Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.228
Filtrar
1.
Trop Anim Health Prod ; 53(5): 492, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596804

RESUMO

The Chino Santandereano (CHS) creole cattle breed has undergone an adaptation process of more than 500 years to the Colombian mountainous tropics. Despite its advantages, the breed has been replaced by specialized cattle that put it at risk of extinction. The aim of this work was to estimate the genomic diversity and population structure of the nucleus of conservation of the CHS breed. Thirty-seven CHS and 20 Brahman animals were genotyped due to the possible introgression of genes with the GGP Bovine LD v3 chip. Quality control was performed, and linkage disequilibrium (LD), effective population size (Ne), ROH segments, homozygosity, and genomic inbreeding in the breed were estimated. Subsequently, 50 K genomic information of the Holstein (n = 30) and Romosinuano (n = 8) breeds were included to estimate the minor allele frequency (MAF) with common markers and constructing the graphs of the principal component analysis (PCA). Pairwise FSTs were estimated and a neighbor-joining tree was constructed using the IBS matrix. Admixture was used with k = 2 to 10 for the racial composition. LD (r2) was found up to a distance of 0.13 Mb, r2 > 0.3 at a distance of 340.3 kb, and Ne of 32 ± 1. ROH inbreeding was 5.36 ± 0.86%, with a higher contribution from recent inbreeding (4.55%). The PCA showed that the creole breeds were closer together, and the Brahman was more distant. The admixture analysis suggested k = 5 possible ancestral groups and shows that within the CHS breed, there seem to be two different groups with little Holstein and Brahman introgression. The genetic diversity parameters obtained in this work show minimal diversity in this breed and reinforce the need to protect this resource and the conservation banks.


Assuntos
Genoma , Melhoramento Vegetal , Animais , Bovinos/genética , Genômica , Endogamia , Desequilíbrio de Ligação
2.
Genet Sel Evol ; 53(1): 75, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551728

RESUMO

BACKGROUND: We tested the hypothesis that breeding schemes with a pre-selection step, in which carriers of a lethal recessive allele (LRA) were culled, and with optimum-contribution selection (OCS) reduce the frequency of a LRA, control rate of inbreeding, and realise as much genetic gain as breeding schemes without a pre-selection step. METHODS: We used stochastic simulation to estimate true genetic gain realised at a 0.01 rate of true inbreeding (ΔFtrue) by breeding schemes that combined one of four pre-selection strategies with one of three selection strategies. The four pre-selection strategies were: (1) no carriers culled, (2) male carriers culled, (3) female carriers culled, and (4) all carriers culled. Carrier-status was known prior to selection. The three selection strategies were: (1) OCS in which [Formula: see text] was predicted and controlled using pedigree relationships (POCS), (2) OCS in which [Formula: see text] was predicted and controlled using genomic relationships (GOCS), and (3) truncation selection of parents. All combinations of pre-selection strategies and selection strategies were tested for three starting frequencies of the LRA (0.05, 0.10, and 0.15) and two linkage statuses with the locus that has the LRA being on a chromosome with or without loci affecting the breeding goal trait. The breeding schemes were simulated for 10 discrete generations (t = 1, …, 10). In all breeding schemes, ΔFtrue was calibrated to be 0.01 per generation in generations t = 4, …, 10. Each breeding scheme was replicated 100 times. RESULTS: We found no significant difference in true genetic gain from generations t = 4, …, 10 between breeding schemes with or without pre-selection within selection strategy. POCS and GOCS schemes realised similar true genetic gains from generations t = 4, …, 10. POCS and GOCS schemes realised 12% more true genetic gain from generations t = 4, …, 10 than truncation selection schemes. CONCLUSIONS: We advocate for OCS schemes with pre-selection against the LRA that cause animal suffering and high costs. At LRA frequencies of 0.10 or lower, OCS schemes in which male carriers are culled reduce the frequency of LRA, control rate of inbreeding, and realise no significant reduction in true genetic gain compared to OCS schemes without pre-selection against LRA.


Assuntos
Alelos , Cruzamento , Genes Letais , Genes Recessivos , Modelos Genéticos , Seleção Genética , Abate de Animais , Animais , Feminino , Frequência do Gene , Endogamia , Masculino , Linhagem , Processos Estocásticos
3.
Zool Res ; 42(6): 710-720, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34581031

RESUMO

The Chantecler chicken, a unique Canadian indigenous breed, is well adapted to extremely cold environments. However, its genetic characteristics have not been well studied. Here, we analyzed the whole genomes of 10 Chantecler chickens and 121 worldwide chickens, which indicated that Chantecler chickens were derived from commercial chickens and exhibit a high level of inbreeding. Based on a genome-wide scan, we identified two vital candidate regions containing ME3 and ZNF536, which are related to fat metabolism and nervous system in cold adaptation, respectively. We also found that the genetic mechanism of cold adaptation in Chantecler chickens differed from that of chickens from other cold regions, such as northern China. Our study indicated that specialized commercial chickens in the early 20th century contained sufficient genetic diversity to adapt to extreme cold environments over a very short time. These findings enrich our understanding of the adaptive potential of commercial species.


Assuntos
Adaptação Fisiológica/genética , Galinhas/genética , Galinhas/fisiologia , Temperatura Baixa , Estudo de Associação Genômica Ampla/veterinária , Animais , Genoma , Endogamia , Álcool Oxidorredutases Dependentes de NAD(+) e NADP(+)/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Seleção Genética
4.
BMC Genomics ; 22(1): 678, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548021

RESUMO

BACKGROUND: Genomic regions with a high frequency of runs of homozygosity (ROH) are related to important traits in farm animals. We carried out a comprehensive analysis of ROH and evaluated their association with production traits using the BovineHD (770 K) SNP array in Chinese Simmental beef cattle. RESULTS: We detected a total of 116,953 homozygous segments with 2.47Gb across the genome in the studied population. The average number of ROH per individual was 99.03 and the average length was 117.29 Mb. Notably, we detected 42 regions with a frequency of more than 0.2. We obtained 17 candidate genes related to body size, meat quality, and reproductive traits. Furthermore, using Fisher's exact test, we found 101 regions were associated with production traits by comparing high groups with low groups in terms of production traits. Of those, we identified several significant regions for production traits (P < 0.05) by association analysis, within which candidate genes including ECT2, GABRA4, and GABRB1 have been previously reported for those traits in beef cattle. CONCLUSIONS: Our study explored ROH patterns and their potential associations with production traits in beef cattle. These results may help to better understand the association between production traits and genome homozygosity and offer valuable insights into managing inbreeding by designing reasonable breeding programs in farm animals.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , China , Consenso , Genótipo , Homozigoto
5.
Genet Sel Evol ; 53(1): 71, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34496761

RESUMO

BACKGROUND: Efficient breeding programs are difficult to implement in honeybees due to their biological specificities (polyandry and haplo-diploidy) and complexity of the traits of interest, with performances being measured at the colony scale and resulting from the joint effects of tens of thousands of workers (called direct effects) and of the queen (called maternal effects). We implemented a Monte Carlo simulation program of a breeding plan designed specifically for Apis mellifera's populations to assess the impact of polyandry versus monoandry on colony performance, inbreeding level and genetic gain depending on the individual selection strategy considered, i.e. complete mass selection or within-family (maternal lines) selection. We simulated several scenarios with different parameter setups by varying initial genetic variances and correlations between direct and maternal effects, the selection strategy and the polyandry level. Selection was performed on colony phenotypes. RESULTS: All scenarios showed strong increases in direct breeding values of queens after 20 years of selection. Monoandry led to significantly higher direct than maternal genetic gains, especially when a negative correlation between direct and maternal effects was simulated. However, the relative increase in these genetic gains depended also on their initial genetic variability and on the selection strategy. When polyandry was simulated, the results were very similar with either 8 or 16 drones mated to each queen. Across scenarios, polyandrous mating resulted in equivalent or higher gains in performance than monoandrous mating, but with considerably lower inbreeding rates. Mass selection conferred a ~ 20% increase in performance compared to within-family selection, but was also accompanied by a strong increase in inbreeding levels (25 to 50% higher). CONCLUSIONS: Our study is the first to compare the long-term effects of polyandrous versus monoandrous mating in honeybee breeding. The latter is an emergent strategy to improve specific traits, such as resistance to varroa, which can be difficult or expensive to phenotype. However, if used during several generations in a closed population, monoandrous mating increases the inbreeding level of queens much more than polyandrous mating, which is a strong limitation of this strategy.


Assuntos
Abelhas/fisiologia , Cruzamento , Herança Materna , Comportamento Sexual Animal , Animais , Abelhas/genética , Feminino , Endogamia , Masculino , Herança Materna/genética , Método de Monte Carlo , Fenótipo , Reprodução/genética , Seleção Genética
6.
Genet Sel Evol ; 53(1): 68, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461820

RESUMO

BACKGROUND: The advent of genomic information and the reduction in the cost of genotyping have led to the use of genomic information to estimate genomic inbreeding as an alternative to pedigree inbreeding. Using genomic measures, effects of genomic inbreeding on production and fertility traits have been observed. However, there have been limited studies on the specific genomic regions causing the observed negative association with the trait of interest. Our aim was to identify unique run of homozygosity (ROH) genotypes present within a given genomic window that display negative associations with production and fertility traits and to quantify the effects of these identified ROH genotypes. METHODS: In total, 50,575 genotypes based on a 50K single nucleotide polymorphism (SNP) array and 259,871 pedigree records were available. Of these 50,575 genotypes, 46,430 cows with phenotypic records for production and fertility traits and having a first calving date between 2008 and 2018 were available. Unique ROH genotypes identified using a sliding-window approach were fitted into an animal mixed model as fixed effects to determine their effect on production and fertility traits. RESULTS: In total, 133 and 34 unique ROH genotypes with unfavorable effects were identified for production and fertility traits, respectively, at a 1% genome-wise false discovery rate. Most of these ROH regions were located on bovine chromosomes 8, 13, 14 and 19 for both production and fertility traits. For production traits, the average of all the unfavorably identified unique ROH genotypes effects were estimated to decrease milk yield by 247.30 kg, fat yield by 11.46 kg and protein yield by 8.11 kg. Similarly, for fertility traits, an average 4.81-day extension in first service to conception, a 0.16 increase in number of services, and a - 0.07 incidence in 56-day non-return rate were observed. Furthermore, a ROH region located on bovine chromosome 19 was identified that, when homozygous, had a negative effect on production traits. Signatures of selection proximate to this region have implicated GH1 as a potential candidate gene, which encodes the growth hormone that binds the growth hormone receptor. This observed negative effect could be a consequence of unfavorable alleles in linkage disequilibrium with favorable alleles. CONCLUSIONS: ROH genotypes with unfavorable effects on production and fertility traits were identified within and across multiple traits on most chromosomes. These identified ROH genotypes could be included in mate selection programs to minimize their frequency in future generations.


Assuntos
Bovinos/genética , Fertilidade/genética , Homozigoto , Alelos , Animais , Canadá , Feminino , Endogamia , Polimorfismo de Nucleotídeo Único
7.
Proc Biol Sci ; 288(1956): 20211045, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34344184

RESUMO

Individuals are expected to avoid mating with relatives as inbreeding can reduce offspring fitness, a phenomenon known as inbreeding depression. This has led to the widespread assumption that selection will favour individuals that avoid mating with relatives. However, the strength of inbreeding avoidance is variable across species and there are numerous cases where related mates are not avoided. Here we test if the frequency that related males and females encounter each other explains variation in inbreeding avoidance using phylogenetic meta-analysis of 41 different species from six classes across the animal kingdom. In species reported to mate randomly with respect to relatedness, individuals were either unlikely to encounter relatives, or inbreeding had negligible effects on offspring fitness. Mechanisms for avoiding inbreeding, including active mate choice, post-copulatory processes and sex-biased dispersal, were only found in species with inbreeding depression. These results help explain why some species seem to care more about inbreeding than others: inbreeding avoidance through mate choice only evolves when there is both a risk of inbreeding depression and related sexual partners frequently encounter each other.


Assuntos
Depressão por Endogamia , Preferência de Acasalamento Animal , Animais , Copulação , Feminino , Humanos , Endogamia , Masculino , Filogenia , Reprodução , Comportamento Sexual Animal
8.
BMC Plant Biol ; 21(1): 312, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215182

RESUMO

BACKGROUND: Peanut smut is a disease caused by the fungus Thecaphora frezii Carranza & Lindquist to which most commercial cultivars in South America are highly susceptible. It is responsible for severely decreased yield and no effective chemical treatment is available to date. However, smut resistance has been identified in wild Arachis species and further transferred to peanut elite cultivars. To identify the genome regions conferring smut resistance within a tetraploid genetic background, this study evaluated a RIL population {susceptible Arachis hypogaea subsp. hypogaea (JS17304-7-B) × resistant synthetic amphidiploid (JS1806) [A. correntina (K 11905) × A. cardenasii (KSSc 36015)] × A. batizocoi (K 9484)4×} segregating for the trait. RESULTS: A SNP based genetic map arranged into 21 linkage groups belonging to the 20 peanut chromosomes was constructed with 1819 markers, spanning a genetic distance of 2531.81 cM. Two consistent quantitative trait loci (QTLs) were identified qSmIA08 and qSmIA02/B02, located on chromosome A08 and A02/B02, respectively. The QTL qSmIA08 at 15.20 cM/5.03 Mbp explained 17.53% of the phenotypic variance, while qSmIA02/B02 at 4.0 cM/3.56 Mbp explained 9.06% of the phenotypic variance. The combined genotypic effects of both QTLs reduced smut incidence by 57% and were stable over the 3 years of evaluation. The genome regions containing the QTLs are rich in genes encoding proteins involved in plant defense, providing new insights into the genetic architecture of peanut smut resistance. CONCLUSIONS: A major QTL and a minor QTL identified in this study provide new insights into the genetic architecture of peanut smut resistance that may aid in breeding new varieties resistant to peanut smut.


Assuntos
Arachis/genética , Arachis/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Estudos de Associação Genética , Marcadores Genéticos , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Recombinação Genética/genética
9.
BMC Plant Biol ; 21(1): 307, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193031

RESUMO

BACKGROUND: Maize rough dwarf disease (MRDD), a widespread disease caused by four pathogenic viruses, severely reduces maize yield and grain quality. Resistance against MRDD is a complex trait that controlled by many quantitative trait loci (QTL) and easily influenced by environmental conditions. So far, many studies have reported numbers of resistant QTL, however, only one QTL have been cloned, so it is especially important to map and clone more genes that confer resistance to MRDD. RESULTS: In the study, a major quantitative trait locus (QTL) qMrdd2, which confers resistance to MRDD, was identified and fine mapped. qMrdd2, located on chromosome 2, was consistently identified in a 15-Mb interval between the simple sequence repeat (SSR) markers D184 and D1600 by using a recombinant inbred line (RIL) population derived from a cross between resistant ("80007") and susceptible ("80044") inbred lines. Using a recombinant-derived progeny test strategy, qMrdd2 was delineated to an interval of 577 kb flanked by markers N31 and N42. We further demonstrated that qMrdd2 is an incompletely dominant resistance locus for MRDD that reduced the disease severity index by 20.4%. CONCLUSIONS: A major resistance QTL (qMrdd2) have been identified and successfully refined into 577 kb region. This locus will be valuable for improving maize variety resistance to MRDD via marker-assisted selection (MAS).


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Locos de Características Quantitativas/genética , Zea mays/genética , Zea mays/virologia , Análise de Variância , Ligação Genética , Endogamia , Modelos Genéticos , Fenótipo , Mapeamento Físico do Cromossomo
10.
BMC Genomics ; 22(1): 538, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34256689

RESUMO

BACKGROUND: Although inbreeding caused by the mating of animals related through a recent common ancestor is expected to have more harmful effects on phenotypes than ancient inbreeding (old inbreeding), estimating these effects requires a clear definition of recent (new) and ancient (old) inbreeding. Several methods have been proposed to classify inbreeding using pedigree and genomic data. Unfortunately, these methods are largely based on heuristic criteria such as the number of generations from a common ancestor or length of runs of homozygosity (ROH) segments. To mitigate these deficiencies, this study aimed to develop a method to classify pedigree and genomic inbreeding into recent and ancient classes based on a grid search algorithm driven by the assumption that new inbreeding tends to have a more pronounced detrimental effect on traits. The proposed method was tested using a cattle population characterized by a deep pedigree. RESULTS: Effects of recent and ancient inbreeding were assessed on four growth traits (birth, weaning and yearling weights and average daily gain). Thresholds to classify inbreeding into recent and ancient classes were trait-specific and varied across traits and sources of information. Using pedigree information, inbreeding generated in the last 10 to 11 generations was considered as recent. When genomic information (ROH) was used, thresholds ranged between four to seven generations, indicating, in part, the ability of ROH segments to characterize the harmful effects of inbreeding in shorter periods of time. Nevertheless, using the proposed classification method, the discrimination between new and old inbreeding was less robust when ROH segments were used compared to pedigree. Using several model comparison criteria, the proposed approach was generally better than existing methods. Recent inbreeding appeared to be more harmful across the growth traits analyzed. However, both new and old inbreeding were found to be associated with decreased yearling weight and average daily gain. CONCLUSIONS: The proposed method provided a more objective quantitative approach for the classification of inbreeding. The proposed method detected a clear divergence in the effects of old and recent inbreeding using pedigree data and it was superior to existing methods for all analyzed traits. Using ROH data, the discrimination between old and recent inbreeding was less clear and the proposed method was superior to existing approaches for two out of the four analyzed traits. Deleterious effects of recent inbreeding were detected sooner (fewer generations) using genomic information than pedigree. Difference in the results using genomic and pedigree information could be due to the dissimilarity in the number of generations to a common ancestor. Additionally, the uncertainty associated with the identification of ROH segments and associated inbreeding could have an effect on the results. Potential biases in the estimation of inbreeding effects may occur when new and old inbreeding are discriminated based on arbitrary thresholds. To minimize the impact of inbreeding, mating designs should take the different inbreeding origins into consideration.


Assuntos
Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Genômica , Homozigoto , Linhagem , Fenótipo
11.
Genet Sel Evol ; 53(1): 46, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34058971

RESUMO

BACKGROUND: In dairy cattle populations in which crossbreeding has been used, animals show some level of diversity in their origins. In rotational crossbreeding, for instance, crossbred dams are mated with purebred sires from different pure breeds, and the genetic composition of crossbred animals is an admixture of the breeds included in the rotation. How to use the data of such individuals in genomic evaluations is still an open question. In this study, we aimed at providing methodologies for the use of data from crossbred individuals with an admixed genetic background together with data from multiple pure breeds, for the purpose of genomic evaluations for both purebred and crossbred animals. A three-breed rotational crossbreeding system was mimicked using simulations based on animals genotyped with the 50 K single nucleotide polymorphism (SNP) chip. RESULTS: For purebred populations, within-breed genomic predictions generally led to higher accuracies than those from multi-breed predictions using combined data of pure breeds. Adding admixed population's (MIX) data to the combined pure breed data considering MIX as a different breed led to higher accuracies. When prediction models were able to account for breed origin of alleles, accuracies were generally higher than those from combining all available data, depending on the correlation of quantitative trait loci (QTL) effects between the breeds. Accuracies varied when using SNP effects from any of the pure breeds to predict the breeding values of MIX. Using those breed-specific SNP effects that were estimated separately in each pure breed, while accounting for breed origin of alleles for the selection candidates of MIX, generally improved the accuracies. Models that are able to accommodate MIX data with the breed origin of alleles approach generally led to higher accuracies than models without breed origin of alleles, depending on the correlation of QTL effects between the breeds. CONCLUSIONS: Combining all available data, pure breeds' and admixed population's data, in a multi-breed reference population is beneficial for the estimation of breeding values for pure breeds with a small reference population. For MIX, such an approach can lead to higher accuracies than considering breed origin of alleles for the selection candidates, and using breed-specific SNP effects estimated separately in each pure breed. Including MIX data in the reference population of multiple breeds by considering the breed origin of alleles, accuracies can be further improved. Our findings are relevant for breeding programs in which crossbreeding is systematically applied, and also for populations that involve different subpopulations and between which exchange of genetic material is routine practice.


Assuntos
Bovinos/genética , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Animais , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Endogamia , Modelos Genéticos , Locos de Características Quantitativas , Padrões de Referência , Seleção Artificial
12.
Genet Sel Evol ; 53(1): 50, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134619

RESUMO

BACKGROUND: While the adoption of genomic evaluations in livestock has increased genetic gain rates, its effects on genetic diversity and accumulation of inbreeding have raised concerns in cattle populations. Increased inbreeding may affect fitness and decrease the mean performance for economically important traits, such as fertility and growth in beef cattle, with the age of inbreeding having a possible effect on the magnitude of inbreeding depression. The purpose of this study was to determine changes in genetic diversity as a result of the implementation of genomic selection in Angus cattle and quantify potential inbreeding depression effects of total pedigree and genomic inbreeding, and also to investigate the impact of recent and ancient inbreeding. RESULTS: We found that the yearly rate of inbreeding accumulation remained similar in sires and decreased significantly in dams since the implementation of genomic selection. Other measures such as effective population size and the effective number of chromosome segments show little evidence of a detrimental effect of using genomic selection strategies on the genetic diversity of beef cattle. We also quantified pedigree and genomic inbreeding depression for fertility and growth. While inbreeding did not affect fertility, an increase in pedigree or genomic inbreeding was associated with decreased birth weight, weaning weight, and post-weaning gain in both sexes. We also measured the impact of the age of inbreeding and found that recent inbreeding had a larger depressive effect on growth than ancient inbreeding. CONCLUSIONS: In this study, we sought to quantify and understand the possible consequences of genomic selection on the genetic diversity of American Angus cattle. In both sires and dams, we found that, generally, genomic selection resulted in decreased rates of pedigree and genomic inbreeding accumulation and increased or sustained effective population sizes and number of independently segregating chromosome segments. We also found significant depressive effects of inbreeding accumulation on economically important growth traits, particularly with genomic and recent inbreeding.


Assuntos
Bovinos/genética , Endogamia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Seleção Artificial , Animais , Aptidão Genética , Depressão por Endogamia , Linhagem , Característica Quantitativa Herdável , Carne Vermelha/normas
13.
Viruses ; 13(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069965

RESUMO

In order to better understand differences in the outcome of infectious bursal disease virus (IBDV) infection, we inoculated a very virulent (vv) strain into White Leghorn chickens of inbred line W that was previously reported to experience over 24% flock mortality, and three inbred lines (15I, C.B4 and 0) that were previously reported to display no mortality. Within each experimental group, some individuals experienced more severe disease than others but line 15I birds experienced milder disease based on average clinical scores, percentage of birds with gross pathology, average bursal lesion scores and average peak bursal virus titre. RNA-Seq analysis revealed that more severe disease in line W was associated with significant up-regulation of pathways involved in inflammation, cytoskeletal regulation by Rho GTPases, nicotinic acetylcholine receptor signaling, and Wnt signaling in the bursa compared to line 15I. Primary bursal cell populations isolated from uninfected line W birds contained a significantly greater percentage of KUL01+ macrophages than cells isolated from line 15I birds (p < 0.01) and, when stimulated ex vivo with LPS, showed more rapid up-regulation of pro-inflammatory gene expression than those from line 15I birds. We hypothesize that a more rapid induction of pro-inflammatory cytokine responses in bursal cells following IBDV infection leads to more severe disease in line W birds than in line 15I.


Assuntos
Perfilação da Expressão Gênica , Vírus da Doença Infecciosa da Bursa , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/etiologia , Transcriptoma , Animais , Galinhas , Suscetibilidade a Doenças , Regulação da Expressão Gênica , Endogamia , Índice de Gravidade de Doença
14.
Genes (Basel) ; 12(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069791

RESUMO

In the North Eastern Himalayan region (NEHR) of India, maize is an important food crop. The local people cultivate the maize landraces and consume them as food. However, these landraces are deficient in ß-carotene content. Thus, we aimed to incorporate the crtRB1 gene from UMI285ß+ into the genetic background of the NEHR maize landrace, Yairipok Chujak (CAUM66), and thereby enhance the ß-carotene content through marker-assisted backcrossing (MABC). In this regard, we backcrossed and screened BC1F1 and BC2F1 plants possessing the heterozygous allele for crtRB1 and then screened with 106 polymorphic simple sequence repeat (SSR) markers. The plants having maximum recurrent parent genome recovery (RPGR) were selected in each generation and selfed to produce BC2F2 seeds. In the BC2F2 generation, four plants (CAUM66-54-9-12-2, CAUM66-54-9-12-11, CAUM66-54-9-12-13, and CAUM66-54-9-12-24) having homozygous crtRB1-favorable allele with maximum RPGR (86.74-90.16%) were selected and advanced to BC2F3. The four selected plants were selfed to produce BC2F3 and then evaluated for agronomic traits and ß-carotene content. The agronomic performance of the four lines was similar (78.83-99.44%) to that of the recurrent parent, and ß-carotene content (7.541-8.711 µg/g) was on par with the donor parent. Our study is the first to improve the ß-carotene content in NEHR maize landrace through MABC. The newly developed lines could serve as potential resources to further develop nutrition-rich maize lines and could provide genetic stock for use in breeding programs.


Assuntos
Genes de Plantas/genética , Marcadores Genéticos/genética , Zea mays/genética , beta Caroteno/genética , Alelos , Endogamia/métodos , Índia , Repetições de Microssatélites/genética , Fenótipo , Melhoramento Vegetal/métodos , Polimorfismo Genético/genética
15.
BMC Ecol Evol ; 21(1): 125, 2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147062

RESUMO

BACKGROUND: Populations living in fragmented habitats may suffer from loss of genetic variation and reduced between-patch dispersal, which are processes that can result in genetic differentiation. This occurs frequently in species with reduced mobility, whereas genetic differentiation is less common among mobile species such as migratory birds. The high dispersal capacity in the latter species usually allows for gene flow even in fragmented landscapes. However, strongly philopatric behaviour can reinforce relative isolation and the degree of genetic differentiation. The Southern Dunlin (Calidris alpina schinzii) is a philopatric, long-distance migratory shorebird and shows reduced dispersal between isolated breeding patches. The endangered population of the Southern Dunlin breeding at the Baltic Sea has suffered from habitat deterioration and fragmentation of coastal meadows. We sampled DNA across the entire population and used 12 polymorphic microsatellite loci to examine whether the environmental changes have resulted in genetic structuring and loss of variation. RESULTS: We found a pattern of isolation-by-distance across the whole Baltic population and genetic differentiation between local populations, even within the southern Baltic. Observed heterozygosity was lower than expected throughout the range and internal relatedness values were positive indicating inbreeding. CONCLUSIONS: Our results provide long-term, empirical evidence for the theoretically expected links between habitat fragmentation, population subdivision, and gene flow. They also demonstrate a rare case of genetic differentiation between populations of a long-distance migratory species. The Baltic Southern Dunlin differs from many related shorebird species that show near panmixia, reflecting its philopatric life history and the reduced connectivity of its breeding patches. The results have important implications as they suggest that reduced connectivity of breeding habitats can threaten even long-distance migrants if they show strong philopatry during breeding. The Baltic Southern Dunlin warrants urgent conservation efforts that increase functional connectivity and gene flow between breeding areas.


Assuntos
Fluxo Gênico , Variação Genética , Ecossistema , Deriva Genética , Humanos , Endogamia
16.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072515

RESUMO

Today, agricultural productivity is essential to meet the needs of a growing population, and is also a key tool in coping with climate change. Innovative plant breeding technologies such as molecular markers, phenotyping, genotyping, the CRISPR/Cas method and next-generation sequencing can help agriculture meet the challenges of the 21st century more effectively. Therefore, the aim of the research was to identify single-nucleotide polymorphisms (SNPs) and SilicoDArT markers related to select morphological features determining the yield in maize. The plant material consisted of ninety-four inbred lines of maize of various origins. These lines were phenotyped under field conditions. A total of 14 morphological features was analyzed. The DArTseq method was chosen for genotyping because this technique reduces the complexity of the genome by restriction enzyme digestion. Subsequently, short fragment sequencing was used. The choice of a combination of restrictases allowed the isolation of highly informative low copy fragments of the genome. Thanks to this method, 90% of the obtained DArTseq markers are complementary to the unique sequences of the genome. All the observed features were normally distributed. Analysis of variance indicated that the main effect of lines was statistically significant (p < 0.001) for all 14 traits of study. Thanks to the DArTseq analysis with the use of next-generation sequencing (NGS) in the studied plant material, it was possible to identify 49,911 polymorphisms, of which 33,452 are SilicoDArT markers and the remaining 16,459 are SNP markers. Among those mentioned, two markers associated with four analyzed traits deserved special attention: SNP (4578734) and SilicoDArT (4778900). SNP marker 4578734 was associated with the following features: anthocyanin coloration of cob glumes, number of days from sowing to anthesis, number of days from sowing to silk emergence and anthocyanin coloration of internodes. SilicoDArT marker 4778900 was associated with the following features: number of days from sowing to anthesis, number of days from sowing to silk emergence, tassel: angle between the axis and lateral branches and plant height. Sequences with a length of 71 bp were used for physical mapping. The BLAST and EnsemblPlants databases were searched against the maize genome to identify the positions of both markers. Marker 4578734 was localized on chromosome 7, the closest gene was Zm00001d022467, approximately 55 Kb apart, encoding anthocyanidin 3-O-glucosyltransferase. Marker 4778900 was located on chromosome 7, at a distance of 45 Kb from the gene Zm00001d045261 encoding starch synthase I. The latter observation indicated that these flanking SilicoDArT and SNP markers were not in a state of linkage disequilibrium.


Assuntos
Mapeamento Cromossômico , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Zea mays/anatomia & histologia , Zea mays/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Endogamia , Filogenia , Melhoramento Vegetal , Locos de Características Quantitativas
17.
BMC Res Notes ; 14(1): 241, 2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34176488

RESUMO

OBJECTIVE: Domestication of wild animals results in a reduction in the effective population size, and this could affect the deleterious mutation load of domesticated breeds. Furthermore, artificial selection will also contribute to the accumulation of deleterious mutations due to the increased rate of inbreeding among these animals. The process of domestication, founder population size, and artificial selection differ between cattle breeds, which could lead to a variation in their deleterious mutation loads. We investigated this using mitochondrial genome data from 364 animals belonging to 18 cattle breeds of the world. RESULTS: Our analysis revealed more than a fivefold difference in the deleterious mutation load among cattle breeds. We also observed a negative correlation between the breed age and the proportion of deleterious amino acid-changing polymorphisms. This suggests a proportionally higher deleterious SNPs in young breeds compared to older breeds. Our results highlight the magnitude of difference in the deleterious mutations present in the mitochondrial genomes of various breeds. The results of this study could be useful in predicting the rate of incidence of genetic diseases in different breeds.


Assuntos
Genoma Mitocondrial , Animais , Bovinos , Variação Genética , Endogamia , Mutação , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
18.
Am J Bot ; 108(6): 980-992, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34114217

RESUMO

PREMISE: Inbreeding depression, or the reduction in fitness of progeny with related parents, has the potential to adversely affect the long-term viability of both wild and captive plant populations. Silphium integrifolium, a prairie plant native to the central United States, has been identified as a potential candidate for domestication as a perennial oilseed crop. Little is known about the potential for inbreeding depression in this species, but it is expected to be nonnegligible because S. integrifolium is both perennial and self-incompatible. Here, we measure lethal inbreeding depression expressed through embryo deaths, and nonlethal inbreeding depression expressed through changes in vigor and fitness phenotypes of progeny. METHODS: First, we made controlled crosses among related and unrelated individuals to determine the effect of two different levels of inbreeding on seed production. Then, we grew inbred and outbred progeny from this population to reproductive maturity and measured 11 key traits. RESULTS: We found that within an improved S. integrifolium population, individuals carried an average of slightly less than one lethal allele per gamete. In progeny, significant inbreeding depression was observed in at least one family for eight of the 11 measured traits. CONCLUSIONS: Inbreeding depression is likely to be an important challenge to S. integrifolium domestication, reducing overall population fecundity and values for important phenotypes. These effects may grow worse as selection reduces effective population size. We recommend several strategies for S. integrifolium breeding to help mitigate these problems.


Assuntos
Asteraceae , Depressão por Endogamia , Domesticação , Endogamia , Melhoramento Vegetal
19.
BMC Plant Biol ; 21(1): 251, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078286

RESUMO

BACKGROUND: Besides the use of maize grain as food and feed, maize stover can be a profitable by-product for cellulosic ethanol production, whereas the whole plant can be used for silage production. However, yield is reduced by pest damages, stem corn borers being one of the most important yield constraints. Overall, cell wall composition is key in determining the quality of maize biomass, as well as pest resistance. This study aims to evaluate the composition of the four cell wall fractions (cellulose, hemicellulose, lignin and hydroxycinnamates) in diverse maize genotypes and to understand how this composition influences the resistance to pests, ethanol capacity and digestibility. RESULTS: The following results can be highlighted: (i) pests' resistant materials may show cell walls with low p-coumaric acid and low hemicellulose content; (ii) inbred lines showing cell walls with high cellulose content and high diferulate cross-linking may present higher performance for ethanol production; (iii) and inbreds with enhanced digestibility may have cell walls poor in neutral detergent fibre and diferulates, combined with a lignin polymer composition richer in G subunits. CONCLUSIONS: Results evidence that there is no maize cell wall ideotype among the tested for optimal performance for various uses, and maize plants should be specifically bred for each particular application.


Assuntos
Parede Celular/química , Endogamia , Zea mays/genética , Zea mays/fisiologia , Parede Celular/fisiologia , Celulose/química , Celulose/metabolismo , Ácidos Cumáricos , Lignina/química , Lignina/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo
20.
J Dairy Sci ; 104(9): 10040-10048, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34147228

RESUMO

Our study investigated the inbreeding load for fertility traits in the Italian Brown Swiss dairy cattle breed. Fertility traits included continuous traits (i.e., interval from calving to first service, days open, and calving interval) and categorical traits (i.e., calving rate at first insemination and nonreturn date at d 56). We included only records of the first 3 parities of cows that calved between 2010 and 2018. We traced up the pedigree of the cows with records as far as possible, ending up with a total of 73,246 animals. The final data set consisted of 59,864 records from 34,921 cows. We analyzed all models using a Bayesian approach that included a covariate with total inbreeding in addition to systematic, permanent environment, additive genetic, and inbreeding load effects. We then evaluated the trends in heritabilities and ratios of the inbreeding load using a continuum of partial inbreeding coefficients from 0.001 to 0.100 as reference. Posterior estimates of heritabilities tended to decrease across the continuum, whereas ratios of the inbreeding load tended to increase, more noticeably in categorical traits (calving rate at first insemination and nonreturn date at d 56). From the results obtained, we confirmed the presence of heterogeneity in inbreeding depression. We then predicted the inbreeding load effects, which had a low reliability of prediction, explained by having only 513 ancestors generating inbreeding. However, reliability of prediction was high enough for some of the individuals, obtaining a favorable prediction of inbreeding load for a relevant percentage, which improved the phenotypic performance of their inbred descendants. These results make it feasible to implement breeding and management strategies that select ancestors with a favorable inbreeding load prediction. In addition, it opens the possibility to define a global index for the expected consequences of the inbreeding generated by each individual.


Assuntos
Endogamia , Lactação , Animais , Teorema de Bayes , Bovinos/genética , Feminino , Fertilidade/genética , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...