Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.569
Filtrar
1.
F1000Res ; 82019.
Artigo em Inglês | MEDLINE | ID: mdl-31583078

RESUMO

Complex mechanisms control the signaling of neurotrophins through p75 NTR and Trk receptors, allowing cellular responses that are highly context dependent, particularly in the nervous system and particularly with regard to the neurotrophin brain-derived neurotrophic factor (BDNF). Recent reports describe a variety of sophisticated regulatory mechanisms that contribute to such functional flexibility. Mechanisms described include regulation of trafficking of alternative BDNF transcripts, regulation of post-translational processing and secretion of BDNF, engagement of co-receptors that influence localization and signaling of p75 NTR and Trk receptors, and control of trafficking of receptors in the endocytic pathway and during anterograde and retrograde axonal transport.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Transdução de Sinais , Transporte Axonal , Endocitose , Humanos , Proteínas do Tecido Nervoso/farmacologia , Processamento de Proteína Pós-Traducional , Receptores de Fator de Crescimento Neural/fisiologia
2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 51(5): 893-899, 2019 Oct 18.
Artigo em Chinês | MEDLINE | ID: mdl-31624395

RESUMO

OBJECTIVE: To evaluate the change of cell surface CXC chemokine receptor 4 (CXCR4) expression of stem cells from apical papilla (SCAP) after the inhibition of endocytotic pathway, thus to provide experimental basis for the mechanism of SCAP migration. METHODS: The immunofluorescence analysis was conducted to examine the co-expression of CXCR4 and endocytotic compartments, including early endosomes, recycling endosomes and lysosomes in SCAP. Several Rab proteins were applied as markers of organelles in the endocytotic pathway, including Rab5 for early endosomes, Rab11A for recycling endosomes, and Lamp1 for lysosomes. The co-localization of CXCR4 with these endodontic compartments was further observed by proximity ligation assay (PLA). SCAP was treated with two kinds of endocytotic inhibitors, Blebbistatin and Dynasore, at a concentration of 80 µmol/L, respectively. The conditioning time was 1 hour. Flow cytometry was carried out to evaluate the proportion of SCAP that expressed CXCR4 on cell surface. The data were analysed by analysis of variance (ANOVA). RESULTS: The red staining of CXCR4 on immunofluorescence confocal microscopy predominantly overlapped with the green staining of Rab5 and Rab11A, and partly overlapped with Lamp1. It indicated that most CXCR4 molecules were located in early endosomes and recycling endosomes, and some were located in lysosomes. The PLA results revealed that the co-localizaiton of CXCR4 with endocytotic compartments could be observed in early endosomes, recycling endosomes and lysosomes. According to the results of flow cytometry, the proportion of SCAP that expressed CXCR4 on cell surface was as low as 0.13%±0.10%. After the inhibition of endocytosis by pretreating the cells with the following two inhibitors, Blebbistatin and Dynasore, the percentage of SCAP that positively expressed CXCR4 on cell surface was significantly increased to 13.34%±1.31% in Blebbistatin group and 4.03%±0.92% in Dynasore group (F=16.721, P<0.001). Moreover, the number of SCAP that expressed CXCR4 on cell surface in Blebbistatin group was significantly higher than that in Dynasore group (P<0.001). CONCLUSION: The inhibition of endocytotic pathway could increase the number of SCAP that expressed CXCR4 on cell surface, and provide potency for the migration of SCAP.


Assuntos
Endocitose , Receptores CXCR4 , Endossomos , Lisossomos , Células-Tronco
3.
Int J Nanomedicine ; 14: 4413-4428, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417252

RESUMO

Background: As part of our continuing quest to enhance the efficacy of bioactive phytochemicals in cancer therapy, we report an innovative green nanotechnology approach toward the use of resveratrol for the production of biocompatible resveratrol-conjugated gold nanoparticles (Res-AuNPs). Our overarching aim is to exploit the inherent pro-apoptotic properties of gold nanoparticles (AuNPs) through synergistic anti-tumor characteristics of resveratrol, with the aim of developing a new class of green nanotechnology-based phytochemical-embedded AuNPs for applications in oncology. Method: Resveratrol was used to reduce Au3+ to Au0 for the synthesis of Res-AuNPs at room temperature and gum arabic (GA) was used to further encapsulate the nanoparticulate surface to increase the overall stability of the AuNPs. This comprehensive study involves the synthesis, full characterization and in vitro stability of Res-AuNPs in various biological media for their ultimate applications as anti-cancer agents against human breast (MDAMB-231), pancreatic (PANC-1) and prostate (PC-3) cancers. Results: This strategy to systematically increase the corona of resveratrol on AuNPs, in order to gain insights into the interrelationship of the phytochemical corona on the overall anti-tumor activities of Res-AuNPs, proved successful. The increased resveratrol corona on Res-AuNPs showed superior anti-cancer effects, attributed to an optimal cellular uptake after 24-hour incubation, while GA provided a protein matrix support for enhanced trans-resveratrol loading onto the surface of the AuNPs. Conclusion: The approach described in this study harnesses the benefits of nutraceuticals and nanoparticles toward the development of Res-AuNPs. We provide compelling evidence that the increased corona of resveratrol on AuNPs enhances the bioavailability of resveratrol so that therapeutically active species can be optimally available in vivo for applications in cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Ouro/química , Nanopartículas Metálicas/química , Neoplasias Pancreáticas/patologia , Neoplasias da Próstata/patologia , Resveratrol/farmacologia , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Endocitose , Feminino , Humanos , Concentração Inibidora 50 , Masculino , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Polifenóis/química , Polifenóis/farmacologia , Resveratrol/química , Espectrofotometria Ultravioleta , Resultado do Tratamento
4.
Int J Nanomedicine ; 14: 6135-6150, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447556

RESUMO

Background: Nanostructured lipid carriers (NLCs) are emerging as attractive drug carriers in transdermal drug delivery. The surface modification of NLCs with cell-penetrating peptides (CPPs) can enhance the skin permeation of drugs. Purpose: The objective of the current study was to evaluate the ability of the cell-penetrating peptide (CPP) polyarginine to translocate NLCs loaded with lornoxicam (LN) into the skin layers and to evaluate its anti-inflammatory effect. Methods: The NLCs were prepared using an emulsion evaporation and low temperature solidification technique using glyceryl monostearates, triglycerides, DOGS-NTA-Ni lipids and surfactants, and then six histidine-tagged polyarginine containing 11 arginine (R11) peptides was modified on the surface of NLCs. Results: The developed NLCs formulated with LN and R11 (LN-NLC-R11) were incorporated into 2% HPMC gels. NLCs were prepared with a particle size of (121.81±3.61)-(145.72±4.78) nm, and the zeta potential decreased from (-30.30±2.07) to (-14.66±0.74) mV after the modification of R11 peptides. The encapsulation efficiency and drug loading were (74.61±1.13) % and (7.92±0.33) %, respectively, regardless of the surface modification. Cellular uptake assays using HaCaT cells suggested that the NLC modified with R11 (0.02%, w/w) significantly enhanced the cell internalization of nanoparticles relative to unmodified NLCs (P<0.05 or P<0.01). An in vitro skin permeation study showed better permeation-enhancing ability of R11 (0.02%, w/w) than that of other content (0.01% or 0.04%). In carrageenan-induced rat paw edema models, LN-NLC-R11 gels inhibited rat paw edema and the production of inflammatory cytokines compared with LN-NLC gels and LN gels (P<0.01). Conclusion: In our investigation, it was strongly demonstrated that the surface modification of NLC with R11 enhanced the translocation of LN across the skin, thereby alleviating inflammation.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Edema/tratamento farmacológico , Lipídeos/química , Nanoestruturas/química , Peptídeos/farmacologia , Piroxicam/análogos & derivados , Administração Cutânea , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Carragenina , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Edema/induzido quimicamente , Edema/metabolismo , Emulsões/química , Endocitose/efeitos dos fármacos , Géis/química , Humanos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/ultraestrutura , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Piroxicam/administração & dosagem , Piroxicam/farmacologia , Piroxicam/uso terapêutico , Coelhos , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos , Testes de Irritação da Pele
5.
Chem Biol Interact ; 311: 108774, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31369748

RESUMO

Silica nanoparticles (SiNPs) are one of the popular nanomaterials used in industrial manufacturing, synthesis, engineering, and medicine. Recently, mechanisms underlying toxicity of silica nanoparticles have been reported; however, their uptake mechanisms have still not fully understood. In this study, toxicity of SiNPs was investigated in the nematode Caenohabditis elegans by using microarray and pathway analysis focusing the uptake mechanisms and their impact on toxicity. Physicochemical characterization of SiNPs was performed using dynamic light scattering (DLS) and zeta potential. No mortality was observed after 24 h exposure to SiNPs. However, reproductive ability was significantly reduced at the same concentrations. To ascertain a global mechanism of toxicity, microarray was conducted on C. elegans exposed to 10 mg/L SiNPs (20% reduction in reproductive ability). Microarray results indicated that genes involved in reproduction, such as msp (Major Sperm Protein) genes, were significantly downregulated in C. elegans exposed to SiNPs. Pathway analyses on differentially expressed genes (DEGs) revealed that endocytic pathway as a major pathway involved in the uptake of SiNPs. Involvement of endocytic pathway in the uptake of SiNPs was assessed using specific inhibitors (methyl-ß-cyclodextrin, chlorpromazine, and LY294002 for caveolin-, clathrin-, and pinocytosis-mediated endocytosis, respectively). The inhibitor assay indicated that an internalization process facilitated by clathrin-mediated endocytosis is involved in the uptake of SiNPs. Functional analysis using endocytosis defective mutants, (i,e.  cav-1, cup-2, and chc-1) confirmed the role of endocytosis on the reproductive toxicity of SiNPs. Overall results suggest that clathrin-mediated endocytosis pathway is a potential mechanism of uptake of SiNPs in C. elegans that in turn, affects general toxic outcome, such as, decrease in reproductive ability.


Assuntos
Caenorhabditis elegans/metabolismo , Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/química , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Redes Reguladoras de Genes/efeitos dos fármacos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reprodução/efeitos dos fármacos , beta-Ciclodextrinas/química , beta-Ciclodextrinas/farmacologia
6.
DNA Cell Biol ; 38(10): 1048-1055, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31433200

RESUMO

DNA condensed agents can improve the transfection efficiency of the cationic liposome delivery system. However, various condensed agents have distinct transfection efficiency and cellular cytotoxicity. The object of this study was to screen the optimal agents with the high transfection efficiency and low cytotoxicity from four polymer compressive materials, polyethylenimine (PEI), chitosan, poly-l-lysine (PLL), and spermidine. DNA was precompressed with these four agents and then combined to cationic liposomes. Subsequently, the entrapment and transfection efficiency of the obtained complexes were investigated. Finally, the particle sizes, cytotoxicity, and endocytosis fashion of these copolymers (Lipo-PEI, Lipo-chitosan, Lipo-PLL, and Lipo-spermidine) were examined. It was found that these four copolymers had significantly lower cytotoxicity and higher transfection efficiency (45.5%, 42.4%, 36.8%, and 47.4%, respectively) than those in the control groups. The transfection efficiency of Lipo-PEI and Lipo-spermidine copolymers were better than the other two copolymers. In 293T cells, nystatin significantly inhibited the transfection efficiency of Lipo-PEI-DNA and Lipo-spermidine-DNA (51.88% and 46.05%, respectively), which suggest that the endocytosis pathway of Lipo-spermidine and Lipo-PEI copolymers was probably caveolin dependent. Our study indicated that these dual-degradable copolymers especially liposome-spermidine copolymer could be used as the potential biocompatible gene delivery carriers.


Assuntos
Quitosana/química , Lipossomos/química , Polietilenoimina/química , Polilisina/química , Espermidina/química , Transfecção/métodos , Cátions , Caveolina 1/genética , Caveolina 1/metabolismo , Quitosana/metabolismo , Colesterol/química , Colesterol/metabolismo , Endocitose/efeitos dos fármacos , Endocitose/genética , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Células HEK293 , Humanos , Lipossomos/metabolismo , Nistatina/farmacologia , Tamanho da Partícula , Plasmídeos/química , Plasmídeos/metabolismo , Polietilenoimina/metabolismo , Polilisina/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/metabolismo , Espermidina/metabolismo
7.
Chemistry ; 25(55): 12801-12809, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31381210

RESUMO

Photodynamic therapy (PDT) is a promising cancer ablation method, but its efficiency is easily affected by several factors, such as the insufficient delivery of photosensitizers, low oxygen levels as well as long distance between singlet oxygen and intended organelles. A multifunctional nanohybrid, named MGAB, consisting of gelatin-coated manganese dioxide and albumin-coated gold nanoclusters, was designed to overcome these issues by improving chlorin e6 (Ce6) delivery and stimulating oxygen production in lysosomes. MGAB were quickly degraded in a high hydrogen peroxide, high protease activity, and low pH microenvironment, which is closely associated with tumor growth. The Ce6-loaded MGAB were picked up by tumor cells through endocytosis, degraded within the lysosomes, and released oxygen and photosensitizers. Upon near-infrared light irradiation, the close proximity of oxygen with photosensitizer within lysosomes enabled the production of cytotoxic singlet oxygen, resulting in more effective PDT.


Assuntos
Portadores de Fármacos/química , Endocitose/fisiologia , Lisossomos/química , Compostos de Manganês/química , Óxidos/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Oxigênio Singlete/metabolismo , Humanos , Raios Infravermelhos , Oxigênio , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/metabolismo , Oxigênio Singlete/química
8.
Int J Nanomedicine ; 14: 5355-5368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31409992

RESUMO

Aim: Nanoparticles (NPs) have been receiving potential interests in protein delivery and cell therapy. As a matter of fact, NPs may be used as great candidates in promoting cell therapy by catalase (CAT) delivery into high oxidative stress tissues. However, for using NPs like SiO2 as carriers, the interaction of NPs with proteins and mesenchymal stem cells (MSCs) should be explored in advance. Methods: In the present study, the interaction of SiO2 NPs with CAT and human MSCs (hMSCs) was explored by various spectroscopic methods (fluorescence, circular dichroism (CD), UV-visible), molecular docking and dynamics studies, and cellular (MTT, cellular morphology, cellular uptake, lactate dehydrogenase, ROS, caspase-3, flow cytometry) assays. Results: Fluorescence study displayed that both dynamic and static quenching mechanisms and hydrophobic interactions are involved in the spontaneous interaction of SiO2 NPs with CAT. CD spectra indicated that native structure of CAT remains stable after interaction with SiO2 NPs. UV-visible study also revealed that the kinetic parameters of CAT such as Km, Vmax, Kcat, and enzyme efficiency were not changed after the addition of SiO2 NPs. Molecular docking and dynamics studies showed that Si and SiO2 clusters interact with hydrophobic residues of CAT and SiO2 cluster causes minor changes in the CAT structure at a total simulation time of 200 ps. Cellular assays depicted that SiO2 NPs induce significant cell mortality, change in cellular morphology, cellular internalization, ROS elevation, and apoptosis in hMSCs at higher concentration than 100 µg/mL (170 µM). Conclusion: The current results suggest that low concentrations of SiO2 NPs induce no substantial change or mortality against CAT and hMSCs, and potentially useful carriers in CAT delivery to hMSC.


Assuntos
Fenômenos Biofísicos , Células-Tronco Mesenquimais/citologia , Modelos Teóricos , Nanopartículas/química , Dióxido de Silício/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/metabolismo , Forma Celular/efeitos dos fármacos , Dicroísmo Circular , Endocitose/efeitos dos fármacos , Humanos , Cinética , L-Lactato Desidrogenase/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Fluorescência , Termodinâmica
9.
Int J Nanomedicine ; 14: 5527-5540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413561

RESUMO

Background: Nonspecific tumor targeting, potential relapse and metastasis of tumor after treatment are the main barriers in clinical photodynamic therapy (PDT) for cancer, hence, inhibiting relapse and metastasis of tumor is significant issues in clinic. Purpose: In this work, chidamide as a histone deacetylases inhibitor (HADCi) was bound onto a pH-responsive block polymer folate polyethylene glycol-b-poly(aspartic acid) (PEG-b-PAsp) grafted folate (FA-PEG-b-PAsp) to obtain the block polymer folate polyethylene glycol-b-poly(asparaginyl-chidamide) (FA-PEG-b-PAsp-chidamide, FPPC) as multimodal tumor-targeting drug-delivery carrier to inhibiting tumor cell proliferation and tumor metastasis in mice. Methods: Model photosensitizer pyropheophorbide-a (Pha) was encapsulated by FPPC in PBS to form the polymer micelles Pha@FPPC [folate polyethylene glycol-b-poly(asparaginyl-chidamide) micelles encapsulating Pha]. Pha@FPPC was characterized by transmission electron microscope and dynamic light scattering; also, antitumor activity in vivo and in vitro were investigated by determination of cellular ROS level, detection of cell apoptosis and cell cycle arrest, PDT antitumor activity in vivo and histological analysis. Results: With favorable and stable sphere morphology under transmission electron microscope (TEM) (~93.0 nm), Pha@FPPC greatly enhanced the cellular uptake due to its folate-mediated effective endocytosis by mouse melanoma B16-F10 cells and the yield of ROS in tumor cells induced by PDT, and mainly caused necrocytosis and blocked cell growth cycle not only in G2 phase but also in G1/G0 phase after PDT. Pha@FPPC exhibited lower dark cytotoxicity in vitro and a better therapeutic index because of its higher dark cytotoxicity/photocytotoxicity ratio. Moreover, Pha@FPPC not only significantly inhibited the growth of implanted tumor and prolonged the survival time of melanoma-bearing mice due to both its folate-mediated tumor-targeting and selectively accumulation at tumor site by EPR (enhanced permeability and retention)effect as micelle nanoparticles but also remarkably prevented pulmonary metastasis of mice melanoma after PDT compared to free Pha, demonstrating its dual antitumor characteristics of PDT and HDACi. Conclusion: As a folate-mediated and acid-activated chidamide-grafted drug-delivery carrier, FPPC may have great potential to inhibit tumor metastasis in clinical photodynamic treatment for cancer because of its effective and multimodal tumor-targeting performance as photosensitizer vehicle.


Assuntos
Aminopiridinas/química , Benzamidas/química , Ácido Fólico/uso terapêutico , Micelas , Fotoquimioterapia , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Clorofila/análogos & derivados , Clorofila/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Ácido Fólico/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/ultraestrutura , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Nanomedicine ; 14: 5569-5579, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413563

RESUMO

Background: Gold nanoparticles (AuNPs) have been considered as an ideal candidate in various biomedical applications due to their ease of tailoring into different size, shape, and decorations with different functionalities. The current study was conducted to investigate the epigenetic alteration in the lung in response to AuNPs administration regarding microRNA-155 (miR-155) gene which can be involved in AuNP-induced lung pathogenesis. Methods: Thirty-two Wister rats were divided into two equal groups, control group and AuNPs treated group which received a single intravenous (IV) injection of plain spherical AuNPs (0.015 mg/kg body wt) with an average diameter size of 25±3 nm. Lung samples were collected from both the control and injected groups at one day, one week, one month and two months post-injection. The alteration of relative expression of miR-155 gene and two of its putative target genes; tumor protein 53 inducible nuclear protein 1 (TP53INP1) and protein S (PROS1) was investigated by real time PCR and protein S (PS) expression was analyzed by Western blotting technique. Results: The obtained results revealed that AuNPs administration significantly increases the expression level of miR-155 and reduce relative mRNA expression of TP53INP1 and PROS1 genes at one day post-injection. In contrast, a significant down-regulation of miR-155 level of expression concurrent with up-regulation of expression level of TP53INP1 and PROS1 genes were shown at one week, one month and two months post-injection. PS levels were mirrored to their PROS1 mRNA levels except for two month post-injection time point. Conclusions: These findings indicate epigenetic modulation in the lung in response to AuNPs administration regarding the miR-155 gene which can be involved in AuNP-induced lung pathogenesis.


Assuntos
Regulação da Expressão Gênica , Ouro/administração & dosagem , Proteínas de Choque Térmico/metabolismo , Pulmão/metabolismo , Nanopartículas Metálicas/administração & dosagem , MicroRNAs/genética , Proteínas Nucleares/metabolismo , Proteína S/genética , Animais , Proteínas Sanguíneas , Endocitose , Proteínas de Choque Térmico/genética , Pulmão/ultraestrutura , Masculino , Nanopartículas Metálicas/ultraestrutura , MicroRNAs/metabolismo , Proteínas Nucleares/genética , Proteína S/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar
11.
Int J Nanomedicine ; 14: 5595-5609, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413565

RESUMO

Background: Platinum nanoparticles (PtNPs) have been considered a nontoxic nanomaterial and been clinically used in cancer chemotherapy. PtNPs can also be vehicle exhausts and environmental pollutants. These situations increase the possibility of human exposure to PtNPs. However, the potential biotoxicities of PtNPs including that on cardiac electrophysiology have been poorly understood. Methods: Ion channel currents of cardiomyocytes were recorded by patch clamp. Heart rhythm was monitored by electrocardiogram recording. Morphology and characteristics of PtNPs were examined by transmission electron microscopy, dynamic light scattering and electrophoretic light scattering analyses. Results: In cultured neonatal mice ventricular cardiomyocytes, PtNPs with diameters 5 nm (PtNP-5) and 70 nm (PtNP-70) concentration-dependently (10-9 - 10-5 g/mL) depolarized the resting potentials, suppressed the depolarization of action potentials and delayed the repolarization of action potentials. At the ion channel level, PtNPs decreased the current densities of INa, IK1 and Ito channels, but did not affect the channel activity kinetics. In vivo, PtNP-5 and PtNP-70 dose-dependently (3-10 mg/kg, i.v.) decreased the heart rate and induced complete atrioventricular conduction block (AVB) at higher doses. Both PtNP-5 and PtNP-70 (10-9 - 10-5 g/mL) did not significantly increase the generation of ROS and leak of lactate dehydrogenase (LDH) from cardiomyocytes within 5 mins after exposure except that only very high PtNP-5 (10-5 g/mL) slightly increased LDH leak. The internalization of PtNP-5 and PtNP-70 did not occur within 5 mins but occurred 1 hr after exposure. Conclusion: PtNP-5 and PtNP-70 have similar acute toxic effects on cardiac electrophysiology and can induce threatening cardiac conduction block. These acute electrophysiological toxicities of PtNPs are most likely caused by a nanoscale interference of PtNPs on ion channels at the extracellular side, rather than by oxidative damage or other slower biological processes.


Assuntos
Frequência Cardíaca/efeitos dos fármacos , Canais Iônicos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Miócitos Cardíacos/metabolismo , Platina/toxicidade , Testes de Toxicidade Aguda , Animais , Animais Recém-Nascidos , Células Cultivadas , Eletrocardiografia , Endocitose/efeitos dos fármacos , Sistema de Condução Cardíaco/efeitos dos fármacos , Ventrículos do Coração/citologia , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Platina/administração & dosagem
12.
Int J Nanomedicine ; 14: 5611-5622, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413566

RESUMO

Background: Multimodal imaging probes have become a powerful tool for improving detection sensitivity and accuracy, which are important in disease diagnosis and treatment. Methods: In this study, novel bifunctional magnetic resonance imaging (MRI)/fluorescence probes were prepared by loading gadodiamide into fluorescent silica nanoparticles (NPs) (Gd@Cy5.5@SiO2-PEG-Ab NPs) for targeting of prostate cancer (PCa). The physicochemical characteristics, biosafety and PCa cell targeting ability of the Gd@Cy5.5@SiO2-PEG-Ab NPs were studied in vitro and in vivo. Results: The Gd@Cy5.5@SiO2-PEG-Ab NPs had a spherical morphology with a relatively uniform size distribution and demonstrated high efficiency for Gd loading. In vitro and in vivo cell-targeting experiments demonstrated a high potential for the synthesized NPs to target prostate-specific membrane antigen (PSMA) receptor-positive PCa cells, enabling MRI and fluorescence imaging. In vitro cytotoxicity assays and in vivo hematological and pathological assays showed that the prepared NPs exhibited good biological safety. Conclusion: Our study demonstrates that the synthesized Gd@Cy5.5@SiO2-PEG-Ab NPs have great potential as MRI/fluorescence contrast agents for specific identification of PSMA receptor-positive PCa cells.


Assuntos
Gadolínio DTPA/química , Imagem por Ressonância Magnética , Nanopartículas/química , Polietilenoglicóis/química , Neoplasias da Próstata/diagnóstico por imagem , Dióxido de Silício/química , Animais , Anticorpos/metabolismo , Linhagem Celular Tumoral , Meios de Contraste , Endocitose , Fluorescência , Glutamato Carboxipeptidase II/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/toxicidade , Nanopartículas/ultraestrutura , Especificidade de Órgãos , Polietilenoglicóis/síntese química , Padrões de Referência
13.
Int J Nanomedicine ; 14: 4931-4947, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371941

RESUMO

Background: Phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT), is a promising noninvasive strategy in the treatment of cancers due to its highly localized specificity to tumors and minimal side effects to normal tissues. However, single phototherapy often causes tumor recurrence which hinders its clinical applications. Therefore, developing a NIR-guided dendritic nanoplatform for improving the phototherapy effect and reducing the recurrence of tumors by synergistic chemotherapy and phototherapy is essential. Methods: A fluorescent targeting ligand, insisting of ICG derivative cypate and a tumor penetration peptide iRGD (CRGDKGPDC), was covalently combined with PAMAM dendrimer to prepare a single agent-based dendritic theranostic nanoplatform iRGD-cypate-PAMAM-DTX (RCPD). Results: Compared with free cypate, the resulted RCPD could generate enhanced singlet oxygen species while maintaining its fluorescence intensity and heat generation ability when subjected to NIR irradiation. Furthermore, our in vitro and in vivo therapeutic studies demonstrated that compared with phototherapy or chemotherapy alone, the combinatorial chemo-photo treatment of RCPD with the local exposure of NIR light can significantly improve anti-tumor efficiency and reduce the risk of recurrence of tumors. Conclusion: The multifunctional theranostic platform (RCPD) could be used as a promising method for NIR fluorescence image-guided combinatorial treatment of tumor cancers.


Assuntos
Antineoplásicos/farmacologia , Dendrímeros/química , Raios Infravermelhos , Nanopartículas/química , Fototerapia , Animais , Proliferação de Células/efeitos dos fármacos , Terapia Combinada , Docetaxel/farmacologia , Endocitose/efeitos dos fármacos , Fluorescência , Células Hep G2 , Temperatura Alta , Humanos , Indóis/farmacologia , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oligopeptídeos/química , Fotoquimioterapia , Propionatos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Nanomedicina Teranóstica
14.
Int J Nanomedicine ; 14: 4991-5015, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31371943

RESUMO

Purpose: This study evaluates the cytotoxicity of AuNPs coated with polyallylamine (AuNPs-PAA) and conjugated or not to the epidermal growth factor receptor (EGFR)-targeting antibody Cetuximab (AuNPs-PAA-Ctxb) in normal human kidney (HK-2), liver (THLE-2) and microvascular endothelial (TIME) cells, and compares it with two cancer cell lines that are EGFR-overexpressing (A431) or EGFR-negative (MDA-MB-453). Results: Conjugation of Cetuximab to AuNPs-PAA increased the AuNPs-PAA-Ctxb interactions with cells, but reduced their cytotoxicity. TIME cells exhibited the strongest reduction in viability after exposure to AuNPs-PAA(±Ctxb), followed by THLE-2, MDA-MB-453, HK-2 and A431 cells. This cell type-dependent sensitivity was strongly correlated to the inhibition of thioredoxin reductase (TrxR) and glutathione reductase (GR), and to the depolarization of the mitochondrial membrane potential. Both are suggested to initiate apoptosis, which was indeed detected in a concentration- and time-dependent manner. The role of oxidative stress in AuNPs-PAA(±Ctxb)-induced cytotoxicity was demonstrated by co-incubation of the cells with N-acetyl L-cysteine (NAC), which significantly decreased apoptosis and mitochondrial membrane depolarization. Conclusion: This study helps to identify the cells and tissues that could be sensitive to AuNPs and deepens the understanding of the risks associated with the use of AuNPs in vivo.


Assuntos
Antioxidantes/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Acetilcisteína/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cetuximab/farmacologia , Endocitose/efeitos dos fármacos , Glutationa Redutase/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Tamanho da Partícula , Poliaminas/química , Substâncias Protetoras/farmacologia , Eletricidade Estática , Tiorredoxina Dissulfeto Redutase/metabolismo
15.
Int J Nanomedicine ; 14: 4683-4695, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308653

RESUMO

Purpose: Clinical applications of curcumin (Cur) have been greatly restricted due to its low solubility and poor systemic bioavailability. Three-arm amphiphilic copolymer tricarballylic acid-poly (ε-caprolactone)-methoxypolyethylene glycol (Tri-CL-mPEG) nanoparticles (NPs) were designed to improve the solubility and bioavailability of Cur. The present study adopted a microchannel system to precisely control the preparation of self-assembly polymeric NPs via liquid flow-focusing and gas displacing method. Methods: The amphiphilic three-arm copolymer Tri-CL-mPEG was synthesized and self-assembled into nearly spherical NPs, yielding Cur encapsulated into NP cores (Cur-NPs). The obtained NPs were evaluated for physicochemical properties, morphology, toxicity, cellular uptake by A549 cells, release in vitro, biodistribution, and pharmacokinetics in vivo. Results: Rapidly fabricated and isodispersed Cur-NPs prepared by this method had an average diameter of 116±3 nm and a polydispersity index of 0.197±0.008. The drug loading capacity and entrapment efficiency of Cur-NPs were 5.58±0.23% and 91.42±0.39%, respectively. In vitro release experiments showed sustained release of Cur, with cumulative release values of 40.1% and 66.1% at pH 7.4 and pH 5.0, respectively, after 10 days post-incubation. The results of cellular uptake, biodistribution, and in vivo pharmacokinetics experiments demonstrated that Cur-NPs exhibited better biocompatibility and bioavailability, while additionally enabling greater cellular uptake and prolonged circulation with possible spleen, lung, and kidney targeting effects when compared to the properties of free Cur. Conclusion: These results indicate that Tri-CL-mPEG NPs are promising in clinical applications as a controllable delivery system for hydrophobic drugs.


Assuntos
Curcumina/farmacologia , Microfluídica/métodos , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Ácidos Tricarboxílicos/química , Células A549 , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Humanos , Camundongos , Peso Molecular , Nanopartículas/ultraestrutura , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos Sprague-Dawley , Distribuição Tecidual/efeitos dos fármacos
16.
Int J Nanomedicine ; 14: 4867-4880, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308663

RESUMO

Background: The demand for an effective vaccine delivery system that drives a suitable immune response is increasing. The oxidized carbon nanosphere (OCN), a negatively charged carbon nanoparticle, has the potential to fulfill this requirement because it can efficiently deliver macromolecules into cells and allows endosomal leakage. However, fundamental insights into how OCNs are taken up by antigen-presenting cells, and the intracellular behavior of delivered molecules is lacking. Furthermore, how immune responses are stimulated by OCN-mediated delivery has not been investigated. Purpose: In this study, the model protein antigen ovalbumin (OVA) was used to investigate the uptake mechanism and intracellular fate of OCN-mediated delivery of protein in macrophages. Moreover, the immune response triggered by OVA delivered by OCNs was characterized. Methods: Bone-marrow-derived macrophages (BMDMs) from mice were used to study antigen uptake and intracellular trafficking. Mice were immunized using OCN-OVA combined with known adjuvants, and the specific immune response was measured. Results: OCNs showed no cytotoxicity against BMDMs. OCN-mediated delivery of OVA into BMDMs was partially temperature independent process. Using specific inhibitors, it was revealed that intracellular delivery of OCN-OVA does not rely on phagocytosis or the clathrin- and lipid raft/caveolae-mediated pathways. Delivered OVA was found to colocalize with compartments containing MHC class I, but not with early endosomes, lysosomes, and autophagosomes. Immunization of OVA using OCNs in combination with the known adjuvant monophosphoryl lipid A specifically enhanced interferon gamma (IFNγ)- and granzyme B-producing cytotoxic T cells (CTLs). Conclusion: OCNs effectively delivered protein antigens into macrophages that localized with compartments containing MHC class I partially by the temperature independent, but not clathrin- and lipid raft/caveolae-mediated pathways. Increased CD8+ T-cell activity was induced by OCN-delivered antigens, suggesting antigen processing toward antigen presentation for CTLs. Taken together, OCNs are a potential protein antigen delivery system that stimulates the cell-mediated immune response.


Assuntos
Antígenos/administração & dosagem , Carbono/química , Sistemas de Liberação de Medicamentos , Imunidade Celular , Nanopartículas/química , Adjuvantes Imunológicos/farmacologia , Animais , Antígenos/imunologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Linhagem Celular , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Feminino , Imunidade Celular/efeitos dos fármacos , Cinética , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Nanopartículas/toxicidade , Oxirredução , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia
17.
Zhongguo Zhong Yao Za Zhi ; 44(13): 2657-2661, 2019 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-31359673

RESUMO

Target identification is an important prerequisite for the study of medicine action mechanism. Currently,drug target identification is mostly based on various cell models in vitro. However,the growth microenvironment,nutrition metabolism,biological properties as well as functions are quite different between in vitro cell culture and physiological environment in vivo; wherefore,it is a challenging scientific issue to establish an effective method for identifying drug targets in vivo condition. In this study,we successfully prepared a kind of magnetic nanoparticles( MNPs) which can be chemically modified by the hydroxyl structure of natural bioactive compound echinacoside( ECH) via the epoxy group label on the surface of MNPs. Therefore,organ-selective and recoverable nanoscale target-recognizing particles were prepared. We then intravenously injected the ECH-binding MNPs into rats and distributed them to specific organs in vivo. After cell endocytosis,ECH-binding MNPs captured target proteins in situ for further analysis. Based on this method,we discovered several potential target proteins in the spleen lysates for ECH,and preliminarily clarified the immuno-regulation mechanism of ECH. Collectively,our strategy developed a proof-of-concept technology using nanoparticles for in vivo target identification,and also provided a feasible approach for drug target prediction and pharmacological mechanism exploration.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita , Medicina Tradicional Chinesa , Animais , Endocitose , Glicosídeos/análise , Magnetismo , Estudo de Prova de Conceito , Ratos
18.
Yi Chuan ; 41(6): 451-468, 2019 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-31257195

RESUMO

Endocytic transport is imperative for the exchange of information between cells and the external environment. Specifically, the process of endocytic transport comprises precise regulation of uptake and sorting of extracellular macromolecules, phospholipids, and membrane proteins. In the endocytic transport system, the recycling pathways are responsible for delivering membrane proteins and phospholipids back to the plasma membrane. Thus, endocytic recycling plays critical roles in various biological processes, including nutrient absorption, cell polarity establishment, cell migration, cell division, synaptic plasticity, immune response, and growth factor receptor regulation. There are two essential types of recycling pathways in eukaryotic cells, recycling of clathrin-dependent endocytic cargos (CDE recycling) and recycling of clathrin-independent endocytic cargos (CIE recycling). The transferrin receptor TfR and the low-density lipoprotein receptor LDLR, which have essential physiological roles in vivo, are representative membrane proteins of the CDE recycling transport. In recent years, various membrane proteins governed by CIE recycling transport have been identified, including IL2 receptor α-subunit, major histocompatibility complex MHC Class I, and glucose transporter GLUT4. Therefore, the investigation of the regulatory mechanisms of CIE recycling has drawn notable attention in the field. Moreover, CIE recycling research presents fundamental significance in cell biology, which also provides scientific evidence and potential therapeutic clues for the diagnosis and treatment strategies of diseases such as type 2 diabetes and cancer. Compared with the CDE recycling, the study on CIE recycling started later, and there is much to be learned of its regulatory mechanisms. To this end, this review summarizes the features of endocytic recycling pathways, focuses on the molecular basis of CIE recycling regulation and elaborates on the latest progress and newly developed research model systems in the field of CIE recycling.


Assuntos
Endocitose , Proteínas de Membrana/fisiologia , Transporte Proteico , Clatrina , Diabetes Mellitus Tipo 2 , Endossomos , Humanos
19.
Sheng Wu Gong Cheng Xue Bao ; 35(7): 1162-1173, 2019 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-31328473

RESUMO

Cell-penetrating peptides (CPPs) are short peptides that can penetrate the cell membrane or tissue barrier. CPPs can deliver a variety of biomacromolecules, such as proteins, RNA and DNA, into cells to produce intracellular functional effects. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms for CPPs-mediated cargo delivery. Compared with other non-natural chemical molecules-based delivery reagents, the CPPs have better biocompatibility, lower cytotoxicity, are easily degraded after cargo delivery, and can be fused and recombined expressed with bioactive proteins. Because of these advantages, the CPPs have become an important potential tool for delivery of developing drugs which targets intracellular factors. As a novel delivery tool, the CPPs also show promising application prospects in biomedical researches. This review summarized recent advances regarding the classification characteristics, the cellular uptake mechanisms and therapeutic application potentials of CPPs.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Transporte Biológico , Membrana Celular , Endocitose
20.
Nat Commun ; 10(1): 2870, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253773

RESUMO

An important channel of cell-to-cell communication is direct contact. The immune synapse is a paradigmatic example of such type of interaction: it forms upon engagement of antigen receptors in lymphocytes by antigen-presenting cells and allows the local exchange of molecules and information. Although mechanics has been shown to play an important role in this process, how forces organize and impact on synapse function is unknown. We find that mechanical forces are spatio-temporally patterned at the immune synapse: global pulsatile myosin II-driven tangential forces are observed at the synapse periphery while localised forces generated by invadosome-like F-actin protrusions are detected at its centre. Noticeably, we observe that these force-producing actin protrusions constitute the main site of antigen extraction and endocytosis and require myosin II contractility to form. The interplay between global and local forces dictated by the organization of the actomyosin cytoskeleton therefore controls endocytosis at the immune synapse.


Assuntos
Citoesqueleto de Actina/fisiologia , Actomiosina/metabolismo , Linfócitos B/fisiologia , Endocitose/fisiologia , Miosina Tipo II/metabolismo , Actomiosina/genética , Animais , Comunicação Celular , Cruzamentos Genéticos , Integrases/genética , Integrases/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miosina Tipo II/genética , Receptores de Complemento 3d
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA