Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42.620
Filtrar
2.
Methods Mol Biol ; 2829: 277-286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38951344

RESUMO

Quantitative immunoassays, such as the traditional enzyme-linked immunosorbent assay (ELISA), are used to determine concentrations of an antigen in a matrix of unknown antigen concentration. Magnetic immunoassays, such as the Luminex xMAP technology, allow for the simultaneous detection of multiple analytes and offer heightened sensitivity, specificity, low sample volume requirements, and high-throughput capabilities. Here, we describe a quantitative immunoassay using the Luminex MAGPIX® System to determine the antigen concentration from liquid samples with unknown concentrations. In detail, we describe a newly developed assay for determining production yields of Drosophila S2-produced Marburg virus (MARV) glycoprotein in insect-cell-culture-derived supernatant. The potential applications of this assay could extend to the quantification of viral antigens in fluids derived from both in vitro and in vivo models infected with live MARV, thereby providing additional applications for virological research.


Assuntos
Antígenos Virais , Microesferas , Animais , Imunoensaio/métodos , Antígenos Virais/imunologia , Antígenos Virais/análise , Marburgvirus/imunologia , Marburgvirus/isolamento & purificação , Drosophila , Técnicas de Cultura de Células/métodos , Linhagem Celular , Ensaio de Imunoadsorção Enzimática/métodos
4.
Curr Biol ; 34(13): R623-R625, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981426

RESUMO

The fly Drosophila yakuba has lost an ancestral component of the male courtship song: this is due to ontogenetic death of effector neurons in the ventral nerve cord, a result of the D. yakuba sex-determining gene dsx producing a male isoform, dsxM, with cell-death-promoting activity similar to that of the female isoform, dsxF, in D. melanogaster.


Assuntos
Corte , Proteínas de Drosophila , Drosophila , Comportamento Sexual Animal , Animais , Masculino , Comportamento Sexual Animal/fisiologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Drosophila/fisiologia , Drosophila/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Neurônios/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Arch Insect Biochem Physiol ; 116(3): e22132, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38993002

RESUMO

Perilipins are evolutionarily conserved from insects to mammals. Drosophila lipid storage droplet-1 (LSD-1) is a lipid storage droplet membrane surface-binding protein family member and a counterpart to mammalian perilipin 1 and is known to play a role in lipolysis. However, the function of LSD-1 during specific tissue development remains under investigation. This study demonstrated the role of LSD-1 in salivary gland development. Knockdown of Lsd-1 in the salivary gland was established using the GAL4/UAS system. The third-instar larvae of knockdown flies had small salivary glands containing cells with smaller nuclei. The null mutant Drosophila also showed the same phenotype. The depletion of LSD-1 expression induced a delay of endoreplication due to decreasing CycE expression and increasing DNA damage. Lsd-1 genetically interacted with Myc in the third-instar larvae. These results demonstrate that LSD-1 is involved in cell cycle and cell death programs in the salivary gland, providing novel insight into the effects of LSD-1 in regulating salivary gland development and the interaction between LSD-1 and Myc.


Assuntos
Morte Celular , Proteínas de Drosophila , Larva , Glândulas Salivares , Animais , Glândulas Salivares/metabolismo , Glândulas Salivares/citologia , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/genética , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Replicação do DNA , Proteínas de Ligação a DNA , Oxirredutases N-Desmetilantes , Fatores de Transcrição
6.
Front Immunol ; 15: 1389674, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38994369

RESUMO

Cell death is an important process in the body, as it occurs throughout every tissue during development, disease, and tissue regeneration. Phagocytes are responsible for clearing away dying cells and are typically characterized as either professional or nonprofessional phagocytes. Professional phagocytes, such as macrophages, are found in nearly every part of the body while nonprofessional phagocytes, such as epithelial cells, are found in every tissue type. However, there are organs that are considered "immune-privileged" as they have little to no immune surveillance and rely on nonprofessional phagocytes to engulf dying cells. These organs are surrounded by barriers to protect the tissue from viruses, bacteria, and perhaps even immune cells. The Drosophila ovary is considered immune-privileged, however the presence of hemocytes, the macrophages of Drosophila, around the ovary suggests they may have a potential function. Here we analyze hemocyte localization and potential functions in response to starvation-induced cell death in the ovary. Hemocytes were found to accumulate in the oviduct in the vicinity of mature eggs and follicle cell debris. Genetic ablation of hemocytes revealed that the presence of hemocytes affects oogenesis and that they phagocytose ovarian cell debris and in their absence fecundity decreases. Unpaired3, an IL-6 like cytokine, was found to be required for the recruitment of hemocytes to the oviduct to clear away obsolete follicle cells. These findings demonstrate a role for hemocytes in the ovary, providing a more thorough understanding of phagocyte communication and cell clearance in a previously thought immune-privileged organ.


Assuntos
Hemócitos , Ovário , Fagócitos , Fagocitose , Animais , Feminino , Ovário/imunologia , Hemócitos/imunologia , Fagócitos/imunologia , Fagócitos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/imunologia , Oogênese , Drosophila/imunologia
7.
Elife ; 132024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979985

RESUMO

The first neuronal wiring diagram of an insect nerve cord, which includes biological information on cell type and organisation, enables further investigation into premotor circuit function.


Assuntos
Drosophila , Neurônios Motores , Animais , Neurônios Motores/fisiologia , Drosophila/anatomia & histologia
8.
Open Biol ; 14(7): 240059, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39046196

RESUMO

The brain can adapt to changes in the environment through alterations in the number and structure of synapses. During embryonic and early postnatal stages, the synapses in the brain undergo rapid expansion and interconnections to form circuits. However, many of these synaptic connections are redundant or incorrect. Neurite pruning is a conserved process that occurs during both vertebrate and invertebrate development. It requires precise spatiotemporal control of local degradation of cellular components, comprising cytoskeletons and membranes, refines neuronal circuits, and ensures the precise connectivity required for proper function. The Drosophila's class IV dendritic arborization (C4da) sensory neuron has a well-characterized architecture and undergoes dendrite-specific sculpting, making it a valuable model for unravelling the intricate regulatory mechanisms underlie dendritic pruning. In this review, I attempt to provide an overview of the present state of research on dendritic pruning in C4da sensory neurons, as well as potential functional mechanisms in neurodevelopmental disorders.


Assuntos
Dendritos , Células Receptoras Sensoriais , Animais , Dendritos/metabolismo , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/citologia , Plasticidade Neuronal , Sinapses/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster
9.
BMC Genomics ; 25(1): 678, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977960

RESUMO

BACKGROUND: The piRNA pathway in animal gonads functions as an 'RNA-based immune system', serving to silence transposable elements and prevent inheritance of novel invaders. In Drosophila, this pathway relies on three gonad-specific Argonaute proteins (Argonaute-3, Aubergine and Piwi) that associate with 23-28 nucleotide piRNAs, directing the silencing of transposon-derived transcripts. Transposons constitute a primary driver of genome evolution, yet the evolution of piRNA pathway factors has not received in-depth exploration. Specifically, channel nuclear pore proteins, which impact piRNA processing, exhibit regions of rapid evolution in their promoters. Consequently, the question arises whether such a mode of evolution is a general feature of transposon silencing pathways. RESULTS: By employing genomic analysis of coding and promoter regions within genes that function in transposon silencing in Drosophila, we demonstrate that the promoters of germ cell-specific piRNA factors are undergoing rapid evolution. Our findings indicate that rapid promoter evolution is a common trait among piRNA factors engaged in germline silencing across insect species, potentially contributing to gene expression divergence in closely related taxa. Furthermore, we observe that the promoters of genes exclusively expressed in germ cells generally exhibit rapid evolution, with some divergence in gene expression. CONCLUSION: Our results suggest that increased germline promoter evolution, in partnership with other factors, could contribute to transposon silencing and evolution of species through differential expression of genes driven by invading transposons.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Inativação Gênica , Células Germinativas , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Animais , Elementos de DNA Transponíveis/genética , Células Germinativas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Drosophila/genética , Drosophila/genética , Proteínas Argonautas/genética
10.
Genome Med ; 16(1): 85, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956711

RESUMO

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Assuntos
Envelhecimento , Metilação de DNA , Longevidade , Humanos , Animais , Metilação de DNA/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Descoberta de Drogas/métodos , Senescência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Drosophila , Células Cultivadas , Sirolimo/farmacologia
11.
Arthritis Res Ther ; 26(1): 131, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010233

RESUMO

BACKGROUND: Association of HLA-B27 with spondyloarthritis (SpA) has been known for 50 years, but still remains unexplained. We recently showed that HLA-B27 expressed in wing imaginal disc from HLA-B27/human-ß2 microglobulin (hß2m) transgenic Drosophila deregulated bone morphogenetic protein (BMP) pathway by interacting physically with type I BMP receptor (BMPR1) Saxophone (Sax), leading to crossveinless phenotype. METHODS: Genetic interaction was studied between activin/transforming growth factor ß (TGFß) pathway and HLA-B27/hß2m in transgenic Drosophila wings. The HLA-B27-bound peptidome was characterized in wing imaginal discs. In mesenteric lymph node (mLN) T cells from HLA-B27/hß2m rat (B27 rat), physical interaction between HLA-B27 and activin receptor-like kinase-2 (ALK2), ALK3 and ALK5 BMPR1s, phosphorylation of small mothers against decapentaplegic (SMADs) and proteins of the non-canonical BMP/TGFß pathways induced by its ligands, and the transcript level of target genes of the TGFß pathway, were evaluated. RESULTS: In HLA-B27/hß2m transgenic Drosophila, inappropriate signalling through the activin/TGFß pathway, involving Baboon (Babo), the type I activin/TGFß receptor, contributed to the crossveinless phenotype, in addition to deregulated BMP pathway. We identified peptides bound to HLA-B27 with the canonical binding motif in HLA-B27/hß2m transgenic Drosophila wing imaginal disc. We demonstrated specific physical interaction, between HLA-B27/hß2m and mammalian orthologs of Sax and Babo, i.e. ALK2 and ALK5 (i.e. TGFß receptor I), in the mLN cells from B27 rat. The magnitude of phosphorylation of SMAD2/3 in response to TGFß1 was increased in T cells from B27 rats, showing evidence for deregulated TGFß pathway. Accordingly, expression of several target genes of the pathway was increased in T cells from B27 rats, in basal conditions and/or after TGFß exposure, including Foxp3, Rorc, Runx1 and Maf. Interestingly, Tgfb1 expression was reduced in naive T cells from B27 rats, even premorbid, an observation consistent with a pro-inflammatory pattern. CONCLUSIONS: This study shows that HLA-B27 alters the TGFß pathways in Drosophila and B27 rat. Given the importance of this pathway in CD4 + T cells differentiation and regulation, its disturbance could contribute to the abnormal expansion of pro-inflammatory T helper 17 cells and altered regulatory T cell phenotype observed in B27 rats.


Assuntos
Animais Geneticamente Modificados , Antígeno HLA-B27 , Transdução de Sinais , Espondilartrite , Fator de Crescimento Transformador beta , Animais , Transdução de Sinais/fisiologia , Espondilartrite/metabolismo , Espondilartrite/imunologia , Humanos , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Antígeno HLA-B27/imunologia , Fator de Crescimento Transformador beta/metabolismo , Ratos , Drosophila , Drosophila melanogaster , Asas de Animais/metabolismo
12.
Elife ; 122024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39010741

RESUMO

Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5' leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5' leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.


Assuntos
Neuroglia , Biossíntese de Proteínas , Animais , Neuroglia/metabolismo , Neurônios/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Regulação da Expressão Gênica , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Encéfalo/citologia , Ribossomos/metabolismo , Drosophila/genética
13.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999947

RESUMO

Alcohol tolerance is a neuroadaptive response that leads to a reduction in the effects of alcohol caused by previous exposure. Tolerance plays a critical role in the development of alcohol use disorder (AUD) because it leads to the escalation of drinking and dependence. Understanding the molecular mechanisms underlying alcohol tolerance is therefore important for the development of effective therapeutics and for understanding addiction in general. This review explores the molecular basis of alcohol tolerance in invertebrate models, Drosophila and C. elegans, focusing on synaptic transmission. Both organisms exhibit biphasic responses to ethanol and develop tolerance similar to that of mammals. Furthermore, the availability of several genetic tools makes them a great candidate to study the molecular basis of ethanol response. Studies in invertebrate models show that tolerance involves conserved changes in the neurotransmitter systems, ion channels, and synaptic proteins. These neuroadaptive changes lead to a change in neuronal excitability, most likely to compensate for the enhanced inhibition by ethanol.


Assuntos
Caenorhabditis elegans , Etanol , Plasticidade Neuronal , Transmissão Sináptica , Animais , Plasticidade Neuronal/efeitos dos fármacos , Etanol/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Tolerância a Medicamentos , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Alcoolismo/metabolismo , Drosophila/fisiologia , Humanos , Invertebrados/fisiologia
14.
Methods Mol Biol ; 2805: 137-151, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008179

RESUMO

Transcription in developing metazoans is inherently stochastic, involving transient and dynamic interactions among transcriptional machinery. A fundamental challenge with traditional techniques, including fixed-tissue protein and RNA staining, is the lack of temporal resolution. Quantifying kinetic changes in transcription can elucidate underlying mechanisms of interaction among regulatory modules. In this protocol, we describe the successful implementation of a combination of MS2/MCP and PP7/PCP systems in living Drosophila embryos to further our understanding of transcriptional dynamics during development. Our technique can be extended to visualize transcriptional activities of multiple genes or alleles simultaneously, characterize allele-specific expression of a target gene, and quantitatively analyze RNA polymerase II activity in a single-cell resolution.


Assuntos
Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Desenvolvimento Embrionário/genética , RNA Polimerase II/metabolismo , RNA Polimerase II/genética , Embrião não Mamífero/metabolismo , Drosophila/embriologia , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Transcrição Gênica , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
15.
Methods Mol Biol ; 2805: 153-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008180

RESUMO

Microfluidic devices support developmental and mechanobiology studies by enabling the precise control of electrical, chemical, and mechanical stimuli at the microscale. Here, we describe the fabrication of customizable microfluidic devices and demonstrate their efficacy in applying mechanical loads to micro-organs and whole organisms, such as Drosophila embryos. The fabrication technique consists in the use of xurography to define channels and chambers using thin layers of thermoplastics and glass. The superposition of layers followed by thermal lamination produces robust and reproducible devices that are easily adapted for a variety of experiments. The integration of deformable layers and glass in these devices facilitates the imaging of cellular and molecular dynamics in biological specimens under mechanical loads. The method is highly adaptable for studies in mechanobiology.


Assuntos
Embrião não Mamífero , Dispositivos Lab-On-A-Chip , Animais , Drosophila/embriologia , Fenômenos Biomecânicos , Estresse Mecânico , Drosophila melanogaster/embriologia , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Desenho de Equipamento
16.
Biochem Biophys Res Commun ; 727: 150311, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950494

RESUMO

In human Alzheimer's disease (AD), the aggregation of tau protein is considered a significant hallmark, along with amyloid-beta. The formation of neurofibrillary tangles due to aberrant phosphorylation of tau disrupts microtubule stability, leading to neuronal toxicity, dysfunction, and subsequent cell death. Nesfatin-1 is a neuropeptide primarily known for regulating appetite and energy homeostasis. However, the function of Nesfatin-1 in a neuroprotective role has not been investigated. In this study, we aimed to elucidate the effect of Nesfatin-1 on tau pathology using the Drosophila model system. Our findings demonstrate that Nesfatin-1 effectively mitigates the pathological phenotypes observed in Drosophila human Tau overexpression models. Nesfatin-1 overexpression rescued the neurodegenerative phenotypes in the adult fly's eye and bristle. Additionally, Nesfatin-1 improved locomotive behavior, neuromuscular junction formation, and lifespan in the hTau AD model. Moreover, Nesfatin-1 controls tauopathy by reducing the protein level of hTau. Overall, this research highlights the potential therapeutic applications of Nesfatin-1 in ameliorating the pathological features associated with Alzheimer's disease.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Nucleobindinas , Proteínas tau , Animais , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Nucleobindinas/metabolismo , Nucleobindinas/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , Animais Geneticamente Modificados , Drosophila , Locomoção , Longevidade
17.
Yi Chuan ; 46(7): 560-569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016089

RESUMO

Genomic prediction has emerged as a pivotal technology for the genetic evaluation of livestock, crops, and for predicting human disease risks. However, classical genomic prediction methods face challenges in incorporating biological prior information such as the genetic regulation mechanisms of traits. This study introduces a novel approach that integrates mRNA transcript information to predict complex trait phenotypes. To evaluate the accuracy of the new method, we utilized a Drosophila population that is widely employed in quantitative genetics researches globally. Results indicate that integrating mRNA transcript data can significantly enhance the genomic prediction accuracy for certain traits, though it does not improve phenotype prediction accuracy for all traits. Compared with GBLUP, the prediction accuracy for olfactory response to dCarvone in male Drosophila increased from 0.256 to 0.274. Similarly, the accuracy for cafe in male Drosophila rose from 0.355 to 0.401. The prediction accuracy for survival_paraquat in male Drosophila is improved from 0.101 to 0.138. In female Drosophila, the accuracy of olfactory response to 1hexanol increased from 0.147 to 0.210. In conclusion, integrating mRNA transcripts can substantially improve genomic prediction accuracy of certain traits by up to 43%, with range of 7% to 43%. Furthermore, for some traits, considering interaction effects along with mRNA transcript integration can lead to even higher prediction accuracy.


Assuntos
Drosophila , Genômica , RNA Mensageiro , Animais , RNA Mensageiro/genética , Masculino , Genômica/métodos , Feminino , Drosophila/genética , Fenótipo
18.
Int J Dev Biol ; 68(2): 47-53, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39016373

RESUMO

Invertebrate and vertebrate species have many unusual cellular structures, such as long- or short-lived cell-in-cell structures and coenocytes. Coenocytes (often incorrectly described as syncytia) are multinuclear cells derived, unlike syncytia, not from the fusion of multiple cells but from multiple nuclear divisions without cytokinesis. An example of a somatic coenocyte is the coenocytic blastoderm in Drosophila. An astonishing property of coenocytes is the ability to differentiate the nuclei sharing a common cytoplasm into different subpopulations with different fate trajectories. An example of a germline coenocyte is the oogenic precursor of appendicularian tunicates, which shares many features with the somatic coenocyte of Drosophila. The germline coenocyte (coenocyst) is quite an unexpected structure because in most animals, including Drosophila, Xenopus, and mice, oogenesis proceeds within a group (cyst, nest) of sibling cells (cystocytes) connected by the intercellular bridges (ring canals, RCs) derived from multiple divisions with incomplete cytokinesis of a progenitor cell called the cystoblast. Here, I discuss the differences and similarities between cystocyte-based and coenocyst-based oogenesis, and the resemblance of coenocystic oogenesis to coenocytic somatic blastoderm in Drosophila. I also describe cell-in-cell structures that although not mechanistically, cytologically, or molecularly connected to somatic or germline coenocytes, are both unorthodox and intriguing cytological phenomena rarely covered by scientific literature.


Assuntos
Células Germinativas , Oogênese , Animais , Oogênese/fisiologia , Células Germinativas/citologia , Células Germinativas/fisiologia , Drosophila , Células Gigantes/citologia , Células Gigantes/metabolismo , Células Gigantes/fisiologia , Feminino , Camundongos , Citocinese/fisiologia
19.
Open Biol ; 14(7): 240043, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013417

RESUMO

Ewing sarcoma (EwS) is a cancer that arises in the bones and soft tissues, typically driven by the Ewing's sarcoma breakpoint region 1-Friend leukemia virus integration 1 (EWS-FLI) oncogene. Implementation of genetically modified animal models of EwS has proved difficult largely owing to EWS-FLI's high toxicity. The EWS-FLI1FS frameshift variant that circumvents toxicity but is still able to perform key oncogenic functions provided the first study model in Drosophila. However, the quest for Drosophila lines expressing full-length, unmodified EWS-FLI remained open. Here, we show that EWS-FLI1FS's lower toxicity is owed to reduced protein levels caused by its frameshifted C-terminal peptide, and report new strategies through which we have generated Drosophila lines that express full-length, unmodified EWS-FLI. Using these lines, we have found that the upregulation of transcription from GGAA-microsatellites (GGAAµSats) presents a positive linear correlation within a wide range of EWS-FLI protein concentrations. In contrast, rather counterintuitively, GGAAµSats-independent transcriptomic dysregulation presents relatively minor differences across the same range, suggesting that GGAAµSat-dependent and -independent transcriptional upregulation present different kinetics of response with regards to changing EWS-FLI protein concentration. Our results underpin the functional relevance of varying EWS-FLI expression levels and provide experimental tools to investigate, in Drosophila, the effect of the EWS-FLI 'high' and 'low' states that have been reported and are suspected to be important for EwS in humans.


Assuntos
Proteínas de Fusão Oncogênica , Proteína Proto-Oncogênica c-fli-1 , Proteína EWS de Ligação a RNA , Animais , Proteína EWS de Ligação a RNA/metabolismo , Proteína EWS de Ligação a RNA/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Humanos , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Animais Geneticamente Modificados , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
20.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39037431

RESUMO

The polarization of cells often involves the transport of specific mRNAs and their localized translation in distal projections. Neurons and glia are both known to contain long cytoplasmic processes, while localized transcripts have only been studied extensively in neurons, not glia, especially in intact nervous systems. Here, we predict 1,740 localized Drosophila glial transcripts by extrapolating from our meta-analysis of seven existing studies characterizing the localized transcriptomes and translatomes of synaptically associated mammalian glia. We demonstrate that the localization of mRNAs in mammalian glial projections strongly predicts the localization of their high-confidence Drosophila homologs in larval motor neuron-associated glial projections and are highly statistically enriched for genes associated with neurological diseases. We further show that some of these localized glial transcripts are specifically required in glia for structural plasticity at the nearby neuromuscular junction synapses. We conclude that peripheral glial mRNA localization is a common and conserved phenomenon and propose that it is likely to be functionally important in disease.


Assuntos
Neuroglia , Junção Neuromuscular , Plasticidade Neuronal , RNA Mensageiro , Animais , Neuroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plasticidade Neuronal/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/genética , Camundongos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neurônios Motores/metabolismo , Transcriptoma/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila/metabolismo , Drosophila/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA