Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.356
Filtrar
1.
Biochem Biophys Res Commun ; 717: 150047, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718569

RESUMO

TANGO2 deficiency disease (TDD) is a multisystem disease caused by variants in the TANGO2 gene. Symptoms include neurodevelopmental delays, seizures and potentially lethal metabolic crises and cardiac arrhythmias. While the function of TANGO2 remains elusive, vitamin B5/pantothenic acid supplementation has been shown to alleviate symptoms in a fruit fly model and has also been used with success to treat individuals suffering from TDD. Since vitamin B5 is the precursor to the lipid activator coenzyme A (CoA), we hypothesized that TANGO2-deficient cells would display changes in the lipid profile compared to control and that these changes would be rescued by vitamin B5 supplementation. In addition, the specific changes seen might point to a pathway in which TANGO2 functions. Indeed, we found profound changes in the lipid profile of human TANGO2-deficient cells as well as an increased pool of free fatty acids in both human cells devoid of TANGO2 and Drosophila harboring a previously described TANGO2 loss of function allele. All these changes were reversed upon vitamin B5 supplementation. Pathway analysis showed significant increases in triglyceride as well as in lysophospholipid levels as the top enriched pathways in the absence of TANGO2. Consistent with a defect in triglyceride metabolism, we found changes in lipid droplet numbers and sizes in the absence of TANGO2 compared to control. Our data will allow for comparison between other model systems of TDD and the homing in on critical lipid imbalances that lead to the disease state.


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Humanos , Animais , Lipidômica/métodos , Triglicerídeos/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Linhagem Celular , Lipídeos , Drosophila/metabolismo
2.
Sci Adv ; 10(18): eadn5861, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701218

RESUMO

Enzymes of the ten-eleven translocation (TET) family play a key role in the regulation of gene expression by oxidizing 5-methylcytosine (5mC), a prominent epigenetic mark in many species. Yet, TET proteins also have less characterized noncanonical modes of action, notably in Drosophila, whose genome is devoid of 5mC. Here, we show that Drosophila TET activates the expression of genes required for larval central nervous system (CNS) development mainly in a catalytic-independent manner. Genome-wide profiling shows that TET is recruited to enhancer and promoter regions bound by Polycomb group complex (PcG) proteins. We found that TET interacts and colocalizes on chromatin preferentially with Polycomb repressor complex 1 (PRC1) rather than PRC2. Furthermore, PRC1 but not PRC2 is required for the activation of TET target genes. Last, our results suggest that TET and PRC1 binding to activated genes is interdependent. These data highlight the importance of TET noncatalytic function and the role of PRC1 for gene activation in the Drosophila larval CNS.


Assuntos
Proteínas de Drosophila , Complexo Repressor Polycomb 1 , Animais , Sistema Nervoso Central/metabolismo , Cromatina/metabolismo , Cromatina/genética , Drosophila/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Larva/genética , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 1/genética , Regiões Promotoras Genéticas , Ligação Proteica
3.
Development ; 151(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738602

RESUMO

Visual circuit development is characterized by subdivision of neuropils into layers that house distinct sets of synaptic connections. We find that, in the Drosophila medulla, this layered organization depends on the axon guidance regulator Plexin A. In Plexin A null mutants, synaptic layers of the medulla neuropil and arborizations of individual neurons are wider and less distinct than in controls. Analysis of semaphorin function indicates that Semaphorin 1a, acting in a subset of medulla neurons, is the primary partner for Plexin A in medulla lamination. Removal of the cytoplasmic domain of endogenous Plexin A has little effect on the formation of medulla layers; however, both null and cytoplasmic domain deletion mutations of Plexin A result in an altered overall shape of the medulla neuropil. These data suggest that Plexin A acts as a receptor to mediate morphogenesis of the medulla neuropil, and as a ligand for Semaphorin 1a to subdivide it into layers. Its two independent functions illustrate how a few guidance molecules can organize complex brain structures by each playing multiple roles.


Assuntos
Proteínas de Drosophila , Morfogênese , Proteínas do Tecido Nervoso , Neurópilo , Lobo Óptico de Animais não Mamíferos , Receptores de Superfície Celular , Semaforinas , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Semaforinas/metabolismo , Semaforinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Morfogênese/genética , Neurópilo/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/embriologia , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/embriologia , Neurônios/metabolismo , Drosophila/metabolismo , Drosophila/embriologia , Mutação/genética
4.
Commun Biol ; 7(1): 533, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710747

RESUMO

Insect wing development is a fascinating and intricate process that involves the regulation of wing size through cell proliferation and apoptosis. In this study, we find that Ter94, an AAA-ATPase, is essential for proper wing size dependently on its ATPase activity. Loss of Ter94 enables the suppression of Hippo target genes. When Ter94 is depleted, it results in reduced wing size and increased apoptosis, which can be rescued by inhibiting the Hippo pathway. Biochemical experiments reveal that Ter94 reciprocally binds to Mer, a critical upstream component of the Hippo pathway, and disrupts its interaction with Ex and Kib. This disruption prevents the formation of the Ex-Mer-Kib complex, ultimately leading to the inactivation of the Hippo pathway and promoting proper wing development. Finally, we show that hVCP, the human homolog of Ter94, is able to substitute for Ter94 in modulating Drosophila wing size, underscoring their functional conservation. In conclusion, Ter94 plays a positive role in regulating wing size by interfering with the Ex-Mer-Kib complex, which results in the suppression of the Hippo pathway.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas de Membrana , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Supressoras de Tumor , Asas de Animais , Animais , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/genética , Apoptose , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neurofibromina 2/metabolismo , Neurofibromina 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
5.
Cell Death Dis ; 15(5): 333, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740758

RESUMO

Precise polyamine metabolism regulation is vital for cells and organisms. Mutations in spermine synthase (SMS) cause Snyder-Robinson intellectual disability syndrome (SRS), characterized by significant spermidine accumulation and autophagy blockage in the nervous system. Emerging evidence connects polyamine metabolism with other autophagy-related diseases, such as Tauopathy, however, the functional intersection between polyamine metabolism and autophagy in the context of these diseases remains unclear. Here, we altered SMS expression level to investigate the regulation of autophagy by modulated polyamine metabolism in Tauopathy in Drosophila and human cellular models. Interestingly, while complete loss of Drosophila spermine synthase (dSms) impairs lysosomal function and blocks autophagic flux recapitulating SRS disease phenotype, partial loss of dSms enhanced autophagic flux, reduced Tau protein accumulation, and led to extended lifespan and improved climbing performance in Tauopathy flies. Measurement of polyamine levels detected a mild elevation of spermidine in flies with partial loss of dSms. Similarly, in human neuronal or glial cells, partial loss of SMS by siRNA-mediated knockdown upregulated autophagic flux and reduced Tau protein accumulation. Importantly, proteomics analysis of postmortem brain tissue from Alzheimer's disease (AD) patients showed a significant albeit modest elevation of SMS level. Taken together, our study uncovers a functional correlation between polyamine metabolism and autophagy in AD: SMS reduction upregulates autophagy, suppresses Tau accumulation, and ameliorates neurodegeneration and cell death. These findings provide a new potential therapeutic target for AD.


Assuntos
Autofagia , Espermina Sintase , Proteínas tau , Animais , Proteínas tau/metabolismo , Humanos , Espermina Sintase/metabolismo , Espermina Sintase/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Tauopatias/metabolismo , Tauopatias/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/genética , Espermidina/metabolismo , Modelos Animais de Doenças , Lisossomos/metabolismo , Drosophila/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X
6.
Proc Natl Acad Sci U S A ; 121(21): e2322501121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748578

RESUMO

Biological regulation often depends on reversible reactions such as phosphorylation, acylation, methylation, and glycosylation, but rarely halogenation. A notable exception is the iodination and deiodination of thyroid hormones. Here, we report detection of bromotyrosine and its subsequent debromination during Drosophila spermatogenesis. Bromotyrosine is not evident when Drosophila express a native flavin-dependent dehalogenase that is homologous to the enzyme responsible for iodide salvage from iodotyrosine in mammals. Deletion or suppression of the dehalogenase-encoding condet (cdt) gene in Drosophila allows bromotyrosine to accumulate with no detectable chloro- or iodotyrosine. The presence of bromotyrosine in the cdt mutant males disrupts sperm individualization and results in decreased fertility. Transgenic expression of the cdt gene in late-staged germ cells rescues this defect and enhances tolerance of male flies to bromotyrosine. These results are consistent with reversible halogenation affecting Drosophila spermatogenesis in a process that had previously eluded metabolomic, proteomic, and genomic analyses.


Assuntos
Proteínas de Drosophila , Fertilidade , Espermatogênese , Tirosina , Animais , Masculino , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Tirosina/metabolismo , Tirosina/análogos & derivados , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Drosophila/genética , Drosophila/metabolismo , Animais Geneticamente Modificados , Hidrolases/metabolismo , Hidrolases/genética
7.
PLoS Biol ; 22(5): e3002299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38713712

RESUMO

Activation of immune cells requires the remodeling of cell metabolism in order to support immune function. We study these metabolic changes through the infection of Drosophila larvae by parasitoid wasp. The parasitoid egg is neutralized by differentiating lamellocytes, which encapsulate the egg. A melanization cascade is initiated, producing toxic molecules to destroy the egg while the capsule also protects the host from the toxic reaction. We combined transcriptomics and metabolomics, including 13C-labeled glucose and trehalose tracing, as well as genetic manipulation of sugar metabolism to study changes in metabolism, specifically in Drosophila hemocytes. We found that hemocytes increase the expression of several carbohydrate transporters and accordingly uptake more sugar during infection. These carbohydrates are metabolized by increased glycolysis, associated with lactate production, and cyclic pentose phosphate pathway (PPP), in which glucose-6-phosphate is re-oxidized to maximize NADPH yield. Oxidative PPP is required for lamellocyte differentiation and resistance, as is systemic trehalose metabolism. In addition, fully differentiated lamellocytes use a cytoplasmic form of trehalase to cleave trehalose to glucose and fuel cyclic PPP. Intracellular trehalose metabolism is not required for lamellocyte differentiation, but its down-regulation elevates levels of reactive oxygen species, associated with increased resistance and reduced fitness. Our results suggest that sugar metabolism, and specifically cyclic PPP, within immune cells is important not only to fight infection but also to protect the host from its own immune response and for ensuring fitness of the survivor.


Assuntos
Glucose , Hemócitos , Via de Pentose Fosfato , Trealose , Animais , Trealose/metabolismo , Glucose/metabolismo , Hemócitos/metabolismo , Larva/metabolismo , Larva/parasitologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/parasitologia , Resistência à Doença , Glicólise , Interações Hospedeiro-Parasita , Vespas/metabolismo , Vespas/fisiologia , Diferenciação Celular , Drosophila/metabolismo , Drosophila/parasitologia
8.
Fly (Austin) ; 18(1): 2352938, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38741287

RESUMO

To identify genes required for brain growth, we took an RNAi knockdown reverse genetic approach in Drosophila. One potential candidate isolated from this effort is the anti-lipogenic gene adipose (adp). Adp has an established role in the negative regulation of lipogenesis in the fat body of the fly and adipose tissue in mammals. While fat is key to proper development in general, adp has not been investigated during brain development. Here, we found that RNAi knockdown of adp in neuronal stem cells and neurons results in reduced brain lobe volume and sought to replicate this with a mutant fly. We generated a novel adp mutant that acts as a loss-of-function mutant based on buoyancy assay results. We found that despite a change in fat content in the body overall and a decrease in the number of larger (>5 µm) brain lipid droplets, there was no change in the brain lobe volume of mutant larvae. Overall, our work describes a novel adp mutant that can functionally replace the long-standing adp60 mutant and shows that the adp gene has no obvious involvement in brain growth.


Assuntos
Encéfalo , Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Mutação com Perda de Função , Interferência de RNA , Neurônios/metabolismo , Larva/crescimento & desenvolvimento , Larva/genética , Larva/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Drosophila/genética , Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Mutação
9.
Cells ; 13(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38727282

RESUMO

Impaired neuronal plasticity and cognitive decline are cardinal features of Alzheimer's disease and related Tauopathies. Aberrantly modified Tau protein and neurotransmitter imbalance, predominantly involving acetylcholine, have been linked to these symptoms. In Drosophila, we have shown that dTau loss specifically enhances associative long-term olfactory memory, impairs foot shock habituation, and deregulates proteins involved in the regulation of neurotransmitter levels, particularly acetylcholine. Interestingly, upon choline treatment, the habituation and memory performance of mutants are restored to that of control flies. Based on these surprising results, we decided to use our well-established genetic model to understand how habituation deficits and memory performance correlate with different aspects of choline physiology as an essential component of the neurotransmitter acetylcholine, the lipid phosphatidylcholine, and the osmoregulator betaine. The results revealed that the two observed phenotypes are reversed by different choline metabolites, implying that they are governed by different underlying mechanisms. This work can contribute to a broader knowledge about the physiologic function of Tau, which may be translated into understanding the mechanisms of Tauopathies.


Assuntos
Colina , Proteínas de Drosophila , Memória , Proteínas tau , Animais , Colina/metabolismo , Proteínas tau/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Habituação Psicofisiológica , Drosophila melanogaster/metabolismo , Drosophila/metabolismo , Acetilcolina/metabolismo
10.
Epigenetics Chromatin ; 17(1): 17, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773468

RESUMO

BACKGROUND: Insulator-binding proteins (IBPs) play a critical role in genome architecture by forming and maintaining contact domains. While the involvement of several IBPs in organising chromatin architecture in Drosophila has been described, the specific contribution of the Suppressor of Hairy wings (Su(Hw)) insulator-binding protein to genome topology remains unclear. RESULTS: In this study, we provide evidence for the existence of long-range interactions between chromatin bound Su(Hw) and Combgap, which was first characterised as Polycomb response elements binding protein. Loss of Su(Hw) binding to chromatin results in the disappearance of Su(Hw)-Combgap long-range interactions and in a decrease in spatial self-interactions among a subset of Su(Hw)-bound genome sites. Our findings suggest that Su(Hw)-Combgap long-range interactions are associated with active chromatin rather than Polycomb-directed repression. Furthermore, we observe that the majority of transcription start sites that are down-regulated upon loss of Su(Hw) binding to chromatin are located within 2 kb of Combgap peaks and exhibit Su(Hw)-dependent changes in Combgap and transcriptional regulators' binding. CONCLUSIONS: This study demonstrates that Su(Hw) insulator binding protein can form long-range interactions with Combgap, Polycomb response elements binding protein, and that these interactions are associated with active chromatin factors rather than with Polycomb dependent repression.


Assuntos
Cromatina , Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cromatina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Ligação Proteica , Proteínas de Ligação a DNA/metabolismo , Sítio de Iniciação de Transcrição , Proteínas do Grupo Polycomb/metabolismo , Drosophila/metabolismo
11.
Elife ; 122024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569007

RESUMO

The ability to independently control gene expression in two different tissues in the same animal is emerging as a major need, especially in the context of inter-organ communication studies. This type of study is made possible by technologies combining the GAL4/UAS and a second binary expression system such as the LexA system or QF system. Here, we describe a resource of reagents that facilitate combined use of the GAL4/UAS and a second binary system in various Drosophila tissues. Focusing on genes with well-characterized GAL4 expression patterns, we generated a set of more than 40 LexA-GAD and QF2 insertions by CRISPR knock-in and verified their tissue specificity in larvae. We also built constructs that encode QF2 and LexA-GAD transcription factors in a single vector. Following successful integration of this construct into the fly genome, FLP/FRT recombination is used to isolate fly lines that express only QF2 or LexA-GAD. Finally, using new compatible shRNA vectors, we evaluated both LexA and QF systems for in vivo gene knockdown and are generating a library of such RNAi fly lines as a community resource. Together, these LexA and QF system vectors and fly lines will provide a new set of tools for researchers who need to activate or repress two different genes in an orthogonal manner in the same animal.


In order for researchers to understand how organisms develop and function, they often switch specific genes on or off in certain tissues or at selected times. This can be achieved using genetic tools called binary expression systems. In the fruit fly ­ a popular organism for studying biological processes ­ the most common is the GAL4/UAS system. In this system, a protein called GAL4 is expressed in a specific organ or tissue where it activates a UAS element ­ a genetic sequence that is inserted in front of the gene that is to be switched on. This can also include genes inserted into the fruit fly encoding fluorescent proteins or stretches of DNA coding for factors that can silence specific genes. For example, fruit flies expressing GAL4 protein specifically in nerve cells and a UAS element in front of a gene for a fluorescent protein will display fluorescent nerve cells, which can then be examined using fluorescence microscopy. Studying how organs communicate with one other can require controlled expression of multiple genes at the same time. In fruit flies, other binary expression systems that are analogous to the GAL4/UAS system (known as LexA/LexAop and QF/QUAS) can be used in tandem. For example, to study gut-brain communication, the GAL4/UAS system might be used to switch on the gene for an insulin-like protein in the gut, with one of the other systems controlling the expression of its corresponding receptor in the brain. However, these experiments are currently difficult because, while there are thousands of GAL4/UAS genetic lines, there are only a few LexA/LexAop and QF/QUAS genetic lines. To address this lack of resources, Zirin et al. produced a range of genetically engineered fruit flies containing the LexA/LexAop and QF/QUAS binary expression systems. The flies expressed LexA or QF in each of the major fly organs, including the brain, heart, muscles, and gut. A fluorescent reporter gene linked to the LexAop or QUAS elements, respectively, was then used to test the specificity to single organs and compare the different systems. In some organs the LexA/LexAop system was more reliable than the QF/QUAS system. However, both systems could be successfully combined with genetic elements to switch on a fluorescent reporter gene or switch off a gene of interest in the intended organ. The resources developed by Zirin et al. expand the toolkit for studying fruit fly biology. In future, it will be important to understand the differences between GAL4, LexA and QF systems, and to increase the number of fruit fly lines containing the newer binary expression systems.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Expressão Gênica , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animais Geneticamente Modificados/metabolismo
12.
J Cell Biol ; 223(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558237

RESUMO

The p24 family of proteins have been regarded as cargo receptors for endoplasmic reticulum (ER) to Golgi transport; however, their precise functions have yet to be revealed. In this issue, Pastor-Pareja and colleagues (https://doi.org/10.1083/jcb.202309045) show that the interaction of these proteins with Tango1 is critical for their localization at the ER exit site (ERES) and efficient transport of secretory proteins in Drosophila.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Drosophila , Retículo Endoplasmático , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Drosophila/citologia , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
13.
PLoS One ; 19(4): e0302240, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625910

RESUMO

CO2 anesthesia is the most common method for immobilizing Drosophila for research purposes. But CO2 exposure has consequences-it can impact fertility, behavior, morphogenesis, and cytoskeletal dynamics. In this respect, Drosophila is an outstanding model for studying the impact of CO2 exposure on tissues. In this study we explored the response of intracellular pH (pHi) to a one-minute CO2 pulse using a genetically encoded, ubiquitously expressed pH sensor, tpHusion, to monitor pHi within a live, intact, whole fly. We compared wild-type flies to flies lacking Imaginal disc growth factors (Idgfs), which are chitinase-like proteins that facilitate developmental processes and the innate immune response. Morphogenetic and cytoskeletal defects in Idgf-null flies are enhanced after CO2 exposure. We found that pHi drops sharply within seconds of the beginning of a CO2 pulse and recovers over several minutes. The initial profile was nearly identical in control and Idgf-null flies but diverged as the pHi returned to normal. This study demonstrates the feasibility of monitoring pH in live adult Drosophila. Studies exploring pH homeostasis are important for understanding human pathologies associated with pH dysregulation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Drosophila/metabolismo , Dióxido de Carbono , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Concentração de Íons de Hidrogênio , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo
14.
PLoS Biol ; 22(4): e3002572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603542

RESUMO

The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.


Assuntos
Relógios Circadianos , Proteínas de Drosophila , Humanos , Animais , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/genética , Drosophila/metabolismo , Relógios Circadianos/genética , Atividade Motora , Drosophila melanogaster/metabolismo
15.
Genesis ; 62(2): e23600, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665068

RESUMO

Transgenic tools such as the GAL4/UAS system in Drosophila have been used extensively to induce spatiotemporally controlled changes in gene expression and tissue-specific expression of a range of transgenes. We previously discovered unexpected expression of the commonly used dilp2-GAL4 line in tracheal tissue which significantly impacted growth phenotypes. We realized that few GAL4 lines have been thoroughly characterized, particularly when considering transient activity that may have significant impact on phenotypic readouts. Here, we characterized a further subset of 12 reportedly tissue-specific GAL4 lines commonly used in genetic studies of development, growth, endocrine regulation, and metabolism. Ten out of 12 GAL4 lines exhibited ectopic activity in other larval tissues, with seven being active in the larval trachea. Since this ectopic activity may result in phenotypes that do not depend on the manipulation in the intended target tissue, it is recommended to carefully analyze the outcome while taking this aspect into consideration.


Assuntos
Animais Geneticamente Modificados , Proteínas de Drosophila , Expressão Ectópica do Gene , Fatores de Transcrição , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Expressão Ectópica do Gene/genética , Drosophila melanogaster/genética , Transgenes , Larva/genética , Larva/metabolismo , Larva/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Traqueia/metabolismo , Drosophila/genética , Drosophila/metabolismo
16.
Nat Commun ; 15(1): 3326, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637532

RESUMO

Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of neurons, suggesting a non-nuclear function of CDK19/Cdk8. Here we show that Cdk8 plays a critical role in the cytoplasm, with its loss causing elongated mitochondria in both muscles and neurons. We find that endogenous GFP-tagged Cdk8 can be found in both the cytoplasm and nucleus. We show that Cdk8 promotes the phosphorylation of Drp1 at S616, a protein required for mitochondrial fission. Interestingly, Pink1, a mitochondrial kinase implicated in Parkinson's disease, also phosphorylates Drp1 at the same residue. Indeed, overexpression of Cdk8 significantly suppresses the phenotypes observed in flies with low levels of Pink1, including elevated levels of ROS, mitochondrial dysmorphology, and behavioral defects. In summary, we propose that Pink1 and Cdk8 perform similar functions to promote Drp1-mediated fission.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Humanos , Fosforilação , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dinâmica Mitocondrial/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo
17.
Sci Rep ; 14(1): 9110, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643298

RESUMO

Critical periods are temporally-restricted, early-life windows when sensory experience remodels synaptic connectivity to optimize environmental input. In the Drosophila juvenile brain, critical period experience drives synapse elimination, which is transiently reversible. Within olfactory sensory neuron (OSN) classes synapsing onto single projection neurons extending to brain learning/memory centers, we find glia mediate experience-dependent pruning of OSN synaptic glomeruli downstream of critical period odorant exposure. We find glial projections infiltrate brain neuropil in response to critical period experience, and use Draper (MEGF10) engulfment receptors to prune synaptic glomeruli. Downstream, we find antagonistic Basket (JNK) and Puckered (DUSP) signaling is required for the experience-dependent translocation of activated Basket into glial nuclei. Dependent on this signaling, we find critical period experience drives expression of the F-actin linking signaling scaffold Cheerio (FLNA), which is absolutely essential for the synaptic glomeruli pruning. We find Cheerio mediates experience-dependent regulation of the glial F-actin cytoskeleton for critical period remodeling. These results define a sequential pathway for experience-dependent brain synaptic glomeruli pruning in a strictly-defined critical period; input experience drives neuropil infiltration of glial projections, Draper/MEGF10 receptors activate a Basket/JNK signaling cascade for transcriptional activation, and Cheerio/FLNA induction regulates the glial actin cytoskeleton to mediate targeted synapse phagocytosis.


Assuntos
Proteínas de Drosophila , Neurônios Receptores Olfatórios , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Transdução de Sinais , Encéfalo/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Neuroglia/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(15): e2321338121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568969

RESUMO

To address the contribution of transcriptional regulation to Drosophila clock gene expression and to behavior, we generated a series of CRISPR-mediated deletions within two regions of the circadian gene timeless (tim), an intronic E-box region and an upstream E-box region that are both recognized by the key transcription factor Clock (Clk) and its heterodimeric partner Cycle. The upstream deletions but not an intronic deletion dramatically impact tim expression in fly heads; the biggest upstream deletion reduces peak RNA levels and tim RNA cycling amplitude to about 15% of normal, and there are similar effects on tim protein (TIM). The cycling amplitude of other clock genes is also strongly reduced, in these cases due to increases in trough levels. These data underscore the important contribution of the upstream E-box enhancer region to tim expression and of TIM to clock gene transcriptional repression in fly heads. Surprisingly, tim expression in clock neurons is only modestly affected by the biggest upstream deletion and is similarly affected by a deletion of the intronic E-box region. This distinction between clock neurons and glia is paralleled by a dramatically enhanced accessibility of the intronic enhancer region within clock neurons. This distinctive feature of tim chromatin was revealed by ATAC-seq (assay for transposase-accessible chromatin with sequencing) assays of purified neurons and glia as well as of fly heads. The enhanced cell type-specific accessibility of the intronic enhancer region explains the resilience of clock neuron tim expression and circadian behavior to deletion of the otherwise more prominent upstream tim E-box region.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Cromatina/metabolismo , Ritmo Circadiano/genética , Proteínas CLOCK/genética , DNA/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , RNA/metabolismo
19.
Nat Commun ; 15(1): 3000, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589403

RESUMO

Actomyosin networks constrict cell area and junctions to alter cell and tissue shape. However, during cell expansion under mechanical stress, actomyosin networks are strengthened and polarized to relax stress. Thus, cells face a conflicting situation between the enhanced actomyosin contractile properties and the expansion behaviour of the cell or tissue. To address this paradoxical situation, we study late Drosophila oogenesis and reveal an unusual epithelial expansion wave behaviour. Mechanistically, Rac1 and Rho1 integrate basal pulsatile actomyosin networks with ruffles and focal adhesions to increase and then stabilize basal area of epithelial cells allowing their flattening and elongation. This epithelial expansion behaviour bridges cell changes to oocyte growth and extension, while oocyte growth in turn deforms the epithelium to drive cell spreading. Basal pulsatile actomyosin networks exhibit non-contractile mechanics, non-linear structures and F-actin/Myosin-II spatiotemporal signal separation, implicating unreported expanding properties. Biophysical modelling incorporating these expanding properties well simulates epithelial cell expansion waves. Our work thus highlights actomyosin expanding properties as a key mechanism driving tissue morphogenesis.


Assuntos
Actomiosina , Proteínas de Drosophila , Animais , Actomiosina/metabolismo , Proteínas de Drosophila/metabolismo , Células Epiteliais/metabolismo , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo , Epitélio/metabolismo , Morfogênese
20.
Cells ; 13(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38607052

RESUMO

Transcription factors (TFs) regulate gene expression by recognizing specific target enhancers in the genome. The DNA-binding and regulatory activity of TFs depend on the presence of additional protein partners, leading to the formation of versatile and dynamic multimeric protein complexes. Visualizing these protein-protein interactions (PPIs) in the nucleus is key for decrypting the molecular cues underlying TF specificity in vivo. Over the last few years, Bimolecular Fluorescence Complementation (BiFC) has been developed in several model systems and applied in the analysis of different types of PPIs. In particular, BiFC has been applied when analyzing PPIs with hundreds of TFs in the nucleus of live Drosophila embryos. However, the visualization of PPIs at the level of specific target enhancers or genomic regions of interest awaits the advent of DNA-labelling methods that can be coupled with BiFC. Here, we present a novel experimental strategy that we have called BiFOR and that is based on the coupling of BiFC with the bacterial ANCHOR DNA-labelling system. We demonstrate that BiFOR enables the precise quantification of the enrichment of specific dimeric protein complexes on target enhancers in Drosophila salivary gland nuclei. Given its versatility and sensitivity, BiFOR could be applied more widely to other tissues during Drosophila development. Our work sets up the experimental basis for future applications of this strategy.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Microscopia de Fluorescência/métodos , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , DNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...