Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64.999
Filtrar
1.
MAbs ; 14(1): 2029675, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35133941

RESUMO

The functional interleukin 6 (IL-6) signaling complex is a hexameric structure composed of IL-6, IL-6Rα, and the signaling receptor gp130. There are three different modes of IL-6 signaling, classic signaling, trans-signaling, and trans-presentation, which are not functionally redundant and mediate pleiotropic effects on both physiological and pathophysiological states. Monoclonal antibodies against IL-6 or IL-6Rα have been successfully developed for clinical application. However, designing therapeutic interventions that block specific modes of IL-6 signaling in a pathologically relevant manner remains a great challenge. Here, we constructed a fusion protein Hyper-IL-6 (HyIL-6) composed of human IL-6 and IL-6Rα to develop specific blocking antibodies against the IL-6/IL-6Rα complex. We successfully screened the monoclonal antibody C14mab, which can bind to HyIL-6 with the binding constant 2.86 × 10-10 and significantly inhibit IL-6/IL-6Rα/gp130 complex formation. In vitro, C14mab effectively inhibited HyIL-6-stimulated signal transducer and activator of transcription 3 (STAT3) activation and related vascular endothelial growth factor (VEGF) induction. Moreover, C14mab efficaciously suppressed HyIL-6-induced acute phase response in vivo. Our data from hydrogen-deuterium exchange mass spectrometry demonstrate that C14mab mainly binds to site IIIa of IL-6 and blocks the final step in the interaction between gp130 and IL-6/IL-6Rα complex. Additionally, data from enzyme-linked immunosorbent assays and kinetics assays indicate that C14mab interacts simultaneously with IL-6 and IL-6Rα, while it does not interact with IL-6Rα alone. The unique features of C14mab may offer a novel alternative for IL-6 blockade and illuminate a better therapeutic intervention targeting IL-6.


Assuntos
Interleucina-6 , Receptores de Interleucina-6 , Anticorpos Monoclonais , Receptor gp130 de Citocina/química , Receptor gp130 de Citocina/metabolismo , Epitopos , Humanos , Interleucina-6/metabolismo , Receptores de Interleucina-6/química , Receptores de Interleucina-6/metabolismo , Fator A de Crescimento do Endotélio Vascular
2.
Nat Commun ; 13(1): 4296, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918316

RESUMO

The induction of central T cell tolerance in the thymus depends on the presentation of peripheral self-epitopes by medullary thymic epithelial cells (mTECs). This promiscuous gene expression (pGE) drives mTEC transcriptomic diversity, with non-canonical transcript initiation, alternative splicing, and expression of endogenous retroelements (EREs) representing important but incompletely understood contributors. Here we map the expression of genome-wide transcripts in immature and mature human mTECs using high-throughput 5' cap and RNA sequencing. Both mTEC populations show high splicing entropy, potentially driven by the expression of peripheral splicing factors. During mTEC maturation, rates of global transcript mis-initiation increase and EREs enriched in long terminal repeat retrotransposons are up-regulated, the latter often found in proximity to differentially expressed genes. As a resource, we provide an interactive public interface for exploring mTEC transcriptomic diversity. Our findings therefore help construct a map of transcriptomic diversity in the healthy human thymus and may ultimately facilitate the identification of those epitopes which contribute to autoimmunity and immune recognition of tumor antigens.


Assuntos
Células Epiteliais , Transcriptoma , Diferenciação Celular/genética , Tolerância Central , Células Epiteliais/metabolismo , Epitopos/metabolismo , Humanos , Timo
3.
J Immunol Res ; 2022: 8287087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935586

RESUMO

Immune imprinting or original antigenic sin (OAS) is the process by which the humoral memory response to an antigen can inhibit the response to new epitopes of that antigen originating from a second encounter with the pathogen. Given the situation of the COVID-19 pandemic, multiple vaccines have been developed against SARS-CoV-2 infection. These vaccines are directed to the spike protein (S protein) of the original variant of Wuhan D614G. Vaccine memory immune response against S protein in noninfected subjects could inhibit, through the OAS mechanism, the response to new epitopes of SARS-CoV-2 after infection. The present study analyzes whether the memory antibody B cell response generated by mRNA vaccines against S protein can inhibit the primary antibody immune response to other SARS-CoV-2 antigens, such as nucleocapsid protein (N protein). SARS-CoV-2 primary infection in vaccinated healthcare workers (HCWs) produced significantly lower titers of anti-N antibodies than that in nonvaccinated HCWs: 5.7 (IQR 2.3-15.2) versus 12.2 (IQR 4.2-32.0), respectively (p = 0.005). Therefore, spike protein vaccine-induced immune imprinting (original antigenic sin) reduces N protein antibody response.


Assuntos
COVID-19 , Vacinas , Formação de Anticorpos , COVID-19/prevenção & controle , Epitopos , Humanos , Proteínas do Nucleocapsídeo , Pandemias , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
4.
JACC Cardiovasc Imaging ; 15(8): 1458-1470, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35926905

RESUMO

BACKGROUND: Antibody-based constructs for molecular imaging and therapeutic delivery provide promising opportunities for the diagnosis and treatment of atherosclerosis. OBJECTIVES: The authors aimed to generate and characterize immunoglobulin (Ig)G monoclonal autoantibodies in atherosclerosis for targeting of novel molecular determinants. METHODS: The authors created hybridomas from an unimmunized low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mouse and selected an IgG2b isotype autoantibody, LO9, for further characterization. RESULTS: LO9 reacted well with native LDL bound to immobilized matrix components and less well to oxidized LDL. LO9 binding to immobilized native LDL was not neutralized by fluid-phase native LDL, indicating an adhesion-dependent epitope. The authors localized the epitope to a 20 amino-acid peptide sequence (P5) in the globular amino-terminus of apolipoprotein B. LO9 reacted with antigen in mouse atherosclerosis and in both human stable and ruptured coronary atherosclerosis. Furthermore, in vivo near-infrared fluorescence molecular tomographic imaging, and ex vivo confocal microscopy showed that intravenously injected LO9 localized beneath endothelium of the aortic arch in Ldlr-/- mice, in the vicinity of macrophages. CONCLUSIONS: The authors believe LO9 is the first example of an IgG autoantibody that reacts with a native LDL epitope revealed by adherence to tissue matrix. Antibodies against adherent native LDL have potential as molecular targeting agents for imaging of and therapeutic delivery to atherosclerosis.


Assuntos
Aterosclerose , Lipoproteínas LDL , Animais , Anticorpos Monoclonais , Aterosclerose/metabolismo , Autoanticorpos/química , Epitopos , Humanos , Imunoglobulina G , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Camundongos , Imagem Molecular , Valor Preditivo dos Testes
5.
Nat Commun ; 13(1): 4539, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927266

RESUMO

Delineating the origins and properties of antibodies elicited by SARS-CoV-2 infection and vaccination is critical for understanding their benefits and potential shortcomings. Therefore, we investigate the SARS-CoV-2 spike (S)-reactive B cell repertoire in unexposed individuals by flow cytometry and single-cell sequencing. We show that ∼82% of SARS-CoV-2 S-reactive B cells harbor a naive phenotype, which represents an unusually high fraction of total human naive B cells (∼0.1%). Approximately 10% of these naive S-reactive B cells share an IGHV1-69/IGKV3-11 B cell receptor pairing, an enrichment of 18-fold compared to the complete naive repertoire. Following SARS-CoV-2 infection, we report an average 37-fold enrichment of IGHV1-69/IGKV3-11 B cell receptor pairing in the S-reactive memory B cells compared to the unselected memory repertoire. This class of B cells targets a previously undefined non-neutralizing epitope on the S2 subunit that becomes exposed on S proteins used in approved vaccines when they transition away from the native pre-fusion state because of instability. These findings can help guide the improvement of SARS-CoV-2 vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , Epitopos , Humanos , Isotipos de Imunoglobulinas , Receptores de Antígenos de Linfócitos B , Glicoproteína da Espícula de Coronavírus
6.
Sci Rep ; 12(1): 13453, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927325

RESUMO

Human parechoviruses (PeVs) are common viruses that are associated with a variety of diseases from mild gastrointestinal and respiratory symptoms to severe central nervous system infections. Until now there has not been antibodies for visualizing parechovirus infection. We used E. coli recombinant PeV-A1-VP0 protein as a target in phage display single chain variable fragment (scFv) antibody library panning. Three rounds of panning allowed identification and isolation of several candidate scFv clones, which tested positive in enzyme-linked immunosorbent assay (ELISA) against VP0. Three scFv clones (scFv-55, -59 and -71) with different CDR-3 sequences were further purified and tested in ELISA, Western blot and immunofluorescence microscopy (IFA) against a set of PeV-A1 isolates and a few isolates representing PeV types 2-6. In IFA, all three scFv binders recognized twenty PeV-A1 isolates. ScFv-55 and -71 also recognized clinical representatives of PeV types 1-6 both in IFA and in capture ELISA, while scFv-59 only recognized PeV-A1, -A2 and -A6. PeV-A1-VP0 (Harris strain) sequence was used to generate a peptide library, which allowed identification of a putative unique conformational antibody epitope with fully conserved flanking regions and a more variable core VVTYDSKL, shared between the scFv antibodies. Sequencing of the VP0 region of virus samples and sequence comparisons against parechoviral sequences in GenBank revealed 107 PeV-A1, -A3, -A8, -A17, -A (untyped) sequences with this exact epitope core sequence, which was most dominant among PeV-A1 isolates. These data suggest the first-time isolation of broad range phage display antibodies against human parechoviruses that may be used in diagnostic antibody development.


Assuntos
Bacteriófagos , Parechovirus , Anticorpos de Cadeia Única , Bacteriófagos/genética , Ensaio de Imunoadsorção Enzimática , Epitopos , Escherichia coli , Humanos , Parechovirus/genética , Biblioteca de Peptídeos , Proteínas Recombinantes , Anticorpos de Cadeia Única/genética
7.
Int J Mol Sci ; 23(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955743

RESUMO

Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6tg/tg). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.


Assuntos
Adesividade Plaquetária , Glicoproteínas da Membrana de Plaquetas , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Cães , Epitopos/metabolismo , Cobaias , Humanos , Camundongos , Ativação Plaquetária , Agregação Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Coelhos , Ratos
8.
Sci Transl Med ; 14(657): eabl9605, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35947674

RESUMO

To prepare for future coronavirus (CoV) pandemics, it is desirable to generate vaccines capable of eliciting broadly neutralizing antibody responses to CoVs. Here, we show that immunization of macaques with SARS-CoV-2 spike (S) protein with a two-shot protocol generated potent serum receptor binding domain cross-neutralizing antibody responses to both SARS-CoV-2 and SARS-CoV-1. Furthermore, responses were equally effective against most SARS-CoV-2 variants of concern (VOCs) and some were highly effective against Omicron. This result contrasts with human infection or many two-shot vaccination protocols where responses were typically more SARS-CoV-2 specific and where VOCs were less well neutralized. Structural studies showed that cloned macaque neutralizing antibodies, particularly using a given heavy chain germline gene, recognized a relatively conserved region proximal to the angiotensin converting enzyme 2 receptor binding site (RBS), whereas many frequently elicited human neutralizing antibodies targeted more variable epitopes overlapping the RBS. B cell repertoire differences between humans and macaques appeared to influence the vaccine response. The macaque neutralizing antibodies identified a pan-SARS-related virus epitope region less well targeted by human antibodies that could be exploited in rational vaccine design.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Epitopos , Humanos , Macaca mulatta , Glicoproteína da Espícula de Coronavírus
9.
Theranostics ; 12(12): 5551-5563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910795

RESUMO

Rationale: The decreased HER2-accessibility by epitope masking is a primary trastuzumab-resistance mechanism. In this study, we developed a HER2-targeted dual radiotracer approach to predict the HER2-trastuzumab engagement noninvasively. Methods: Two novel HER2-specific VHHs, MIRC208 and MIRC213, were acquired by immunizing alpaca with human HER2 protein, and were site-specifically labeled with 99mTc. Biodistribution and SPECT/CT imaging studies were performed in mice bearing HER2-positive and HER2-negative tumors. The HER2 binding sites of 99mTc-MIRC208 and 99mTc-MIRC213 were investigated by cell binding and SPECT/CT imaging studies. We evaluated the therapeutic predictive ability of our dual-radiotracer imaging approach for trastuzumab treatment in mice bearing MUC4-positive tumors (trastuzumab-resistant JIMT-1 and 87MUC4) and MUC4-negative tumors (trastuzumab-sensitive 7HER2 and NCI-N87). The preliminary clinical studies of 99mTc-MIRC208 were performed in two patients with HER2-positive breast tumors. Results: 99mTc-MIRC208 and 99mTc-MIRC213 clearly visualized HER2-positive tumors, but not HER2-negative tumors. 99mTc-MIRC208 competes with trastuzumab for HER2-binding while 99mTc-MIRC213 recognizes HER2 on an epitope that is not masked by MUC4. The SPECT/CT studies with 99mTc-MIRC208 and 99mTc-MIRC213 clearly showed that the MUC4-negative and trastuzumab-sensitive 7HER2 and NCI-N87 tumors had very similar tumor uptake with the SUV208/SUV213 (2 h) ratios of 1.11 ± 0.17 in 7HER2 and 1.25 ± 0.22 in NCI-N87. However, the MUC4-positive JIMT-1 tumors showed the decreased SUV208/SUV213 (2 h) ratio (0.63 ± 0.07), which correlated well with the low response rate to trastuzumab therapy. The SUV208/SUV213 (2 h) ratio was reduced to 0.72 ± 0.02 in MUC4-expressing NCI-N87 cells, and resulting in the decreased trastuzumab sensitivity, further supporting the correlation between the SUV208/SUV213 (2 h) ratio and trastuzumab-sensitivity. The primary and metastatic HER2-positive lesions of patients were clearly visualized by 99mTc-MIRC208 SPECT at 2 h post injection. Conclusion: Overall, we demonstrated that the dual radiotracer imaging strategy is a valid noninvasive approach for the cancer patient selection before trastuzumab therapy. 99mTc-MIRC213 SPECT is utilized to quantify the tumor HER2 expression and screen HER2-positive cancer patients, while 99mTc-MIRC208 SPECT is used to determine the HER2-accessibility of trastuzumab. The SUV208/SUV213 (2 h) ratio is an important biomarker to determine the responsiveness of trastuzumab therapy.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Resistencia a Medicamentos Antineoplásicos , Compostos Radiofarmacêuticos , Trastuzumab , Animais , Linhagem Celular Tumoral , Epitopos , Humanos , Camundongos , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Trastuzumab/uso terapêutico
10.
Front Immunol ; 13: 864868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935988

RESUMO

Epidermal growth factor family receptor (EGFR) is commonly overexpressed in many solid tumors and an attractive target for chimeric antigen receptor (CAR)-T therapy, but as EGFR is also expressed at lower levels in healthy tissues a therapeutic strategy must balance antigenic responsiveness against the risk of on-target off-tumor toxicity. Herein, we identify several camelid single-domain antibodies (also known as nanobodies) that are effective EGFR targeting moieties for CARs (EGFR-sdCARs) with very strong reactivity to EGFR-high and EGFR-low target cells. As a strategy to attenuate their potent antigenic sensitivity, we performed progressive truncation of the human CD8 hinge commonly used as a spacer domain in many CAR constructs. Single amino acid hinge-domain truncation progressively decreased both EGFR-sdCAR-Jurkat cell binding to EGFR-expressing targets and expression of the CD69 activation marker. Attenuated signaling in hinge-truncated EGFR-sdCAR constructs increased selectivity for antigen-dense EGFR-overexpressing cells over an EGFR-low tumor cell line or healthy donor derived EGFR-positive fibroblasts. We also provide evidence that epitope location is critical for determining hinge-domain requirement for CARs, as hinge truncation similarly decreased antigenic sensitivity of a membrane-proximal epitope targeting HER2-CAR but not a membrane-distal EGFRvIII-specific CAR. Hinge-modified EGFR-sdCAR cells showed clear functional attenuation in Jurkat-CAR-T cells and primary human CAR-T cells from multiple donors in vitro and in vivo. Overall, these results indicate that hinge length tuning provides a programmable strategy for throttling antigenic sensitivity in CARs targeting membrane-proximal epitopes, and could be employed for CAR-optimization and improved tumor selectivity.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Epitopos , Receptores ErbB , Humanos , Imunoterapia Adotiva/métodos , Receptor ErbB-2/genética , Receptores de Antígenos Quiméricos/genética , Linfócitos T
11.
Front Immunol ; 13: 930631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958565

RESUMO

Classical swine fever virus (CSFV) is a major animal pathogen threatening the global pork industry. To date, numerous anti-CSFV monoclonal antibodies (mAbs) and their recognizing epitopes have been reported. However, few mAbs were systematically characterized for the capacity to differentiate field CSFV isolates from CSF vaccine strains, and the molecular basis associated with antigenic differences between vaccines and field isolates is still largely unknown. In the present study, recombinant CSFV structural glycoproteins E2 of both virulent and vaccine strains and Erns of vaccine strain were expressed using eukaryotic cells and murine mAbs generated against E2 and Erns. After serial screening and cloning of the hybridomas, the viral spectra of mAbs were respectively determined by indirect fluorescent antibody assay (IFA) using 108 CSFVs, followed by Western blot analysis using expressed glycoproteins of all CSFV sub-genotypes including vaccine strains. The antigenic structures recognized by these mAbs were characterized by epitope mapping using truncated, chimeric, and site-directed mutated E2 and Erns proteins. We have identified two vaccine-specific, one field isolate-specific, and two universal CSFV-specific mAbs and five novel conformational epitopes with critical amino acid (aa) motifs that are associated with these five mAbs: 213EPD215, 271RXGP274, and 37LXLNDG42 on E2 and 38CKGVP42, W81, and D100/V107 on Erns. Particularly, E213 of E2 is field isolate-specific, while N40 of E2 and D100/V107 of Erns are vaccine strain-specific. Results from our study further indicate that N40D of E2 mutation in field strains was likely produced under positive selection associated with long-term mass vaccination, leading to CSFV evasion of host immune response. Taking together, this study provides new insights into the antigenic structure of CSFV E2 and Erns and the differentiating mAbs will contribute to the development of a diagnostic strategy to differentiate C-strain vaccination from natural infection (DIVA) of CSFV in terms of elimination of CSF in China.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Peste Suína Clássica/prevenção & controle , Vírus da Febre Suína Clássica/genética , Epitopos , Glicoproteínas , Camundongos , Suínos
12.
Sci Immunol ; 7(74): eabl3995, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35930653

RESUMO

As the targets of chimeric antigen receptor (CAR)-T cells expand to a variety of cancers, autoimmune diseases, viral infections, and fibrosis, there is an increasing demand for identifying new antigens and designing new CARs that can be effectively activated. However, the rational selection of antigens and the design of CARs are limited by a lack of knowledge regarding the molecular mechanism by which CARs are activated by antigens. Here, we present data supporting a "size exclusion" model explaining how antigen signals are transmitted across the plasma membrane to activate the intracellular domains of CARs. In this model, antigen engagement with CAR results in a narrow intermembrane space that physically excludes CD45, a bulky phosphatase, out of the CAR zone, thus favoring CAR phosphorylation by kinases, which further triggers downstream pathways leading to T cell activation. Aligned with this model, increasing the size of CAR extracellular domains diminished CAR-T activation both in vitro and in a mouse lymphoma model; membrane-proximal epitopes activated CAR-Ts better than membrane-distal epitopes. Moreover, increasing the size of CD45 by antibody conjugation enhanced the activation of CARs that recognize membrane-distal epitopes. Consistently, CAR-Ts expressing CD45RABC, the larger isoform, were activated to a higher level than those expressing a smaller isoform CD45RO. Together, our work revealed that CAR-T activation depends on the size difference between the CAR-antigen pair and CD45; the size of CAR, antigen, and CD45 can thus be targets for tuning CAR-T activation.


Assuntos
Ativação Linfocitária , Receptores de Antígenos Quiméricos , Animais , Epitopos , Camundongos , Receptores de Antígenos Quiméricos/genética , Linfócitos T
13.
Food Res Int ; 159: 111560, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35940780

RESUMO

Actinidin, a cysteine protease in green kiwifruit (Actinidia deliciosa), has been identified as a potential enzyme to hydrolyse gluten within the lumen of the gastrointestinal tract (GIT). The present study aimed to further evaluate the effect of purified actinidin sourced from green kiwifruit on the digestion of gluten and the release of immunogenic peptides during GIT digestion using an in vitro semi-dynamic GIT digestion model. Purified gluten was digested for 180 min with or without actinidin and subsequently analysed for free amino groups (o-phthaldialdehyde) to determine the degree of hydrolysis (DH), gluten R5 epitopes (ELISA), and peptide profiles (mass spectrometry). Strong interactions were observed between treatment (GIT digestion with or without actinidin) and digestion time for the DH of gluten (P < 0.01), amount of free amino groups released into the small intestine (P < 0.01), and amount of gluten epitopes present in the small intestine (P < 0.001). The rate of increase of DH of gluten and the amount of R5 epitopes present in the small intestine during the first 30 min of GIT digestion with actinidin was 0.3%/min and 4.8 ng/g of gluten respectively, whereas it was 0.01%/min and 60.9 ng/g of gluten respectively without actinidin. These results were corroborated by untargeted peptidomics, with a 1.5-fold lower number of known immunogenic epitopes reaching the small intestine at 30 min of GIT digestion when actinidin was present compared to the control. Present results demonstrate that actinidin enhanced the rate of proteolysis of gluten and reduced the number of immunogenic gluten epitopes reaching the small intestine during simulated semi-dynamic GIT digestion.


Assuntos
Actinidia , Glutens , Actinidia/química , Cisteína Endopeptidases , Digestão , Epitopos , Trato Gastrointestinal , Intestino Delgado , Peptídeos
14.
Front Immunol ; 13: 918160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911756

RESUMO

There are many virulence factors of H. pylori that contribute in diverse ways to gastric disease. Therefore, designing multivalent epitope vaccines against many key virulence factors virulence factors of H. pylori is a promising strategy to control H. pylori infection. In previous studies, we constructed a multivalent epitope vaccine FVpE against four key virulence factors of H. pylori (Urease, CagA, VacA, and NAP), and oral immunization with the FVpE vaccine plus a polysaccharide adjuvant (PA) containing lycium barbarum polysaccharide and chitosan could provide protection against H. pylori infection in the Mongolian gerbil model. Oral vaccines have many advantages over injected vaccines, such as improved safety and compliance, and easier manufacturing and administration. However, the harsh gastrointestinal (GI) environment, such as gastric acid and proteolytic enzymes, limits the development of oral vaccines to some extent. Oral vaccines need a gastrointestinal delivery system with high safety, low price and promoting vaccine antigen to stimulate immune response in the gastrointestinal mucosa. Lactic acid bacteria are gastrointestinal probiotics that have unique advantages as a delivery system for oral vaccines. In this study, a M cell-targeting surface display system for L. lactis named plSAM was designed to help vaccine antigens to stimulate effective immune responses in the gastrointestinal tract, and a M cell-targeting recombinant L. lactis vaccine LL-plSAM-FVpE was constructed by using the surface display system plSAM. recombinant L. lactis vaccine LL-plSAM-FVpE could secretively express the SAM-FVpE protein and display it on the bacterial surface. Moreover, experimental results confirmed that LL-plSAM-FVpE had an enhanced M cell-targeting property. In addition, LL-plSAM-FVpE had excellent M cell-targeting property to promote the phagocytosis and transport of the antigen SAM-FVpE by gastrointestinal M cells. More importantly, oral immunization of LL-plSAM-FVpE or SAM-FVpE plus PA can stimulate IgG and sIgA antibodies and CD4+ T cell immune responses against four virulence factors of H. pylori (Urease, CagA, VacA, and NAP), thus providing protective immunity against H. pylori infection in mice. The M cell-targeting recombinant L. lactis vaccine against various key H. pylori virulence factors could be a promising vaccine candidate for controlling H. pylori infection.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Adjuvantes Imunológicos , Animais , Anticorpos Antibacterianos , Antígenos , Vacinas Bacterianas , Epitopos , Infecções por Helicobacter/prevenção & controle , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Urease , Vacinas Sintéticas , Fatores de Virulência
15.
Front Cell Infect Microbiol ; 12: 916702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909975

RESUMO

The neglected but highly prevalent Plasmodium vivax in South-east Asia and South America poses a great challenge, with regards to long-term in-vitro culturing and heavily limited functional assays. Such visible challenges as well as narrowed progress in development of experimental research tools hinders development of new drugs and vaccines. The leading vaccine candidate antigen Plasmodium vivax Duffy Binding Protein (PvDBP), is essential for reticulocyte invasion by binding to its cognate receptor, the Duffy Antigen Receptor for Chemokines (DARC), on the host's reticulocyte surface. Despite its highly polymorphic nature, the amino-terminal cysteine-rich region II of PvDBP (PvDBPII) has been considered as an attractive target for vaccine-mediated immunity and has successfully completed the clinical trial Phase 1. Although this molecule is an attractive vaccine candidate against vivax malaria, there is still a question on its viability due to recent findings, suggesting that there are still some aspects which needs to be looked into further. The highly polymorphic nature of PvDBPII and strain-specific immunity due to PvDBPII allelic variation in Bc epitopes may complicate vaccine efficacy. Emergence of various blood-stage antigens, such as PvRBP, PvEBP and supposedly many more might stand in the way of attaining full protection from PvDBPII. As a result, there is an urgent need to assess and re-assess various caveats connected to PvDBP, which might help in designing a long-term promising vaccine for P. vivax malaria. This review mainly deals with a bunch of rising concerns for validation of DBPII as a vaccine candidate antigen for P. vivax malaria.


Assuntos
Malária Vivax , Vacinas , Anticorpos Antiprotozoários , Antígenos de Protozoários , Epitopos , Humanos , Malária Vivax/prevenção & controle , Plasmodium vivax/genética , Domínios Proteicos , Proteínas de Protozoários/metabolismo
16.
Proc Natl Acad Sci U S A ; 119(34): e2203505119, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969768

RESUMO

Antibodies and T cell receptors (TCRs) are the fundamental building blocks of adaptive immunity. Repertoire-scale functionality derives from their epitope-binding properties, just as macroscopic properties like temperature derive from microscopic molecular properties. However, most approaches to repertoire-scale measurement, including sequence diversity and entropy, are not based on antibody or TCR function in this way. Thus, they potentially overlook key features of immunological function. Here we present a framework that describes repertoires in terms of the epitope-binding properties of their constituent antibodies and TCRs, based on analysis of thousands of antibody-antigen and TCR-peptide-major-histocompatibility-complex binding interactions and over 400 high-throughput repertoires. We show that repertoires consist of loose overlapping classes of antibodies and TCRs with similar binding properties. We demonstrate the potential of this framework to distinguish specific responses vs. bystander activation in influenza vaccinees, stratify cytomegalovirus (CMV)-infected cohorts, and identify potential immunological "super-agers." Classes add a valuable dimension to the assessment of immune function.


Assuntos
Imunidade Adaptativa , Receptores de Antígenos de Linfócitos T , Epitopos , Peptídeos/metabolismo
17.
Front Immunol ; 13: 931372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967415

RESUMO

COVID-19 brought scenes from sci-fi movies into real life. Infected individuals include asymptomatic cases to severe disease leading to death, suggesting the involvement of the genetic constitution of populations and pathogens contributing to differential individuals' outcomes. To investigate shared immunogenic features between SARS-CoV-2 targets and other coronaviruses, we modeled their peptides in 3D structures of HLA-A*02:01 (pMHC), comparing their molecular surfaces These structures were also compared with a panel of epitopes from unrelated viruses, looking for potential triggers conferring cross-protection in uninfected individuals. As expected, SARS-CoV 1 and 2 peptides share molecular and physicochemical features, providing an explanation for the verified experimental immunogenicity among them. Surprisingly, even discordant sequences from human coronaviruses 229E, OC43 and epitopes from unrelated viruses involved in endemic human infections exhibit similar fingerprints of immunogenicity with SARS-CoV-2 peptides. The same approach indicates a conserved CD8+ T cell recognition between Wuhan SARS-CoV-2 sequences and altered peptides from Variants of Concern. Examination of structural data over epitope sequence analysis here could explain how previous infections may produce a heterologous immunity response in a global scale against emergent diseases such as Covid-19, mitigating its full lethal potential, and paves the way for the development of wide spectrum vaccine development.


Assuntos
COVID-19 , SARS-CoV-2 , Antígenos Virais , Epitopos , Humanos , Peptídeos
18.
ACS Appl Bio Mater ; 5(8): 3859-3869, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35913405

RESUMO

The efficiency of epitope-based vaccination (subunit vaccines) is tightly correlated with heterogeneity and the high density of epitope presentation, which maximizes the potential antigenic determinants. Here, we developed a two-mode platform for intensifying the epitope presentation of subunit vaccines. The two-mode epitope presentation enhancement includes a covalent attachment of high concentrations of SARS-CoV-2-S1 peptide epitope to the surface of virus-like-particles (VLPs) and the subsequent assembly of VLP/epitope conjugates on the oil droplet surface at an oil/water interface of an emulsion as Pickering stabilizers. The resultant emulsions were stable for weeks in ambient conditions, and our platform was challenged using the epitope of the SARS-CoV-2-S1 peptide that served as a model epitope in this study. In vivo assays showed that the αSARS-CoV-2-S1 immunoglobulin G (IgG) titers of the studied mouse antisera, developed against the SARS-CoV-2-S1 peptide under different epitope preparation conditions, showed an order of magnitude higher IgG titers in the studied VLP-based emulsions than epitopes dissolved in water and epitopes administered with an adjuvant, thereby confirming the efficacy of the formulation. This VLP-based Pickering emulsion platform is a fully synthetic approach that can be readily applied for vaccine development to a wide range of pathogens.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , Emulsões , Epitopos , Imunoglobulina G , Camundongos , Vacinação , Vacinas de Subunidades
19.
Nat Commun ; 13(1): 4701, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948544

RESUMO

Major histocompatibility complex class I (MHC I) molecules are central to adaptive immunity. Their assembly, epitope selection, and antigen presentation are controlled by the MHC I glycan through a sophisticated network of chaperones and modifying enzymes. However, the mechanistic integration of the corresponding processes remains poorly understood. Here, we determine the multi-chaperone-client interaction network of the peptide loading complex (PLC) and report the PLC editing module structure by cryogenic electron microscopy at 3.7 Å resolution. Combined with epitope-proofreading studies of the PLC in near-native lipid environment, these data show that peptide-receptive MHC I molecules are stabilized by multivalent chaperone interactions including the calreticulin-engulfed mono-glucosylated MHC I glycan, which only becomes accessible for processing by α-glucosidase II upon loading of optimal epitopes. Our work reveals allosteric coupling between peptide-MHC I assembly and glycan processing. This inter-process communication defines the onset of an adaptive immune response and provides a prototypical example of the tightly coordinated events in endoplasmic reticulum quality control.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I , Retículo Endoplasmático , Epitopos , Antígenos HLA , Humanos , Chaperonas Moleculares , Peptídeos/química , Polissacarídeos , Controle de Qualidade
20.
Sci Rep ; 12(1): 13618, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948756

RESUMO

Prostate cancer is one of the few malignancies that includes vaccination as a treatment modality. Elements of an effective cancer vaccine should include the ability to elicit a Type I T-cell response and target multiple antigenic proteins expressed early in the disease. Using existing gene datasets encompassing normal prostate tissue and tumors with Gleason Score ≤ 6 and ≥ 8, 10 genes were identified that were upregulated and conserved in prostate cancer regardless of the aggressiveness of disease. These genes encoded proteins also expressed in prostatic intraepithelial neoplasia. Putative Class II epitopes derived from these proteins were predicted by a combination of algorithms and, using human peripheral blood, epitopes which selectively elicited IFN-γ or IL-10 dominant antigen specific cytokine secretion were determined. Th1 selective epitopes were identified for eight antigens. Epitopes from three antigens elicited Th1 dominant immunity in mice; PSMA, HPN, and AMACR. Each single antigen vaccine demonstrated significant anti-tumor activity inhibiting growth of implanted Myc-Cap cells after immunization as compared to control. Immunization with the combination of antigens, however, was superior to each alone in controlling tumor growth. When vaccination occurred simultaneously to tumor implant, multiantigen immunized mice had significantly smaller tumors than controls (p = 0.002) and a significantly improved overall survival (p = 0.0006). This multiantigen vaccine shows anti-tumor activity in a murine model of prostate cancer.


Assuntos
Vacinas Anticâncer , Neoplasias da Próstata , Animais , Antígenos , Modelos Animais de Doenças , Epitopos , Epitopos de Linfócito T , Humanos , Masculino , Camundongos , Neoplasias da Próstata/terapia , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...