Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.666
Filtrar
1.
Sci Rep ; 14(1): 12610, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824161

RESUMO

Inbreeding depression, the loss of offspring fitness due to consanguineous mating, is generally detrimental for individual performance and population viability. We investigated inbreeding effects in a declining population of Antarctic fur seals (Arctocephalus gazella) at Bird Island, South Georgia. Here, localised warming has reduced the availability of the seal's staple diet, Antarctic krill, leading to a temporal increase in the strength of selection against inbred offspring, which are increasingly failing to recruit into the adult breeding population. However, it remains unclear whether selection operates before or after nutritional independence at weaning. We therefore used microsatellite data from 885 pups and their mothers, and SNP array data from 98 mother-offspring pairs, to quantify the effects of individual and maternal inbreeding on three important neonatal fitness traits: birth mass, survival and growth. We did not find any clear or consistent effects of offspring or maternal inbreeding on any of these traits. This suggests that selection filters inbred individuals out of the population as juveniles during the time window between weaning and recruitment. Our study brings into focus a poorly understood life-history stage and emphasises the importance of understanding the ecology and threats facing juvenile pinnipeds.


Assuntos
Otárias , Depressão por Endogamia , Animais , Otárias/fisiologia , Otárias/genética , Regiões Antárticas , Feminino , Masculino , Endogamia , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Peso ao Nascer/genética
2.
Sci Rep ; 14(1): 10803, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734771

RESUMO

The northern giant hornet Vespa mandarinia (NGH) is a voracious predator of other insect species, including honey bees. NGH's native range spans subtropical and temperate regions across much of east and southeast Asia and, in 2019, exotic populations of the species were discovered in North America. Despite this broad range and invasive potential, investigation of the population genomic structure of NGH across its native and introduced ranges has thus far been limited to a small number of mitochondrial samples. Here, we present analyses of genomic data from NGH individuals collected across the species' native range and from exotic individuals collected in North America. We provide the first survey of whole-genome population variation for any hornet species, covering this species' native and invasive ranges, and in doing so confirm likely origins in Japan and South Korea for the two introductions. We additionally show that, while this introduced population exhibited strongly elevated levels of inbreeding, these signatures of inbreeding are also present in some long-standing native populations, which may indicate that inbreeding depression alone is insufficient to prevent the persistence of NGH populations. As well as highlighting the importance of ongoing monitoring and eradication efforts to limit the spread of this species outside of its natural range, our data will serve as a foundational database for future genomic studies into introduced hornet populations.


Assuntos
Espécies Introduzidas , Vespas , Animais , América do Norte , Vespas/genética , Genética Populacional , Genômica/métodos , Variação Genética , Endogamia , Genoma de Inseto
3.
Animal ; 18(5): 101159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718700

RESUMO

Inbreeding plays a crucial role in livestock breeding, influencing genetic diversity and phenotypic traits. Genomic data have helped address limitations posed by incomplete pedigrees, providing deeper insights into breed genetic diversity. This study assesses inbreeding levels via pedigree and genomic approaches and analyzes old and recent inbreeding using runs of homozygosity (ROH), and selection signals in Alpine Grey cattle. Pedigree data from 165 575 individuals, analyzed with INBUPGF90 software, computed inbreeding coefficients. Genomic-based coefficients derived from PLINK v1.9. or DetectRUNS R package analyses of 1 180 individuals' genotypes. Common single nucleotide polymorphisms within ROH pinpointed genomic regions, aggregating into "ROH islands" indicative of selection pressure. Overlaps with USCS Genome Browser unveiled gene presence. Moderate correlations (0.20-0.54) existed between pedigree and genomic coefficients, with most genomic estimators having higher (>0.8) correlation values. Inbreeding averaged 0.04 in < 8 Mb ROH segments, and 0.03 in > 16 Mb segments; > 90% of ROHs were < 8 Mb, indicating ancient inbreeding prevalence. Recent inbreeding proved less detrimental than in cosmopolitan breeds. Two major ROH islands on chromosomes 6 and 7 harbored genes linked to immune response, disease resistance (PYURF, HERC3), and fertility (EIF4EBP3, SRA1). This study underscores the need for detailed inbreeding analyses to understand genetic characteristics and historical changes in local breeds like Alpine Grey cattle. Genomic insights, especially from ROH, facilitated overcoming pedigree limitations, illuminating breed genetic diversity. Our findings reveal ancient inbreeding's enduring genetic impact and ROH islands potential for selective sweeps, elucidating traits in Alpine Grey cattle.


Assuntos
Genótipo , Endogamia , Linhagem , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Bovinos/genética , Feminino , Masculino , Homozigoto , Variação Genética , Genômica , Cruzamento , Genoma , Fenótipo
4.
Mol Biol Evol ; 41(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696269

RESUMO

This perspective article offers a meditation on FST and other quantities developed by Sewall Wright to describe the population structure, defined as any departure from reproduction through random union of gametes. Concepts related to the F-statistics draw from studies of the partitioning of variation, identity coefficients, and diversity measures. Relationships between the first two approaches have recently been clarified and unified. This essay addresses the third pillar of the discussion: Nei's GST and related measures. A hierarchy of probabilities of identity-by-state provides a description of the relationships among levels of a structured population with respect to genetic diversity. Explicit expressions for the identity-by-state probabilities are determined for models of structured populations undergoing regular inbreeding and recurrent mutation. Levels of genetic diversity within and between subpopulations reflect mutation as well as migration. Accordingly, indices of the population structure are inherently locus-specific, contrary to the intentions of Wright. Some implications of this locus-specificity are explored.


Assuntos
Variação Genética , Genética Populacional , Modelos Genéticos , Genética Populacional/métodos , Mutação , Endogamia
5.
Genes (Basel) ; 15(5)2024 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-38790199

RESUMO

The Hetian Qing donkey is an excellent local donkey breed in Xinjiang. It is of great significance to accelerate breeding and the speed of breeding and rejuvenation, as well as to understand the genetic basis of the strategies and population. This study collected a total of 4 male donkeys and 28 female donkeys. It then obtained genotype data through Simplified Genomic Sequencing (GBS) technology for data analysis. The results detected a total of 55,399 SNP loci, and the genotype detection rate of individuals was ≥90%. A total of 45,557 SNP loci were identified through quality control, of which 95.5% were polymorphic. The average minimum allele frequency was 0.250. The average observed heterozygosity was 0.347. The average expected heterozygosity was 0.340. The average IBS (state homologous) genetic distance was 0.268. ROH: 49 (homozygous fragments), with 73.47% of the length between 1 and 5 Mb. The average per-strip ROH length was 1.75 Mb. The mean inbreeding coefficient was 0.003. The 32 Hetian green donkeys could be divided into six families. The number of individuals in each family is significant. To sum up, the Hetian Qing donkey population has low heterozygosity, few families, and large differences in the number of individuals in each family, which can easily cause a loss of genetic diversity. In the subsequent process of seed protection, seed selection should be conducted according to the divided pedigree to ensure the long-term protection of the genetic resources of Hetian green donkeys.


Assuntos
Equidae , Endogamia , Polimorfismo de Nucleotídeo Único , Animais , Equidae/genética , Masculino , Feminino , Frequência do Gene , Genoma/genética , Sequenciamento Completo do Genoma/métodos , Cruzamento , Heterozigoto , Genótipo
6.
Genome Biol Evol ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38795368

RESUMO

Understanding how deleterious variation is shaped and maintained in natural populations is important in conservation and evolutionary biology, as decreased fitness caused by these deleterious mutations can potentially lead to an increase in extinction risk. It is known that demographic processes can influence these patterns. For example, population bottlenecks and inbreeding increase the probability of inheriting identical-by-descent haplotypes from a recent common ancestor, creating long tracts of homozygous genotypes called runs of homozygosity (ROH), which have been associated with an accumulation of mildly deleterious homozygotes. Counterintuitively, positive selection can also maintain deleterious variants in a population through genetic hitchhiking. Here, we analyze the whole genomes of 79 wild Chinese rhesus macaques across five subspecies and characterize patterns of deleterious variation with respect to ROH and signals of recent positive selection. We show that the fraction of homozygotes occurring in long ROH is significantly higher for deleterious homozygotes than tolerated ones, whereas this trend is not observed for short and medium ROH. This confirms that inbreeding, by generating these long tracts of homozygosity, is the main driver of the high burden of homozygous deleterious alleles in wild macaque populations. Furthermore, we show evidence that homozygous LOF variants are being purged. Next, we identify seven deleterious variants at high frequency in regions putatively under selection near genes involved with olfaction and other processes. Our results shed light on how evolutionary processes can shape the distribution of deleterious variation in wild nonhuman primates.


Assuntos
Homozigoto , Macaca mulatta , Animais , Macaca mulatta/genética , Seleção Genética , Variação Genética , Endogamia
7.
Anim Biotechnol ; 35(1): 2349625, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38733367

RESUMO

This study aimed to evaluate the genetic diversity and structure within the Dengchuan cattle population and effectively protect and utilize their germplasm resources. Herein, the single-nucleotide polymorphisms (SNPs) of 100 Dengchuan cattle (46 bulls and 54 cows) were determined using the GGP Bovine 100K SNP Beadchip. The results showed that among the Dengchuan cattle, a total of 101,220 SNPs were detected, and there were 83,534 SNPs that passed quality control, of which 85.7% were polymorphic. The average genetic distance based on identity-by-state (IBS) within the conservation population of Dengchuan cattle was 0.26 ± 0.02. A total of 3,999 genome-length runs of homozygosity (ROHs) were detected in the Dengchuan cattle, with ROH lengths primarily concentrated in the range of 1-5 Mb, accounting for 87.02% of the total. The average inbreeding coefficient based on ROHs was 4.6%, within the conservation population of Dengchuan cattle, whereas it was 4.9% for bulls, and the Wright inbreeding coefficient (FIS) value was 2.4%, demonstrating a low level of inbreeding within the Dengchuan cattle population. Based on neighbor-joining tree analysis, the Dengchuan cattle could be divided into 16 families. In summary, the conservation population of Dengchuan cattle displays relatively abundant diversity and a moderate genetic relationship. Inbreeding was observed among a few individuals, but the overall inbreeding level of the population remained low. It is important to maintain this low level of inbreeding when introducing purebred bloodlines to expand the core group. This approach will ensure the long-term conservation of Dengchuan cattle germplasm resources and prevent loss of genetic diversity.


Assuntos
Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Polimorfismo de Nucleotídeo Único/genética , Variação Genética , Espécies em Perigo de Extinção , Masculino , Endogamia , Feminino , Genética Populacional , China
8.
PLoS One ; 19(5): e0302584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709757

RESUMO

The North African catfish (Clarias gariepinus) is a significant species in aquaculture, which is crucial for ensuring food and nutrition security. Their high adaptability to diverse environments has led to an increase in the number of farms that are available for their production. However, long-term closed breeding adversely affects their reproductive performance, leading to a decrease in production efficiency. This is possibly caused by inbreeding depression. To investigate the root cause of this issue, the genetic diversity of captive North African catfish populations was assessed in this study. Microsatellite genotyping and mitochondrial DNA D-loop sequencing were applied to 136 catfish specimens, collected from three populations captured for breeding in Thailand. Interestingly, extremely low inbreeding coefficients were obtained within each population, and distinct genetic diversity was observed among the three populations, indicating that their genetic origins are markedly different. This suggests that outbreeding depression by genetic admixture among currently captured populations of different origins may account for the low productivity of the North African catfish in Thailand. Genetic improvement of the North African catfish populations is required by introducing new populations whose origins are clearly known. This strategy should be systematically integrated into breeding programs to establish an ideal founder stock for selective breeding.


Assuntos
Peixes-Gato , DNA Mitocondrial , Variação Genética , Endogamia , Repetições de Microssatélites , Animais , Peixes-Gato/genética , Tailândia , Repetições de Microssatélites/genética , DNA Mitocondrial/genética , Genótipo , Aquicultura , População do Norte da África
9.
Mol Ecol ; 33(12): e17375, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38699973

RESUMO

Assessing direct fitness effects of individual genetic diversity is challenging due to the intensive and long-term data needed to quantify survival and reproduction in the wild. But resolving these effects is necessary to determine how inbreeding and outbreeding influence eco-evolutionary processes. We used 8 years of capture-recapture data and single nucleotide polymorphism genotypes for 1906 individuals to test for effects of individual heterozygosity on stage-specific survival probabilities in the salamander Gyrinophilus porphyriticus. The life cycle of G. porphyriticus includes an aquatic larval stage followed by metamorphosis into a semi-aquatic adult stage. In our study populations, the larval stage lasts 6-10 years, metamorphosis takes several months, and lifespan can reach 20 years. Previous studies showed that metamorphosis is a sensitive life stage, leading us to predict that fitness effects of individual heterozygosity would occur during metamorphosis. Consistent with this prediction, monthly probability of survival during metamorphosis declined with multi-locus heterozygosity (MLH), from 0.38 at the lowest MLH (0.10) to 0.06 at the highest MLH (0.38), a reduction of 84%. Body condition of larvae also declined significantly with increasing MLH. These relationships were consistent in the three study streams. With evidence of localised inbreeding within streams, these results suggest that outbreeding disrupts adaptations in pre-metamorphic and metamorphic individuals to environmental gradients along streams, adding to evidence that headwater streams are hotspots of microgeographic adaptation. Our results also underscore the importance of incorporating life history in analyses of the fitness effects of individual genetic diversity and suggest that metamorphosis and similar discrete life stage transitions may be critical periods of viability selection.


Assuntos
Larva , Metamorfose Biológica , Urodelos , Animais , Metamorfose Biológica/genética , Urodelos/genética , Urodelos/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Heterozigoto , Rios , Aptidão Genética , Genética Populacional , Endogamia , Variação Genética
10.
Methods Mol Biol ; 2787: 169-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656489

RESUMO

Genetic maps are an excellent tool for the analysis of important traits, the development of which is the result of the combined expression of several genes, enabling the genomic localization of the factors determining them. Such features, characterized by a normal distribution of values, are referred to as quantitative or polygenic. The analysis of their genetic background using a chromosome map is called the mapping of quantitative traits loci (QTL). QTL analysis is a statistical method of determining the genetic association of phenotypic data (trait measurements) with genotypic data (DNA markers assigned to linkage groups).There are numerous tools developed for QTL mapping. This chapter introduces Windows QTL Cartographer with Composite Interval Mapping (CIM) method, which estimates the QTL position by combining interval mapping with multiple regression. The genotypic and phenotypic data used in the exemplary QTL mapping procedure were obtained for the recombinant inbred line (RIL) population of rye. Plant height, assessed in three seasons, was the exemplary trait under study.


Assuntos
Mapeamento Cromossômico , Fenótipo , Locos de Características Quantitativas , Mapeamento Cromossômico/métodos , Genótipo , Ligação Genética , Software , Endogamia , Cromossomos de Plantas/genética
11.
Proc Biol Sci ; 291(2020): 20232617, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593844

RESUMO

When populations repeatedly adapt to similar environments they can evolve similar phenotypes based on shared genetic mechanisms (parallel evolution). The likelihood of parallel evolution is affected by demographic history, as it depends on the standing genetic variation of the source population. The three-spined stickleback (Gasterosteus aculeatus) repeatedly colonized and adapted to brackish and freshwater. Most parallel evolution studies in G. aculeatus were conducted at high latitudes, where freshwater populations maintain connectivity to the source marine populations. Here, we analysed southern and northern European marine and freshwater populations to test two hypotheses. First, that southern European freshwater populations (which currently lack connection to marine populations) lost genetic diversity due to bottlenecks and inbreeding compared to their northern counterparts. Second, that the degree of genetic parallelism is higher among northern than southern European freshwater populations, as the latter have been subjected to strong drift due to isolation. The results show that southern populations exhibit lower genetic diversity but a higher degree of genetic parallelism than northern populations. Hence, they confirm the hypothesis that southern populations have lost genetic diversity, but this loss probably happened after they had already adapted to freshwater conditions, explaining the high degree of genetic parallelism in the south.


Assuntos
Água Doce , Smegmamorpha , Animais , Smegmamorpha/genética , Endogamia , Variação Genética
12.
Sci Rep ; 14(1): 9151, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644368

RESUMO

Limited commercial quality protein maize (QPM) varieties with low grain yield potential are currently grown in Eastern and Southern Africa (ESA). This study was conducted to (i) assess the performance of single-cross QPM hybrids that were developed from elite inbred lines using line-by-tester mating design and (ii) estimate the general (GCA) and specific (SCA) combining ability of the QPM inbred lines for grain yield, agronomic and protein quality traits. One hundred and six testcrosses and four checks were evaluated across six environments in ESA during 2015 and 2016. Significant variations (P ≤ 0.01) were observed among environments, genotypes and genotype by environment interaction (GEI) for most traits evaluated. Hybrids H80 and H104 were the highest-yielding, most desirable, and stable QPM hybrids. Combining ability analysis showed both additive and non-additive gene effects to be important in the inheritance of grain yield. Additive effects were more important for agronomic and protein quality traits. Inbred lines L19 and L20 depicted desirable GCA effects for grain yield. Various other inbred lines with favorable GCA effects for agronomic traits, endosperm modification, and protein quality traits were identified. These inbred lines could be utilized for breeding desirable QPM cultivars. The QPM hybrids identified in this study could be commercialized after on-farm verification to replace the low-yielding QPM hybrids grown in ESA.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , África Austral , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , África Oriental , Genótipo , Cruzamentos Genéticos , Endogamia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Mol Ecol ; 33(9): e17346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581173

RESUMO

Wildlife populations are becoming increasingly fragmented by anthropogenic development. Small and isolated populations often face an elevated risk of extinction, in part due to inbreeding depression. Here, we examine the genomic consequences of urbanization in a caracal (Caracal caracal) population that has become isolated in the Cape Peninsula region of the City of Cape Town, South Africa, and is thought to number ~50 individuals. We document low levels of migration into the population over the past ~75 years, with an estimated rate of 1.3 effective migrants per generation. As a consequence of this isolation and small population size, levels of inbreeding are elevated in the contemporary Cape Peninsula population (mean FROH = 0.20). Inbreeding primarily manifests as long runs of homozygosity >10 Mb, consistent with the effects of isolation due to the rapid recent growth of Cape Town. To explore how reduced migration and elevated inbreeding may impact future population dynamics, we parameterized an eco-evolutionary simulation model. We find that if migration rates do not change in the future, the population is expected to decline, though with a low projected risk of extinction. However, if migration rates decline or anthropogenic mortality rates increase, the potential risk of extinction is greatly elevated. To avert a population decline, we suggest that translocating migrants into the Cape Peninsula to initiate a genetic rescue may be warranted in the near future. Our analysis highlights the utility of genomic datasets coupled with computational simulation models for investigating the influence of gene flow on population viability.


Assuntos
Fluxo Gênico , Genética Populacional , Endogamia , Dinâmica Populacional , Animais , África do Sul , Densidade Demográfica , Urbanização , Migração Animal
14.
Proc Natl Acad Sci U S A ; 121(19): e2315780121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687793

RESUMO

Measuring inbreeding and its consequences on fitness is central for many areas in biology including human genetics and the conservation of endangered species. However, there is no consensus on the best method, neither for quantification of inbreeding itself nor for the model to estimate its effect on specific traits. We simulated traits based on simulated genomes from a large pedigree and empirical whole-genome sequences of human data from populations with various sizes and structures (from the 1,000 Genomes project). We compare the ability of various inbreeding coefficients ([Formula: see text]) to quantify the strength of inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes which differ in the weight they attribute to each locus and two identical-by-descent segments-based estimators. We also compare two models: the standard linear model and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as random effect to account for the nonindependence of observations. We find LMMs give better results in scenarios with population or family structure. Within the LMM, we compare three different GRMs and show that in homogeneous populations, there is little difference among the different [Formula: see text] and GRM for inbreeding depression quantification. However, as soon as a strong population or family structure is present, the strength of inbreeding depression can be most efficiently estimated only if i) the phenotypes are regressed on [Formula: see text] based on a weighted version of the correlation of uniting gametes, giving more weight to common alleles and ii) with the GRM obtained from an allele-sharing relatedness estimator.


Assuntos
Depressão por Endogamia , Modelos Genéticos , Humanos , Linhagem , Genética Populacional/métodos , Endogamia , Alelos
15.
Animal ; 18(5): 101137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626707

RESUMO

The P of achieving pregnancy is an important trait of bull fertility in beef cattle and is defined as the bull conception rate (BCR). This study aimed to clarify and better understand the genetic architecture of the BCR calculated using artificial insemination and pregnancy diagnosis records from a progeny testing program in Japanese Black bulls. In this study, we estimated the genetic parameters of the BCR and their correlation with semen production traits. In addition, we assessed the correlated responses in BCR by considering the selection of semen production traits. Nine hundred and sixteen Japanese Black bulls were selected based on fertility, with 28 869 pregnancy diagnostic records from the progeny testing program. Our results showed that the heritability estimate was 0.04 in the BCR at the first service and 0.14 in BCR for the three services, and an increase in the inbreeding coefficient led to a significant decrease in BCR. The phenotypic trend of BCR remained almost constant over the years, whereas the genetic trend increased. In addition, the changes in the progeny testing year effect showed a similar tendency to the phenotypic trends, suggesting that the phenotypic trends could be mainly due to non-genetic effects, including progeny testing year effects. The estimated genetic correlation of BCR with sperm motility traits was favorably moderate to high (ranging from 0.49 to 0.97), and those with sperm quantity traits such as semen volume were favorably low to moderate (ranging from 0.23 to 0.51). In addition, the correlated responses in BCR at the first service by selection for sperm motility traits resulted in a higher genetic gain than direct selection. This study provides new insights into the genetic factors affecting BCR and the possibility of implementing genetic selection to improve BCR by selecting sperm motility traits in Japanese Black bulls.


Assuntos
Fertilidade , Inseminação Artificial , Sêmen , Animais , Bovinos/genética , Bovinos/fisiologia , Masculino , Sêmen/fisiologia , Feminino , Inseminação Artificial/veterinária , Fertilidade/genética , Fertilização/genética , Gravidez , Motilidade dos Espermatozoides/genética , Fenótipo , Cruzamento , Análise do Sêmen/veterinária , Endogamia
16.
Animal ; 18(5): 101148, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642411

RESUMO

With a history tracing back to at least the 18th century and a substantial global influence on various breeds, Polish Arabian horse population is of paramount importance for both breeders and conservationists. However, its genetic makeup and the population dynamics are still not well understood. This study presents an analysis of the modern Polish Arabian horse population using pedigree data, focusing on the breed's genetic diversity and population structure. Our analysis encompassed 1 498 individuals defined as the reference population (RP) and their 11 065 ancestors, which resulted in the dataset of 12 254 individuals (total population). We traced their genealogy to assess inbreeding coefficients (F), founder effects, and genetic variability measures such as the effective number of founders (fe), ancestors (fa), or founder genome equivalents (fge). The results indicated a good pedigree quality with an average of 28.1 maximum traced generations, revealing high pedigree completeness for initial generations with a decline beyond the seventh generation. The genetic diversity parameters showed a considerable bottleneck effect, with an effective number of founders at 73, which reflects a substantial loss of genetic diversity over time. Despite the vast total number of founders (852), only a few have had a lasting impact on the current population, signaling the need for revised breeding strategies to maintain diversity. The study identified a slight but consistent rise in inbreeding over the last century, with a marginal recent decline, and a significant difference in the contribution of various founders. The average F was 5.8%, with 99.6% of the reference population being inbred. The analysis of effective population size (Ne) highlighted potential risks for genetic diversity, urging for revision of breeding goals to consider a wider array of founder lineages. The study indicated that stallions belonging to RP can be attributed to 15 distinct sirelines, whereas mares to 45 unique damlines, more than considered in the current breeding program (8 and 15, respectively). Conclusively, the study underlines the need for ongoing monitoring and strategic breeding to maintain and enhance the genetic diversity of Polish Arabians, considering the breed's historical significance and contemporary genetic challenges.


Assuntos
Variação Genética , Endogamia , Linhagem , Animais , Cavalos/genética , Polônia , Masculino , Feminino , Cruzamento , Efeito Fundador , Genética Populacional , Dinâmica Populacional
17.
Trop Anim Health Prod ; 56(4): 132, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642253

RESUMO

The objectives of this study were to evaluate the influence of inbreeding on growth traits and body measurements, as well as on the estimation of genetic parameters and genetic trends in Guzerá cattle. Phenotypic records of 4,212 animals selected for postweaning weight from Guzerá Breeding Program of Advanced Beef Cattle Research Center were utilized. The pedigree file contained records from 7,213 animals born from 1928 to 2019. The traits analyzed were: birth weight (BW), weights adjusted to 210, 378 and 550 days of age (W210, W378 and W550, respectively), chest girth at 378 and 550 days of age (CG378 and CG550), scrotal circumference (SC), and hip height at 378 and 550 days of age (HH378 and H550). Linear regression was used to evaluate the effects of inbreeding on traits. Genetic parameters were obtained using models including or not the effect of inbreeding as a covariate. Inbreeding had negative effects (P ≤ 0.01) on BW (-0.09 kg), W378 (-2.86 kg), W550 (-2.95 kg), HH378 (-0.10 cm), and H550 (-0.29 cm). The lowest and highest heritability estimates were obtained for W210 (0.21 ± 0.07) and HH550 (0.57 ± 0.06), respectively. The genetic correlations were strong and positive between all traits, ranging from 0.44 ± 0.08 (SC x HH) to 0.99 ± 0.01 (W378 x W550). Spearman correlations between EBVs obtained with or without inbreeding effect ranged from 0.968 to 0.995 (P < 0.01). The results indicate loss of productive performance in inbred animals. However, the inclusion of inbreeding coefficient in genetic evaluation models did not alter the magnitude of genetic parameters or genetic trends for the traits studied.


Assuntos
Endogamia , Clima Tropical , Gravidez , Feminino , Bovinos/genética , Animais , Fenótipo , Parto , Peso ao Nascer
18.
Am J Primatol ; 86(7): e23630, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655843

RESUMO

The marmoset is a fundamental nonhuman primate model for the study of aging, neurobiology, and many other topics. Genetic management of captive marmoset colonies is complicated by frequent chimerism in the blood and other tissues, a lack of tools to enable cost-effective, genome-wide interrogation of variation, and historic mergers and migrations of animals between colonies. We implemented genotype-by-sequencing (GBS) of hair follicle derived DNA (a minimally chimeric DNA source) of 82 marmosets housed at the Southwest National Primate Research Center (SNPRC). Our primary goals were the genetic characterization of our marmoset population for pedigree verification and colony management and to inform the scientific community of the functional genetic makeup of this valuable resource. We used the GBS data to reconstruct the genetic legacy of recent mergers between colonies, to identify genetically related animals whose relationships were previously unknown due to incomplete pedigree information, and to show that animals in the SNPRC colony appear to exhibit low levels of inbreeding. Of the >99,000 single-nucleotide variants (SNVs) that we characterized, >9800 are located within gene regions known to harbor pathogenic variants of clinical significance in humans. Overall, we show the combination of low-resolution (sparse) genotyping using hair follicle DNA is a powerful strategy for the genetic management of captive marmoset colonies and for identifying potential SNVs for the development of biomedical research models.


Assuntos
Callithrix , Genótipo , Linhagem , Animais , Callithrix/genética , Masculino , Feminino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Endogamia , Folículo Piloso , Técnicas de Genotipagem/métodos , Técnicas de Genotipagem/veterinária
19.
Mol Ecol ; 33(11): e17353, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38613250

RESUMO

Effective population size (Ne) is a particularly useful metric for conservation as it affects genetic drift, inbreeding and adaptive potential within populations. Current guidelines recommend a minimum Ne of 50 and 500 to avoid short-term inbreeding and to preserve long-term adaptive potential respectively. However, the extent to which wild populations reach these thresholds globally has not been investigated, nor has the relationship between Ne and human activities. Through a quantitative review, we generated a dataset with 4610 georeferenced Ne estimates from 3829 populations, extracted from 723 articles. These data show that certain taxonomic groups are less likely to meet 50/500 thresholds and are disproportionately impacted by human activities; plant, mammal and amphibian populations had a <54% probability of reaching N ̂ e = 50 and a <9% probability of reaching N ̂ e = 500. Populations listed as being of conservation concern according to the IUCN Red List had a smaller median N ̂ e than unlisted populations, and this was consistent across all taxonomic groups. N ̂ e was reduced in areas with a greater Global Human Footprint, especially for amphibians, birds and mammals, however relationships varied between taxa. We also highlight several considerations for future works, including the role that gene flow and subpopulation structure plays in the estimation of N ̂ e in wild populations, and the need for finer-scale taxonomic analyses. Our findings provide guidance for more specific thresholds based on Ne and help prioritise assessment of populations from taxa most at risk of failing to meet conservation thresholds.


Assuntos
Anfíbios , Conservação dos Recursos Naturais , Genética Populacional , Mamíferos , Densidade Demográfica , Animais , Anfíbios/genética , Anfíbios/classificação , Mamíferos/genética , Mamíferos/classificação , Fluxo Gênico , Aves/genética , Aves/classificação , Humanos , Endogamia , Deriva Genética , Plantas/genética , Plantas/classificação , Atividades Humanas
20.
Genes (Basel) ; 15(4)2024 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-38674333

RESUMO

There is an urgent need to find a way to improve the genetic diversity of captive South China tiger (SCT, Panthera tigris amoyensis), the most critically endangered taxon of living tigers, facing inbreeding depression. The genomes showed that 13 hybrid SCTs from Meihuashan were divided into two groups; one group included three individuals who had a closer relationship with pureblood SCTs than another group. The three individuals shared more that 40% of their genome with pureblood SCTs and might be potential individuals for genetic rescuing in SCTs. A large-scale genetic survey based on 319 pureblood SCTs showed that the mean microsatellite inbreeding coefficient of pureblood SCTs decreased significantly from 0.1789 to 0.0600 (p = 0.000009) and the ratio of heterozygous loci increased significantly from 38.5% to 43.2% (p = 0.02) after one individual of the Chongqing line joined the Suzhou line and began to breed in the mid-1980s, which is a reason why the current SCTs keep a moderate level of microsatellite heterozygosity and nucleotide diversity. However, it is important to establish a back-up population based on the three individuals through introducing one pureblood SCT into the back-up population every year. The back-up population should be an important reserve in case the pureblood SCTs are in danger in the future.


Assuntos
Espécies em Perigo de Extinção , Repetições de Microssatélites , Tigres , Tigres/genética , Animais , Repetições de Microssatélites/genética , China , Variação Genética , Endogamia , Feminino , Masculino , Conservação dos Recursos Naturais/métodos , Cruzamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...