dementia. In these individuals, HT seems to have a protective effect against neuroinflammation, amyloid beta depositions, and tau tangle formation.


Assuntos
Dieta Ocidental , Estradiol , Peptídeos beta-Amiloides , Animais , Encéfalo , Dieta Ocidental/efeitos adversos , Suplementos Nutricionais , Estradiol/farmacologia , Feminino , Macaca mulatta , Transcriptoma
18.
Neurogastroenterol Motil ; 34(4): e14300, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825433

RESUMO

BACKGROUND: Diet-induced obesity (DIO) and psychological stress are significant independent regulators of gastrointestinal physiology; however, our understanding of how these two disorders influence the host-microbe interface is still poorly characterized. The aim of this study was to assess the combined influences of diet-induced obesity and psychological stress on microbiome composition and colonic gene expression. METHODS: C57BL/6J mice (n = 48) were subject to a combination of 22 weeks of Western diet (WD) feeding and a chronic restraint stressor (CRS) for the last 4 weeks of feeding. At the end of the combined intervention, microbiome composition was determined from cecal contents, and colonic tissue gene expression was assessed by multiplex analysis using NanoString nCounter System and real-time qPCR. RESULTS: WD feeding induced a DIO phenotype with increased body weight, worsened metabolic markers, and alterations to microbiome composition. CRS reduced body weight in both dietary groups while having differential effects on glucose metabolism. CRS improved the Firmicutes/Bacteroidetes ratio in WD-fed animals while expanding the Proteobacteria phyla. Significantly lower expression of colonic Tlr4 (p = 0.008), Ocln (p = 0.004), and Cldn3 (p = 0.004) were noted in WD-fed animals compared to controls with no synergistic effects observed when combined with CRS. No changes to colonic expression of downstream inflammatory mediators were observed. Interestingly, higher levels of expression of Cldn2 (p = 0.04) and bile acid receptor Nr1h4 (p = 0.02) were seen in mice exposed to CRS. CONCLUSION: Differential but not synergistic effects of WD and CRS were noted at the host-microbe interface suggesting multifactorial responses that require further investigation.


Assuntos
Dieta Ocidental , Microbioma Gastrointestinal , Animais , Peso Corporal , Dieta Hiperlipídica , Dieta Ocidental/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
19.
Exp Gerontol ; 157: 111632, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822971

RESUMO

It is unknown if consumption of a Western diet (WD; high-fat/sucrose), versus a non-WD (healthy diet), accelerates declines in physical function over the adult lifespan, and whether regular voluntary activity attenuates age- and WD-associated declines in function. Accordingly, we studied 4 cohorts of mice that consumed either normal chow [NC] or WD with or without access (sedentary, Sed) to voluntary wheel running [VWR] beginning at 3 mo of age. We assessed coordination, grip strength and endurance every 6 mo throughout life, and measured skeletal muscle mass and inflammation at 3 pre-determined ages (6-7, 13-14 and 19-20 mo). Age-related declines (% change 3-18 mo) in physical function were accelerated in WD-Sed versus NC-Sed (coordination: +47 ± 5%; grip strength: +18 ± 2%; endurance: +32 ± 5%; all p < 0.05). VWR attenuated declines in physical function within diet group (coordination: -31 ± 3% with WD-VWR; -18 ± 2% with NC-VWR; grip strength: -26 ± 2% with WD-VWR; -24 ± 2% with NC-VWR; endurance: -48 ± 4% with WD-VWR; -23 ± 6% with NC-VWR; all p < 0.05). Skeletal muscle mass loss and pro-inflammatory cytokine abundance were exacerbated by WD throughout life (mass: NC-Sed [-]7-28%, WD-Sed [-]17-40%; inflammation: NC-Sed [+]40-65%, WD-Sed [+]40-84%, all p < 0.05 versus NC-Sed), and attenuated by VWR (mass: NC-VWR, [-]0-10%, WD-VWR [-]0-10%; inflammation: NC-VWR [+]0-30%, WD-VWR [+]0-42%, all p < 0.05 versus diet-matched Sed group). Our results depict the temporal impairment of physical function over the lifespan in mice, acceleration of dysfunction with WD, the protective effects of voluntary exercise, and the potential associations with skeletal muscle mass and inflammation.


Assuntos
Dieta Ocidental , Condicionamento Físico Animal , Animais , Dieta Ocidental/efeitos adversos , Inflamação , Camundongos , Atividade Motora/fisiologia , Músculo Esquelético , Condicionamento Físico Animal/fisiologia
20.
J Nutr ; 152(3): 758-769, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34865102

RESUMO

BACKGROUND: A Western diet (WD) is associated with increased inflammation in the large intestine, which is often ascribed to the high dietary fat content. Intestinal inflammation in rodents can be induced by oral administration of dextran sodium sulfate (DSS). However, most studies investigating effects of WD and DSS have not used appropriate low-fat diets (LFDs) as control. OBJECTIVES: To compare the effects of a WD with those of an LFD on colon health in a DSS-induced low-grade colonic inflammation mouse model. METHODS: Six-week-old male C57BL/6JRj mice were fed an LFD (fat = 10.3% energy, n = 24) or a WD (fat = 41.2% energy, n = 24) for 15 wk [Experiment 1 (Exp.1)]. Half the mice on each diet (n = 12) then received 1% DSS in water for 6 d with the remainder (n = 12 in each diet) administered water. Disease activity, proinflammatory genes, inflammatory biomarkers, and fecal microbiota (16S rRNA) were assessed (Exp.1). Follow-up experiments (Exp.2 and Exp.3) were performed to investigate whether fat source (milk or lard; Exp.2) affected outcomes and whether a shift from LFD to WD 1 d prior to 1% DSS exposure caused an immediate effect on DSS-induced inflammation (Exp.3). RESULTS: In Exp.1, 1% DSS treatment significantly increased disease score in the LFD group compared with the WD group (2.7 compared with 0.8; P < 0.001). Higher concentrations of fecal lipocalin (11-fold; P < 0.001), proinflammatory gene expression (≤82-fold), and Proteobacteria were observed in LFD-fed mice compared with the WD group. The 2 fat sources in WDs (Exp.2) revealed the same low inflammation in WD+DSS mice compared with LFD+DSS mice. Finally, the switch from LFD to WD just before DSS exposure resulted in reduced colonic inflammation (Exp.3). CONCLUSIONS: Herein, WDs (with milk or lard) protected mice against DSS-induced colonic inflammation compared with LFD-fed mice. Whether fat intake induces protective mechanisms against DSS-mediated inflammation or inhibits establishment of the DSS-induced colitis model is unclear.


Assuntos
Colite , Dieta Ocidental , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Colo/metabolismo , Sulfato de Dextrana/farmacologia , Dieta Hiperlipídica/efeitos adversos , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...