Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44.796
Filtrar
1.
Sci Transl Med ; 16(764): eado4463, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259810

RESUMO

Neuromuscular blocking agents (NMBAs) relax skeletal muscles to facilitate surgeries and ease intubation but can lead to adverse reactions, including complications because of postoperative residual neuromuscular blockade (rNMB) and, in rare cases, anaphylaxis. Both adverse reactions vary between types of NMBAs, with rocuronium, a widely used nondepolarizing NMBA, inducing one of the longest rNMB durations and highest anaphylaxis incidences. rNMB induced by rocuronium can be reversed by the synthetic γ-cyclodextrin sugammadex. However, in rare cases, sugammadex can provoke anaphylaxis. Thus, additional therapeutic options are needed. Rocuronium-induced anaphylaxis is proposed to rely on preexisting rocuronium-binding antibodies. To understand the pathogenesis of rocuronium-induced anaphylaxis and to identify potential therapeutics, we investigated the memory B cell antibody repertoire of patients with suspected hypersensitivity to rocuronium. We identified polyclonal antibody repertoires with a high diversity among V(D)J genes without evidence of clonal groups. When recombinantly expressed, these antibodies demonstrated specificity and low affinity for rocuronium without cross-reactivity for other NMBAs. Moreover, when these antibodies were expressed as human immunoglobulin E (IgE), they triggered human mast cell activation and passive systemic anaphylaxis in transgenic mice, although their affinities were insufficient to serve as reversal agents. Rocuronium-specific, high-affinity antibodies were thus isolated from rocuronium-immunized mice. The highest-affinity antibody was able to reverse rocuronium-induced neuromuscular blockade in nonhuman primates with kinetics comparable to that of sugammadex. Together, these data support the hypothesis that antibodies cause anaphylactic reactions to rocuronium and pave the way for improved diagnostics and neuromuscular blockade reversal agents.


Assuntos
Anafilaxia , Rocurônio , Rocurônio/efeitos adversos , Animais , Humanos , Anafilaxia/imunologia , Anticorpos , Camundongos , Período Perioperatório , Androstanóis/efeitos adversos , Sugammadex/efeitos adversos , Imunoglobulina E/imunologia , Especificidade de Anticorpos , Feminino , Modelos Animais de Doenças , Masculino
2.
J Chem Inf Model ; 64(17): 6814-6826, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39157865

RESUMO

Aflatoxin B1 (AFB1) accumulates in crops, where it poses a threat to human health. To detect AFB1, anti-AFB1 monoclonal antibodies have been developed and are widely used. While the sensitivity and specificity of these antibodies have been extensively studied, information regarding the atomic-level docking of AFB1 (and its derivatives) with these antibodies is limited. Such information is crucial for understanding the key interactions that are required for high affinity and specificity in aflatoxin binding. First, a 3D comparative model of anti-AFB1 antibody (Ab-4B5G6) was predicted from the sequence using RosettaAntibody. We then utilized RosettaLigand to dock AFB1 onto ten homology models, producing a total of 10,000 binding modes. Interestingly, the best-scoring mode predicted strong interactions involving four sites within the heavy chain: ALA33, ASN52, HIS95, and TRP99. Importantly, these strong binding interactions exclusively involve the variable domain of the heavy chain. The best-scoring mode with AFB1 was also obtained through AF multimer combined with RosettaLigand, and two interactions at TRP and HIS were consistent with those found by Rosetta antibody-ligand computational simulation. The role of tryptophan in π interactions in antibodies was confirmed through mutation experiments, and the resulting mutant (W99A) exhibited a >1000-fold reduction in binding affinity for AFB1 and analogs, indicating the effect of tryptophan on the stability of CDR-H3 region. Additionally, we evaluated the binding of two glycolic acid-derived molecular derivatives (with impaired hydrogen bonding potential), and these derivatives (AFB2-GA and AFG2-GA) demonstrated a very weak binding affinity for Ab-4B5G6. The heavy chain was successfully isolated, and its sensitivity and specificity were consistent with those of the intact antibody. The homology models of variable heavy (VH) single-domain antibodies were established by RosettaAntibody, and the docking analysis revealed the same residues, including Ala, His, and Trp. Compared to the potential binding mode of fragment variable (FV) region, the results from a model of VH indicated that there are seven models involved in hydrophobic interaction with TYR32, which is usually referred to as polar amino acid and has both hydrophobic and hydrophilic features depending on the circumstances. Our work encompasses the entire process of Rosetta antibody-ligand computational simulation, highlighting the significance of variable heavy domain structural design in enhancing molecular interactions.


Assuntos
Aflatoxina B1 , Anticorpos Monoclonais , Simulação de Acoplamento Molecular , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Ligantes , Aflatoxina B1/química , Aflatoxina B1/imunologia , Especificidade de Anticorpos , Aflatoxinas/química , Afinidade de Anticorpos , Conformação Proteica , Sequência de Aminoácidos , Simulação por Computador , Humanos , Simulação de Dinâmica Molecular
3.
MAbs ; 16(1): 2393785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39180756

RESUMO

Specificity profiling is a requirement for monoclonal antibodies (mAbs) and antibody-directed biotherapeutics such as CAR-T cells prior to initiating human trials. However, traditional approaches to assess the specificity of mAbs, primarily tissue cross-reactivity studies, have been unreliable, leading to off-target binding going undetected. Here, we review the emergence of cell-based protein arrays as an alternative and improved assessment of mAb specificity. Cell-based protein arrays assess binding across the full human membrane proteome, ~6,000 membrane proteins each individually expressed in their native structural configuration within live or unfixed cells. Our own profiling indicates a surprisingly high off-target rate across the industry, with 33% of lead candidates displaying off-target binding. Moreover, about 20% of therapeutic mAbs in clinical development and currently on the market display off-target binding. Case studies and off-target rates at different phases of biotherapeutic drug approval suggest that off-target binding is likely a major cause of adverse events and drug attrition.


Assuntos
Anticorpos Monoclonais , Análise Serial de Proteínas , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/imunologia , Análise Serial de Proteínas/métodos , Especificidade de Anticorpos , Animais , Ligação Proteica
4.
Front Immunol ; 15: 1448320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39170611

RESUMO

Natural antibodies are used to compare immune systems across taxa, to study wildlife disease ecology, and as selection markers in livestock breeding. These immunoglobulins are present prior to immune stimulation. They are described as having low antigen specificity or polyreactive binding and are measured by binding to self-antigens or novel exogenous proteins. Most studies use only one or two antigens to measure natural antibodies and ignore potential effects of antigen specificity in analyses. It remains unclear how different antigen-specific natural antibodies are related or how diversity among natural antibodies may affect analyses of these immunoglobulins. Using genetically distinct lines of chickens as a model system, we tested the hypotheses that (1) antigen-specific natural antibodies are independent of each other and (2) antigen specificity affects the comparison of natural antibodies among animals. We used blood cell agglutination and enzyme-linked immunosorbent assays to measure levels of natural antibodies binding to four antigens: (i) rabbit erythrocytes, (ii) keyhole limpet hemocyanin, (iii) phytohemagglutinin, or (iv) ovalbumin. We observed that levels of antigen specific natural antibodies were not correlated. There were significant differences in levels of natural antibodies among lines of chickens, indicating genetic variation for natural antibody production. However, line distinctions were not consistent among antigen specific natural antibodies. These data show that natural antibodies are a pool of relatively distinct immunoglobulins, and that antigen specificity may affect interpretation of natural antibody function and comparative immunology.


Assuntos
Galinhas , Animais , Galinhas/imunologia , Coelhos , Antígenos/imunologia , Eritrócitos/imunologia , Especificidade de Anticorpos/imunologia , Ovalbumina/imunologia , Anticorpos/imunologia , Hemocianinas/imunologia , Fito-Hemaglutininas/imunologia , Ensaio de Imunoadsorção Enzimática
5.
J Immunol Methods ; 532: 113730, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059744

RESUMO

Most antibodies used in immunohistochemistry (IHC) have been developed by animal immunization. We wanted to explore naive antibody repertoires displayed on filamentous phages as a source of full-length antibodies for IHC on Formalin-Fixed and Paraffin-Embedded (FFPE) tissues. We used two isogenic mouse fibroblast cell lines that express or not human HER2 to generate positive and negative FFPE pseudo-tissue respectively. Using these pseudo-tissues and previously described approaches based on differential panning, we isolated very efficient antibody clones, but not against HER2. To optimize HER2 targeting and tissue specificity, we first performed 3-4 rounds of in vitro panning using recombinant HER2 extracellular domain (ECD) to enrich the phage library in HER2 binders, followed by one panning round using the two FFPE pseudo-tissues to retain binders for IHC conditions. We then analyzed the bound phages using next-generation sequencing to identify antibody sequences specifically associated with the HER2-positive pseudo-tissue. Using this approach, the top-ranked clone identified by sequencing was specific to the HER2-positive pseudo-tissue and showed a staining pattern similar to that of the antibody used for the clinical diagnosis of HER2-positive breast cancer. However, we could not optimize staining on other tissues, showing that specificity was restricted to the tissue used for selection and screening. Therefore, future optimized protocols must consider tissue diversity early during the selection by panning using a wide collection of tissue types.


Assuntos
Anticorpos Monoclonais , Formaldeído , Imuno-Histoquímica , Inclusão em Parafina , Biblioteca de Peptídeos , Receptor ErbB-2 , Animais , Camundongos , Humanos , Receptor ErbB-2/imunologia , Receptor ErbB-2/genética , Anticorpos Monoclonais/imunologia , Fixação de Tecidos , Feminino , Especificidade de Anticorpos , Neoplasias da Mama/imunologia , Técnicas de Visualização da Superfície Celular
6.
J Immunol Methods ; 532: 113728, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059746

RESUMO

Immunoassay relies on antibodies, but traditional antibodies such as monoclonal antibody (mAb) require animal immunization and complex procedures. Single-chain variable fragment (scFv) becomes a potential alternative to mAb with advantages of the low cost, rapid and easy prepared. In the present study, we prepared scFvs against dihydroartemisinin (DHA) based on E. coli and HEK293T cell expression system, named MBP-scFv and scFv-Fc, respectively. Their properties were compared with the parent mAb. The calculated affinity constants of mAb, MBP-scFv and scFv-Fc were 2.1 × 108 L mol-1, 2.2 × 107 L mol-1 and 1.6 × 108 L mol-1, respectively. The half inhibitory concentration (IC50) of mAb, MBP-scFv and scFv-Fc were 1.16 ng mL-1, 2.15 ng mL-1 and 6.57 ng mL-1, respectively. Both the scFv showed less sensitive than the mAb based on the IC50. The cross-reactivities of MBP-scFv for artemisinin and artesunate exhibited similarities to the mAb, yet the cross-reactivities of scFv-Fc for these compounds exceeded those of the mAb significantly. The stability of the scFvs was ascertained to be maintained for over 5 days at room temperature, and for more than a month at both 4 °C and - 20 °C. After that, the indirect competitive enzyme-linked immunosorbent assays (icELISAs) based on the scFv from E. coli were used to detect the DHA content in eight drug samples, and the result was consistent with ultra-performance liquid chromatography simultaneously. Although scFv can be used for quantitative determination of drugs, but it still cannot completely replace mAb in immunoassay without evolution and modification.


Assuntos
Anticorpos Monoclonais , Artemisininas , Anticorpos de Cadeia Única , Artemisininas/imunologia , Artemisininas/farmacologia , Anticorpos de Cadeia Única/imunologia , Humanos , Anticorpos Monoclonais/imunologia , Células HEK293 , Afinidade de Anticorpos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/imunologia , Reações Cruzadas/imunologia , Antimaláricos/imunologia , Ensaio de Imunoadsorção Enzimática , Especificidade de Anticorpos
7.
Nat Commun ; 15(1): 5878, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-38997292

RESUMO

The bat immune system features multiple unique properties such as dampened inflammatory responses and increased tissue protection, explaining their long lifespan and tolerance to viral infections. Here, we demonstrated that body temperature fluctuations corresponding to different physiological states in bats exert a large impact on their antibody repertoires. At elevated temperatures typical for flight, IgG from the bat species Myotis myotis and Nyctalus noctula show elevated antigen binding strength and diversity, recognizing both pathogen-derived antigens and autoantigens. The opposite is observed at temperatures reflecting inactive physiological states. IgG antibodies of human and other mammals, or antibodies of birds do not appear to behave in a similar way. Importantly, diversification of bat antibody specificities results in preferential recognition of damaged endothelial and epithelial cells, indicating an anti-inflammatory function. The temperature-sensitivity of bat antibodies is mediated by the variable regions of immunoglobulin molecules. Additionally, we uncover specific molecular features of bat IgG, such as low thermodynamic stability and implication of hydrophobic interactions in antigen binding as well as high prevalence of polyreactivity. Overall, our results extend the understanding of bat tolerance to disease and inflammation and highlight the link between metabolism and immunity.


Assuntos
Quirópteros , Imunoglobulina G , Quirópteros/imunologia , Animais , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Humanos , Temperatura , Especificidade de Anticorpos/imunologia , Antígenos/imunologia , Autoantígenos/imunologia , Autoantígenos/metabolismo
8.
Methods Mol Biol ; 2821: 237-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997494

RESUMO

Immunoblotting, also termed western blotting, is a powerful method for detection and characterization of proteins separated by various electrophoretic techniques. The combination of sodium dodecyl sulfate-poly acrylamide gel electrophoresis (SDS-PAGE), having high separating power, immunoblotting to synthetic membranes, and detection with highly specific peptide antibodies, is especially useful for studying individual proteins in relation to cellular processes, disease mechanisms, etc. Here, we describe a protocol for the sequential detection of various forms of an individual protein using peptide antibodies, exemplified by the characterization of antibody specificity for different forms of the protein calreticulin by double SDS-PAGE immunoblotting.


Assuntos
Anticorpos , Eletroforese em Gel de Poliacrilamida , Peptídeos , Eletroforese em Gel de Poliacrilamida/métodos , Peptídeos/química , Peptídeos/imunologia , Anticorpos/química , Anticorpos/imunologia , Western Blotting/métodos , Humanos , Calreticulina/química , Calreticulina/imunologia , Calreticulina/metabolismo , Immunoblotting/métodos , Especificidade de Anticorpos , Animais
9.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 36(3): 279-285, 2024 Jun 13.
Artigo em Chinês | MEDLINE | ID: mdl-38952314

RESUMO

OBJECTIVE: To prepare and characterize the mouse polyclonal antibody against the dense granule protein 24 (GRA24) of Toxoplasma gondii, and explore its preliminary applications. METHODS: The GRA24 coding sequences of different T. gondii strains were aligned using the MEGA-X software, and the dominant peptide of the GRA24 protein was analyzed with the Protean software. The base sequence encoding this peptide was amplified using PCR assay and ligated into the pET-28a vector, and the generated GRA24 truncated protein was transformed into Escherichia coli BL21. After induction by isopropyl-beta-D-thiogalactopyranoside (IPTG), the expression and purification of the recombinant GRA24 protein was analyzed using sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS-PAGE). BALB/c mice were immunized by subcutaneous injection with the purified recombinant GRA24 truncated protein to generate the polyclonal antibody, and the titer of the polyclonal antibody was measured using enzyme linked immunosorbent assay (ELISA). The specificity of the polyclonal antibody was tested using Western blotting, and the intracellular localization of the polyclonal antibody was investigated using immunofluorescence assay (IFA). RESULTS: SDS-PAGE showed successful construction of the recombinant expression plasmid, and Coomassie brilliant blue staining showed the generation of the high-purity recombinant GRA24 truncated protein. ELISA measured that the titer of the polyclonal antibody against the GRA24 truncated protein was higher than 1:208 400, and Western blotting showed that the polyclonal antibody was effective to recognize the endogenous GRA24 proteins of different T. gondii strains and specifically recognize the recombinant GRA24 truncated protein. Indirect IFA showed that the GRA24 protein secreted 16 hour following T. gondii invasion in host cells. CONCLUSIONS: The polyclonal antibody against the T. gondii GRA24 protein has been successfully prepared, which has a widespread applicability, high titers and a high specificity. This polyclonal antibody is available for Western blotting and IFA, which provides the basis for investigating the function of the GRA24 protein.


Assuntos
Anticorpos Antiprotozoários , Camundongos Endogâmicos BALB C , Proteínas de Protozoários , Toxoplasma , Animais , Toxoplasma/imunologia , Toxoplasma/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Camundongos , Anticorpos Antiprotozoários/imunologia , Feminino , Proteínas Recombinantes/imunologia , Especificidade de Anticorpos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética
10.
Monoclon Antib Immunodiagn Immunother ; 43(4): 108-111, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38836825

RESUMO

Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS) is a de novo purine biosynthetic enzyme. It has been found to be overexpressed in various types of cancer and is related to cell proliferation, invasion, the epithelial-mesenchymal transition, and efficient tumor growth. In this study, we describe a rat monoclonal antibody (mAb) 6A10, which was generated as an antigen of human PAICS. This mAb was generated to interact with the N-terminal region of human PAICS and was found to recognize endogenous PAICS enzymes in several cancer cells. Our results also indicated that it can recognize monkey and dog PAICS, which possess the same amino acid sequence in the antigenic region as human PAICS, but it does not recognize rat and mouse PAICS. Furthermore, our data indicated that this mAb is suitable for immunoprecipitation and immunoblotting use for several cancer cell lines. We, therefore, anticipate that mAb 6A10 will be useful for functional analyses of human PAICS in several cancers and for diagnosis of malignant transformation.


Assuntos
Anticorpos Monoclonais , Humanos , Animais , Ratos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/biossíntese , Camundongos , Cães , Purinas/imunologia , Linhagem Celular Tumoral , Carbono-Nitrogênio Ligases/imunologia , Carbono-Nitrogênio Ligases/genética , Especificidade de Anticorpos/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Peptídeo Sintases
11.
J Pregnancy ; 2024: 5539776, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883212

RESUMO

Background: There is insufficient evidence to assess the risk of the production of clinically important alloimmune irregular red blood cell (RBC) antibodies in first-time pregnant women. Methods: Using the microcolumn gel antiglobulin method, 18,010 Chinese women with a history of pregnancy and pregnant women were screened for irregular RBC antibodies, and for those with positive test results, antibody specificity was determined. The detection rate and specificity of irregular RBC antibodies in women with a history of multiple pregnancies (two or more) and first-time pregnant women were determined. Results: In addition to 25 patients who passively acquired anti-D antibodies via an intravenous anti-D immunoglobulin injection, irregular RBC antibodies were detected in 121 (0.67%) of the 18,010 women. Irregular RBC antibodies were detected in 93 (0.71%) of the 13,027 women with a history of multiple pregnancies, and antibody specificity was distributed mainly in the Rh, MNSs, Lewis, and Kidd blood group systems; irregular RBC antibodies were detected in 28 (0.56%) of the 4983 first-time pregnant women, and the antibody specificity was distributed mainly in the MNSs, Rh, and Lewis blood group systems. The difference in the percentage of patients with irregular RBC antibodies between the two groups was insignificant (χ 2 = 1.248, P > 0.05). Of the 121 women with irregular RBC antibodies, nine had anti-Mur antibodies, and one had anti-Dia antibodies; these antibodies are clinically important but easily missed because the antigenic profile of the reagent RBCs that are commonly used in antibody screens does not include the antigens that are recognized by these antibodies. Conclusion: Irregular RBC antibody detection is clinically important for both pregnant women with a history of multiple pregnancies and first-time pregnant women. Mur and Dia should be included in the antigenic profile of reagent RBCs that are used for performing antibody screens in the Chinese population.


Assuntos
Eritrócitos , Adulto , Feminino , Humanos , Gravidez , Especificidade de Anticorpos , Povo Asiático , China , População do Leste Asiático , Eritrócitos/imunologia , Isoanticorpos/sangue , Sistema do Grupo Sanguíneo Kidd/imunologia , Sistema do Grupo Sanguíneo MNSs/imunologia , Gravidez Múltipla , Imunoglobulina rho(D)/sangue , Sensibilidade e Especificidade
12.
J Vet Med Sci ; 86(7): 801-808, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38839348

RESUMO

Immunoglobulin A (IgA) is notable for its broad specificity toward multiple bacteria. Phosphorylcholine (PC) plays a role in the infection of pathogenic bacteria carrying PC and in the induction of IgA responses in the host immune system. The commercially available mouse monoclonal IgA, TEPC15-IgA, is a distinctive antibody with specificity for PC, warranting further exploration of its response to PC-bearing enteric bacteria. In this study, using 17 different enteric bacteria, including 3 aerobic and 14 anerobic bacteria that could be cultured in vitro, we confirmed that TEPC15-IgA recognizes 4 bacterial species: Lactobacillus taiwanensis, Limosilactobacillus frumenti, Streptococcus infantis, and Escherichia coli, although reactivity varied. Interestingly, TEPC15-IgA did not react with four of six Lactobacillus species used. Moreover, distinct target molecules associated with PC in L. taiwanensis and L. frumenti were evident, differing in molecular weight. These findings suggest that the natural generation of PC-specific IgA could prevent PC-mediated infections and potentially facilitate the formation of a microflora rich in indigenous bacteria with PC, particularly in the gastrointestinal tract.


Assuntos
Anticorpos Monoclonais , Imunoglobulina A , Fosforilcolina , Animais , Imunoglobulina A/imunologia , Fosforilcolina/imunologia , Camundongos , Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos , Enterobacteriaceae/imunologia , Camundongos Endogâmicos BALB C
13.
J Immunol ; 213(4): 442-455, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905108

RESUMO

Hepatitis E virus (HEV) is a worldwide zoonotic and public health concern. The study of HEV biology is helpful for designing viral vaccines and drugs. Nanobodies have recently been considered appealing materials for viral biological research. In this study, a Bactrian camel was immunized with capsid proteins from different genotypes (1, 3, 4, and avian) of HEV. Then, a phage library (6.3 × 108 individual clones) was constructed using peripheral blood lymphocytes from the immunized camel, and 12 nanobodies against the truncated capsid protein of genotype 3 HEV (g3-p239) were screened. g3-p239-Nb55 can cross-react with different genotypes of HEV and block Kernow-C1/P6 HEV from infecting HepG2/C3A cells. To our knowledge, the epitope recognized by g3-p239-Nb55 was determined to be a novel conformational epitope located on the surface of viral particles and highly conserved among different mammalian HEV isolates. Next, to increase the affinity and half-life of the nanobody, it was displayed on the surface of ferritin, which can self-assemble into a 24-subunit nanocage, namely, fenobody-55. The affinities of fenobody-55 to g3-p239 were ∼20 times greater than those of g3-p239-Nb55. In addition, the half-life of fenobody-55 was nine times greater than that of g3-p239-Nb55. G3-p239-Nb55 and fenobody-55 can block p239 attachment and Kernow-C1/P6 infection of HepG2/C3A cells. Fenobody-55 can completely neutralize HEV infection in rabbits when it is preincubated with nonenveloped HEV particles. Our study reported a case in which a nanobody neutralized HEV infection by preincubation, identified a (to our knowledge) novel and conserved conformational epitope of HEV, and provided new material for researching HEV biology.


Assuntos
Anticorpos Neutralizantes , Proteínas do Capsídeo , Vírus da Hepatite E , Hepatite E , Anticorpos de Domínio Único , Vírus da Hepatite E/imunologia , Animais , Proteínas do Capsídeo/imunologia , Anticorpos de Domínio Único/imunologia , Humanos , Anticorpos Neutralizantes/imunologia , Hepatite E/imunologia , Camelus/imunologia , Epitopos/imunologia , Células Hep G2 , Reações Cruzadas/imunologia , Genótipo , Especificidade de Anticorpos/imunologia
14.
MAbs ; 16(1): 2365891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889315

RESUMO

Integrins are cell surface receptors that mediate the interactions of cells with their surroundings and play essential roles in cell adhesion, migration, and homeostasis. Eight of the 24 integrins bind to the tripeptide Arg-Gly-Asp (RGD) motif in their extracellular ligands, comprising the RGD-binding integrin subfamily. Despite similarity in recognizing the RGD motif and some redundancy, these integrins can selectively recognize RGD-containing ligands to fulfill specific functions in cellular processes. Antibodies against individual RGD-binding integrins are desirable for investigating their specific functions, and were selected here from a synthetic yeast-displayed Fab library. We discovered 11 antibodies that exhibit high specificity and affinity toward their target integrins, i.e. αVß3, αVß5, αVß6, αVß8, and α5ß1. Of these, six are function-blocking antibodies and contain a ligand-mimetic R(G/L/T)D motif in their CDR3 sequences. We report antibody-binding specificity, kinetics, and binding affinity for purified integrin ectodomains, as well as intact integrins on the cell surface. We further used these antibodies to reveal binding preferences of the αV subunit for its 5 ß-subunit partners: ß6 = ß8 > ß3 > ß1 = ß5.


Assuntos
Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Cadeias beta de Integrinas/imunologia , Cadeias beta de Integrinas/química , Cadeias beta de Integrinas/metabolismo , Cadeias beta de Integrinas/genética , Integrina alfaV/imunologia , Integrina alfaV/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular , Ligação Proteica , Especificidade de Anticorpos
15.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1571-1583, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783817

RESUMO

The antibodies to the microtubule-associated protein tau play a role in basic and clinical studies of Alzheimer's disease (AD) and other tauopathies. With the recombinant human tau441 as the immunogen, the hybridoma cell strains secreting the anti-human tau N-terminal domain (NTD-tau) monoclonal antibodies were generated by cell fusion and screened by limiting dilution. The purified monoclonal antibodies were obtained by inducing the mouse ascites and affinity chromatography. The sensitivity and specificity of the monoclonal antibodies were examined by indirect ELISA and Western blotting, respectively. A double antibody sandwich ELISA method for detecting human tau protein was established and optimized. The results showed that the positive cloning rate of hybridoma cells was 83.6%. A stable cell line producing ZD8F7 antibodies was established, and the antibody titer in the supernatant of the cell line was 1:16 000. The antibody titer in the ascitic fluid was higher than 1:256 000; and the titer of purified ZD8F7 monoclonal antibodies was higher than 1:128 000. The epitope analysis showed that the ZD8F7 antibody recognized tau21-37 amino acid in the N-terminal domain. The Western blotting results showed that the ZD8F7 antibody recognized the recombinant human tau protein of 50-70 kDa and the human tau protein of 50 kDa in the brain tissue of transgenic AD model mice (APP/PS1/tau). With ZD8F7 as a capture antibody, a quantitative detection method for human tau protein was established, which showed a linear range of 7.8-500.0 pg/mL and could identify human tau protein in the brain tissue of AD transgenic mice and human plasma but not recognize the mouse tau protein. In conclusion, the human NTD-tau-specific monoclonal antibody and the double antibody sandwich ELISA method established in this study are highly sensitive and can serve as a powerful tool for the detection of tau protein in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais , Proteínas tau , Proteínas tau/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/biossíntese , Humanos , Camundongos , Doença de Alzheimer/imunologia , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/sangue , Ensaio de Imunoadsorção Enzimática , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Hibridomas/imunologia , Camundongos Endogâmicos BALB C , Especificidade de Anticorpos , Domínios Proteicos , Epitopos/imunologia
16.
J Biol Chem ; 300(6): 107397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763332

RESUMO

Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.


Assuntos
Cryptococcus neoformans , Epitopos , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/química , Epitopos/química , Epitopos/imunologia , Regiões Constantes de Imunoglobulina/química , Regiões Constantes de Imunoglobulina/genética , Simulação de Dinâmica Molecular , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Humanos , Especificidade de Anticorpos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Animais , Anticorpos Antifúngicos/imunologia , Anticorpos Antifúngicos/química
17.
Nature ; 630(8017): 728-735, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778101

RESUMO

Haematopoietic stem cell (HSC) transplantation (HSCT) is the only curative treatment for a broad range of haematological malignancies, but the standard of care relies on untargeted chemotherapies and limited possibilities to treat malignant cells after HSCT without affecting the transplanted healthy cells1. Antigen-specific cell-depleting therapies hold the promise of much more targeted elimination of diseased cells, as witnessed in the past decade by the revolution of clinical practice for B cell malignancies2. However, target selection is complex and limited to antigens expressed on subsets of haematopoietic cells, resulting in a fragmented therapy landscape with high development costs2-5. Here we demonstrate that an antibody-drug conjugate (ADC) targeting the pan-haematopoietic marker CD45 enables the antigen-specific depletion of the entire haematopoietic system, including HSCs. Pairing this ADC with the transplantation of human HSCs engineered to be shielded from the CD45-targeting ADC enables the selective eradication of leukaemic cells with preserved haematopoiesis. The combination of CD45-targeting ADCs and engineered HSCs creates an almost universal strategy to replace a diseased haematopoietic system, irrespective of disease aetiology or originating cell type. We propose that this approach could have broad implications beyond haematological malignancies.


Assuntos
Neoplasias Hematológicas , Hematopoese , Imunoconjugados , Antígenos Comuns de Leucócito , Animais , Feminino , Humanos , Masculino , Camundongos , Neoplasias Hematológicas/tratamento farmacológico , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia , Hematopoese/efeitos dos fármacos , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Linhagem Celular Tumoral , Especificidade de Anticorpos
18.
Hum Antibodies ; 32(3): 129-137, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758996

RESUMO

BACKGROUND: Middle East Respiratory Syndrome Coronavirus is a highly pathogenic virus that poses a significant threat to public health. OBJECTIVE: The purpose of this study is to develop and characterize novel mouse monoclonal antibodies targeting the spike protein S1 subunit of the Middle East Respiratory Syndrome Corona Virus (MERS-CoV). METHODS: In this study, three mouse monoclonal antibodies (mAbs) against MERS-CoV were generated and characterized using hybridoma technology. The mAbs were evaluated for their reactivity and neutralization activity. The mAbs were generated through hybridoma technology by the fusion of myeloma cells and spleen cells from MERS-CoV-S1 immunized mice. The resulting hybridomas were screened for antibody production using enzyme-linked immunosorbent assays (ELISA). RESULTS: ELISA results demonstrated that all three mAbs exhibited strong reactivity against the MERS-CoV S1-antigen. Similarly, dot-ELISA revealed their ability to specifically recognize viral components, indicating their potential for diagnostic applications. Under non-denaturing conditions, Western blot showed the mAbs to have robust reactivity against a specific band at 116 KDa, corresponding to a putative MERS-CoV S1-antigen. However, no reactive bands were observed under denaturing conditions, suggesting that the antibodies recognize conformational epitopes. The neutralization assay showed no in vitro reactivity against MERS-CoV. CONCLUSION: This study successfully generated three mouse monoclonal antibodies against MERS-CoV using hybridoma technology. The antibodies exhibited strong reactivity against MERS-CoV antigens using ELISA and dot ELISA assays. Taken together, these findings highlight the significance of these mAbs for potential use as valuable tools for MERS-CoV research and diagnosis (community and field-based surveillance and viral antigen detection).


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Ensaio de Imunoadsorção Enzimática , Hibridomas , Coronavírus da Síndrome Respiratória do Oriente Médio , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Anticorpos Monoclonais/imunologia , Camundongos , Anticorpos Antivirais/imunologia , Hibridomas/imunologia , Humanos , Anticorpos Neutralizantes/imunologia , Camundongos Endogâmicos BALB C , Epitopos/imunologia , Testes de Neutralização , Especificidade de Anticorpos/imunologia , Infecções por Coronavirus/imunologia , Feminino
19.
Viruses ; 16(4)2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675937

RESUMO

Antibodies that specifically bind to individual human fragment crystallizable γ receptors (FcγRs) are of interest as research tools in studying immune cell functions, as well as components in bispecific antibodies for immune cell engagement in cancer therapy. Monoclonal antibodies for human low-affinity FcγRs have been successfully generated by hybridoma technology and are widely used in pre-clinical research. However, the generation of monoclonal antibodies by hybridoma technology that specifically bind to the high-affinity receptor FcγRI is challenging. Monomeric mouse IgG2a, IgG2b, and IgG3 bind human FcγRI with high affinity via the Fc part, leading to an Fc-mediated rather than a fragment for antigen binding (Fab)-mediated selection of monoclonal antibodies. Blocking the Fc-binding site of FcγRI with an excess of human IgG or Fc during screening decreases the risk of Fc-mediated interactions but can also block the potential epitopes of new antibody candidates. Therefore, we replaced hybridoma technology with phage display of a single-chain fragment variable (scFv) antibody library that was generated from mice immunized with FcγRI-positive cells and screened it with a cellular panning approach assisted by next-generation sequencing (NGS). Seven new FcγRI-specific antibody sequences were selected with this methodology, which were produced as Fc-silent antibodies showing FcγRI-restricted specificity.


Assuntos
Anticorpos Monoclonais , Receptores de IgG , Receptores de IgG/imunologia , Receptores de IgG/metabolismo , Animais , Camundongos , Humanos , Anticorpos Monoclonais/imunologia , Imunoglobulina G/imunologia , Imunização , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Biblioteca de Peptídeos , Técnicas de Visualização da Superfície Celular , Hibridomas , Especificidade de Anticorpos , Feminino , Camundongos Endogâmicos BALB C
20.
Life Sci ; 347: 122676, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688384

RESUMO

Antibody-drug conjugates (ADCs) are immunoconjugates that combine the specificity of monoclonal antibodies with a cytotoxic agent. The most appealing aspects of ADCs include their potential additive or synergistic effects of the innate backbone antibody and cytotoxic effects of the payload on tumors without the severe toxic side effects often associated with traditional chemotherapy. Recent advances in identifying new targets with tumor-specific expression, along with improved bioactive payloads and novel linkers, have significantly expanded the scope and optimism for ADCs in cancer therapeutics. In this paper, we will first provide a brief overview of antibody specificity and the structure of ADCs. Next, we will discuss the mechanisms of action and the development of resistance to ADCs. Finally, we will explore opportunities for enhancing ADC efficacy, overcoming drug resistance, and offer future perspectives on leveraging ADCs to improve the outcome of ADC therapy for cancer treatment.


Assuntos
Imunoconjugados , Neoplasias , Humanos , Imunoconjugados/uso terapêutico , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Especificidade de Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA