Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.194
Filtrar
1.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166653

RESUMO

Members of the genus Clostridium are frequently associated with meat spoilage. The ability for low numbers of spores of certain Clostridium species to germinate in cold-stored vacuum-packed meat can result in blown pack spoilage. However, little is known about the germination process of these clostridia, despite this characteristic being important for their ability to cause spoilage. This study sought to determine the genomic conditions for germination of 37 representative Clostridium strains from seven species (C. estertheticum, C. tagluense, C. frigoris, C. gasigenes, C. putrefaciens, C. aligidicarnis and C. frigdicarnis) by comparison with previously characterized germination genes from C. perfringens, C. sporogenes and C. botulinum. All the genomes analysed contained at least one gerX operon. Seven different gerX operon configuration types were identified across genomes from C. estertheticum, C. tagluense and C. gasigenes. Differences arose between the C. gasigenes genomes and those belonging to C. tagluense/C. estertheticum in the number and type of genes coding for cortex lytic enzymes, suggesting the germination pathway of C. gasigenes is different. However, the core components of the germination pathway were conserved in all the Clostridium genomes analysed, suggesting that these species undergo the same major steps as Bacillus subtilis for germination to occur.


Assuntos
Clostridium/crescimento & desenvolvimento , Clostridium/genética , Carne/microbiologia , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Clostridium/classificação , Hibridização Genômica Comparativa , DNA Bacteriano , Microbiologia de Alimentos , Genes Bacterianos , Genoma Bacteriano
2.
Cell ; 185(1): 145-157.e13, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34995513

RESUMO

Contrary to multicellular organisms that display segmentation during development, communities of unicellular organisms are believed to be devoid of such sophisticated patterning. Unexpectedly, we find that the gene expression underlying the nitrogen stress response of a developing Bacillus subtilis biofilm becomes organized into a ring-like pattern. Mathematical modeling and genetic probing of the underlying circuit indicate that this patterning is generated by a clock and wavefront mechanism, similar to that driving vertebrate somitogenesis. We experimentally validated this hypothesis by showing that predicted nutrient conditions can even lead to multiple concentric rings, resembling segments. We additionally confirmed that this patterning mechanism is driven by cell-autonomous oscillations. Importantly, we show that the clock and wavefront process also spatially patterns sporulation within the biofilm. Together, these findings reveal a biofilm segmentation clock that organizes cellular differentiation in space and time, thereby challenging the paradigm that such patterning mechanisms are exclusive to plant and animal development.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Biofilmes/crescimento & desenvolvimento , Padronização Corporal/genética , Bacillus subtilis/metabolismo , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Cinética , Modelos Biológicos , Nitrogênio/metabolismo , Transdução de Sinais/genética , Somitos/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Estresse Fisiológico/genética , Fatores de Tempo
3.
J Bacteriol ; 204(2): e0047021, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34780301

RESUMO

Bacterial spores can rapidly exit dormancy through the process of germination. This process begins with the activation of nutrient receptors embedded in the spore membrane. The prototypical germinant receptor in Bacillus subtilis responds to l-alanine and is thought to be a complex of proteins encoded by the genes in the gerA operon: gerAA, gerAB, and gerAC. The GerAB subunit has recently been shown to function as the nutrient sensor, but beyond contributing to complex stability, no additional functions have been attributed to the other two subunits. Here, we investigate the role of GerAA. We resurrect a previously characterized allele of gerA (termed gerA*) that carries a mutation in gerAA and show that it constitutively activates germination even in the presence of a wild-type copy of gerA. Using an enrichment strategy to screen for suppressors of gerA*, we identified mutations in all three gerA genes that restore a functional receptor. Characterization of two distinct gerAB suppressors revealed that one (gerAB[E105K]) reduces the GerA complex's ability to respond to l-alanine, while another (gerAB[F259S]) disrupts the germinant signal downstream of l-alanine recognition. These data argue against models in which GerAA is directly or indirectly involved in germinant sensing. Rather, our data suggest that GerAA is responsible for transducing the nutrient signal sensed by GerAB. While the steps downstream of gerAA have yet to be uncovered, these results validate the use of a dominant-negative genetic approach in elucidating the gerA signal transduction pathway. IMPORTANCE Endospore formers are a broad group of bacteria that can enter dormancy upon starvation and exit dormancy upon sensing the return of nutrients. How dormant spores sense and respond to these nutrients is poorly understood. Here, we identify a key step in the signal transduction pathway that is activated after spores detect the amino acid l-alanine. We present a model that provides a more complete picture of this process that is critical for allowing dormant spores to germinate and resume growth.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Membrana/genética , Transdução de Sinais/genética , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Alanina/metabolismo , Alelos , Bacillus subtilis/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Mutação , Óperon , Esporos Bacterianos/crescimento & desenvolvimento
4.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830357

RESUMO

Membrane proteins are fascinating since they play an important role in diverse cellular functions and constitute many drug targets. Membrane proteins are challenging to analyze. The spore, the most resistant form of known life, harbors a compressed inner membrane. This membrane acts not only as a barrier for undesired molecules but also as a scaffold for proteins involved in signal transduction and the transport of metabolites during spore germination and subsequent vegetative growth. In this study, we adapted a membrane enrichment method to study the membrane proteome of spores and cells of the food-borne pathogen Bacillus cereus using quantitative proteomics. Using bioinformatics filtering we identify and quantify 498 vegetative cell membrane proteins and 244 spore inner membrane proteins. Comparison of vegetative and spore membrane proteins showed there were 54 spore membrane-specific and 308 cell membrane-specific proteins. Functional characterization of these proteins showed that the cell membrane proteome has a far larger number of transporters, receptors and proteins related to cell division and motility. This was also reflected in the much higher expression level of many of these proteins in the cellular membrane for those proteins that were in common with the spore inner membrane. The spore inner membrane had specific expression of several germinant receptors and spore-specific proteins, but also seemed to show a preference towards the use of simple carbohydrates like glucose and fructose owing to only expressing transporters for these. These results show the differences in membrane proteome composition and show us the specific proteins necessary in the inner membrane of a dormant spore of this toxigenic spore-forming bacterium to survive adverse conditions.


Assuntos
Bacillus cereus/genética , Proteínas de Bactérias/genética , Doenças Transmitidas por Alimentos/genética , Proteoma/genética , Bacillus cereus/patogenicidade , Proteínas de Bactérias/classificação , Membrana Celular/genética , Contaminação de Alimentos , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteômica , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/patogenicidade
5.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681888

RESUMO

Spores of the bacterium Bacillus cereus can cause disease in humans due to contamination of raw materials for food manufacturing. These dormant, resistant spores can survive for years in the environment, but can germinate and grow when their surroundings become suitable, and spore germination proteins play an important role in the decision to germinate. Since germinated spores have lost dormant spores' extreme resistance, knowledge about the formation and function of germination proteins could be useful in suggesting new preservation strategies to control B. cereus spores. In this study, we confirmed that the GerR germinant receptor's (GR) A, B, and C subunits and GerD co-localize in B. cereus spore inner membrane (IM) foci termed germinosomes. The interaction between these proteins was examined by using fusions to the fluorescent reporter proteins SGFP2 and mScarlet-I and Förster Resonance Energy Transfer (FRET). This work found that the FRET efficiency was 6% between GerR(A-C-B)-SGFP2 and GerD-mScarlet-I, but there was no FRET between GerD-mScarlet-I and either GerRA-SGFP2 or GerRC-SGFP2. These results and that GerD does not interact with a GR C-subunit in vitro suggest that, in the germinosome, GerD interacts primarily with the GR B subunit. The dynamics of formation of germinosomes with GerR(A-C-B)-SGFP2 and GerD-mScarlet-I was also followed during sporulation. Our results showed heterogeneity in the formation of FRET positive foci of GerR(A-C-B)-SGFP2 and GerD-mScarlet-I; and while some foci formed at the same time, the formation of foci in the FRET channel could be significantly delayed. The latter finding suggests that either the GerR GR can at least transiently form IM foci in the absence of GerD, or that, while GerD is essential for GerR foci formation, the time to attain the final germinosome structure with close contacts between GerD and GerR can be heterogeneous.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Domínios e Motivos de Interação entre Proteínas , Esporos Bacterianos/metabolismo , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento
6.
Microbiol Spectr ; 9(2): e0088121, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34612699

RESUMO

Sporulation is an important part of the life cycle of Bacillus thuringiensis and the basis for the production of parasporal crystals. This study identifies and characterizes two homologous spoVS genes (spoVS1 and spoVS2) in B. thuringiensis, both of whose expression is dependent on the σH factor. The disruption of spoVS1 and spoVS2 resulted in defective B. thuringiensis sporulation. Similar to Bacillus subtilis, B. thuringiensis strain HD(ΔspoVS1) mutants showed delayed formation of the polar septa, decreased sporulation efficiency, and blocked spore release. Different from B. subtilis, B. thuringiensis HD(ΔspoVS1) mutants had disporic septa and failed to complete engulfment in some cells. Moreover, HD(ΔspoVS2) mutants had delayed spore release. The effect of spoVS1 deletion on polar septum delay and sporulation efficiency could be compensated by spoVS2. ß-Galactosidase activity analysis showed that the expression of pro-sigE and spoIIE decreased to different degrees in the HD(ΔspoVS1) and HD(ΔspoVS2) mutants. The different effects of the two mutations on the expression of sporulation genes led to decreases in Cry1Ac production of different levels. IMPORTANCE There is only one spoVS gene in B. subtilis, and its effects on sporulation have been reported. In this study, two homologous spoVS genes were found and identified in B. thuringiensis. The different effects on sporulation and parasporal crystal protein production in B. thuringiensis and their relationship were investigated. We found that these two homologous spoVS genes are highly conserved in the Bacillus cereus group, and therefore, the functional characterization of SpoVS is helpful to better understand the sporulation processes of members of the Bacillus cereus group.


Assuntos
Toxinas de Bacillus thuringiensis/biossíntese , Bacillus thuringiensis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endotoxinas/biossíntese , Proteínas Hemolisinas/biossíntese , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus thuringiensis/crescimento & desenvolvimento , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Fator sigma/genética , Fator sigma/metabolismo
7.
PLoS Genet ; 17(9): e1009791, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570752

RESUMO

Spore-forming pathogens like Clostridioides difficile depend on germination to initiate infection. During gemination, spores must degrade their cortex layer, which is a thick, protective layer of modified peptidoglycan. Cortex degradation depends on the presence of the spore-specific peptidoglycan modification, muramic-∂-lactam (MAL), which is specifically recognized by cortex lytic enzymes. In C. difficile, MAL production depends on the CwlD amidase and its binding partner, the GerS lipoprotein. To gain insight into how GerS regulates CwlD activity, we solved the crystal structure of the CwlD:GerS complex. In this structure, a GerS homodimer is bound to two CwlD monomers such that the CwlD active sites are exposed. Although CwlD structurally resembles amidase_3 family members, we found that CwlD does not bind Zn2+ stably on its own, unlike previously characterized amidase_3 enzymes. Instead, GerS binding to CwlD promotes CwlD binding to Zn2+, which is required for its catalytic mechanism. Thus, in determining the first structure of an amidase bound to its regulator, we reveal stabilization of Zn2+ co-factor binding as a novel mechanism for regulating bacterial amidase activity. Our results further suggest that allosteric regulation by binding partners may be a more widespread mode for regulating bacterial amidase activity than previously thought.


Assuntos
Amidoidrolases/metabolismo , Clostridioides difficile/fisiologia , Lipoproteínas/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Regulação Alostérica , Amidoidrolases/química , Catálise , Domínio Catalítico , Cromatografia em Gel , Clostridioides difficile/enzimologia , Cristalografia por Raios X , Lactamas/metabolismo , Estrutura Molecular , Ácidos Murâmicos/metabolismo , Ligação Proteica
8.
Front Immunol ; 12: 688257, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497601

RESUMO

We present a stochastic mathematical model of the intracellular infection dynamics of Bacillus anthracis in macrophages. Following inhalation of B. anthracis spores, these are ingested by alveolar phagocytes. Ingested spores then begin to germinate and divide intracellularly. This can lead to the eventual death of the host cell and the extracellular release of bacterial progeny. Some macrophages successfully eliminate the intracellular bacteria and will recover. Here, a stochastic birth-and-death process with catastrophe is proposed, which includes the mechanism of spore germination and maturation of B. anthracis. The resulting model is used to explore the potential for heterogeneity in the spore germination rate, with the consideration of two extreme cases for the rate distribution: continuous Gaussian and discrete Bernoulli. We make use of approximate Bayesian computation to calibrate our model using experimental measurements from in vitro infection of murine peritoneal macrophages with spores of the Sterne 34F2 strain of B. anthracis. The calibrated stochastic model allows us to compute the probability of rupture, mean time to rupture, and rupture size distribution, of a macrophage that has been infected with one spore. We also obtain the mean spore and bacterial loads over time for a population of cells, each assumed to be initially infected with a single spore. Our results support the existence of significant heterogeneity in the germination rate, with a subset of spores expected to germinate much later than the majority. Furthermore, in agreement with experimental evidence, our results suggest that most of the spores taken up by macrophages are likely to be eliminated by the host cell, but a few germinated spores may survive phagocytosis and lead to the death of the infected cell. Finally, we discuss how this stochastic modelling approach, together with dose-response data, allows us to quantify and predict individual infection risk following exposure.


Assuntos
Antraz/microbiologia , Bacillus anthracis/patogenicidade , Macrófagos Peritoneais/microbiologia , Modelos Biológicos , Esporos Bacterianos/patogenicidade , Animais , Antraz/imunologia , Antraz/patologia , Bacillus anthracis/crescimento & desenvolvimento , Bacillus anthracis/imunologia , Teorema de Bayes , Morte Celular , Simulação por Computador , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno , Exposição por Inalação , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/patologia , Camundongos , Viabilidade Microbiana , Fagocitose , Densidade Demográfica , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/imunologia , Processos Estocásticos , Fatores de Tempo
9.
Genome Biol ; 22(1): 204, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34348764

RESUMO

BACKGROUND: Human-to-human transmission of symbiotic, anaerobic bacteria is a fundamental evolutionary adaptation essential for membership of the human gut microbiota. However, despite its importance, the genomic and biological adaptations underpinning symbiont transmission remain poorly understood. The Firmicutes are a dominant phylum within the intestinal microbiota that are capable of producing resistant endospores that maintain viability within the environment and germinate within the intestine to facilitate transmission. However, the impact of host transmission on the evolutionary and adaptive processes within the intestinal microbiota remains unknown. RESULTS: We analyze 1358 genomes of Firmicutes bacteria derived from host and environment-associated habitats. Characterization of genomes as spore-forming based on the presence of sporulation-predictive genes reveals multiple losses of sporulation in many distinct lineages. Loss of sporulation in gut Firmicutes is associated with features of host-adaptation such as genome reduction and specialized metabolic capabilities. Consistent with these data, analysis of 9966 gut metagenomes from adults around the world demonstrates that bacteria now incapable of sporulation are more abundant within individuals but less prevalent in the human population compared to spore-forming bacteria. CONCLUSIONS: Our results suggest host adaptation in gut Firmicutes is an evolutionary trade-off between transmission range and colonization abundance. We reveal host transmission as an underappreciated process that shapes the evolution, assembly, and functions of gut Firmicutes.


Assuntos
Firmicutes/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Adaptação ao Hospedeiro/genética , Microbiota/genética , Esporos Bacterianos/genética , Simbiose/genética , Anaerobiose/genética , Evolução Biológica , Firmicutes/crescimento & desenvolvimento , Humanos , Metagenoma , Esporos Bacterianos/crescimento & desenvolvimento
10.
Food Microbiol ; 100: 103832, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416948

RESUMO

Clostridium sporogenes has been widely used as a surrogate for proteolytic C. botulinum for validating thermal processes in low-acid cans. To limit the intensity of heat treatments, industrials must use other ways of control as an association of acidic and saline environment after a low heat treatment. The probability of growth of pH (7-4.4), sodium chloride concentration (0-11%) and heat treatment (80°C-10 min; 100°C-1.5 min and 5.2 min) were studied on C. sporogenes PA 3679 spores and vegetative cells. Vegetative cells or heat-treated spores were inoculated in PYGm broth at 30 °C for 48 days in anaerobic conditions. Vegetative cells growth (pH 4.6-pH 4.5; 7%-8% NaCl) range is larger than the spore one (pH 5.2-pH 5.0; 6%-7% NaCl). Spores germination and outgrowth rage is decreased if the spores are heat-treated at 100 °C for 1.5 min (pH 5.5-5.3; 4%-5% NaCl) and 5.2 min (pH 5.7-5.3; 4%-5% NaCl). The C. sporogenes PA 3679 spores germination and outgrowth is impacted by their physiological state. The synergic interaction between environmental factors (pH and NaCl) and the physiological state (vegetative cells and spores) opening new possibilities for optimizing food formulation processes to manage the risks of C. sporogenes spoilage.


Assuntos
Clostridium/crescimento & desenvolvimento , Conservação de Alimentos/métodos , Alimentos em Conserva/microbiologia , Cloreto de Sódio/farmacologia , Esporos Bacterianos/crescimento & desenvolvimento , Clostridium/efeitos dos fármacos , Clostridium botulinum/efeitos dos fármacos , Clostridium botulinum/crescimento & desenvolvimento , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Conservação de Alimentos/instrumentação , Temperatura Alta , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Cloreto de Sódio/análise
11.
World J Microbiol Biotechnol ; 37(9): 154, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34398297

RESUMO

Bacillus thuringiensis (Bt) (Bacillales:Bacillaceae) is a gram-positive bacterium that produces spores, several virulence factors and insecticidal toxins, making this microorganism the most used biopesticide worldwide. The use of inert supports such as polyurethane foam (PUF) in solid cultures has been a great alternative to produce various metabolites, including those produced by Bt. In this study we compared the yields, productivity and quality of the spores by two wild strains of Bt, (Y15 and EA3), grown in media with high substrate concentration in both culture systems: liquid and solid (PUF as solid inert support). Both strains showed 2.5- to 30-fold increases in spore production and productivity in solid culture, which showed an even greater increase when considering the spores retained in the PUF observed by scanning electron microscopy. Moreover, spore produced in solid culture showed up to sevenfold higher survival after a heat-shock treatment, relative to spores from liquid culture. The infectivity against larvae of Galleria mellonella (Lepidoptera:Pyralidae) improved also in spores from solid cultures. This comparison showed that the culture of Bt on solid support has clear advantages over liquid culture in terms of the production and quality of spores, and that those advantages can be attributed only to the culture system, as the same media composition was used in both systems.


Assuntos
Bacillus thuringiensis/fisiologia , Poliuretanos/química , Esporos Bacterianos/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/patogenicidade , Técnicas Bacteriológicas , Meios de Cultura/química , Larva/microbiologia , Lepidópteros/microbiologia , Microscopia Eletrônica de Varredura
12.
World J Microbiol Biotechnol ; 37(8): 144, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34351499

RESUMO

Spores of many species of the orders Bacillales and Clostridiales can be vectors for food spoilage, human diseases and intoxications, and biological warfare. Many agents are used for spore killing, including moist heat in an autoclave, dry heat at elevated temperatures, UV radiation at 254 and more recently 222 and 400 nm, ionizing radiation of various types, high hydrostatic pressures and a host of chemical decontaminants. An alternative strategy is to trigger spore germination, as germinated spores are much easier to kill than the highly resistant dormant spores-the so called "germinate to eradicate" strategy. Factors important to consider in choosing methods for spore killing include the: (1) cost; (2) killing efficacy and kinetics; (3) ability to decontaminate large areas in buildings or outside; and (4) compatibility of killing regimens with the: (i) presence of people; (ii) food quality; (iii) presence of significant amounts of organic matter; and (iv) minimal damage to equipment in the decontamination zone. This review will summarize research on spore killing and point out some common flaws which can make results from spore killing research questionable.


Assuntos
Bacillales/crescimento & desenvolvimento , Clostridiales/crescimento & desenvolvimento , Desinfecção/métodos , Esporos Bacterianos/crescimento & desenvolvimento , Bacillales/efeitos dos fármacos , Clostridiales/efeitos da radiação , Desinfecção/instrumentação , Temperatura Alta , Humanos , Esporos Bacterianos/efeitos da radiação , Raios Ultravioleta
13.
J Bacteriol ; 203(17): e0013521, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34096779

RESUMO

Bis-(3'-5')-cyclic-dimeric GMP (c-di-GMP) is an important bacterial regulatory signaling molecule affecting biofilm formation, toxin production, motility, and virulence. The genome of Bacillus anthracis, the causative agent of anthrax, is predicted to encode ten putative GGDEF/EAL/HD-GYP-domain containing proteins. Heterologous expression in Bacillus subtilis hosts indicated that there are five active GGDEF domain-containing proteins and four active EAL or HD-GYP domain-containing proteins. Using an mCherry gene fusion-Western blotting approach, the expression of the c-di-GMP-associated proteins was observed throughout the in vitro life cycle. Of the six c-di-GMP-associated proteins found to be present in sporulating cells, four (CdgA, CdgB, CdgD, and CdgG) contain active GGDEF domains. The six proteins expressed in sporulating cells are retained in spores in a CotE-independent manner and thus are not likely to be localized to the exosporium layer of the spores. Individual deletion mutations involving the nine GGDEF/EAL protein-encoding genes and one HD-GYP protein-encoding gene did not affect sporulation efficiency, the attachment of the exosporium glycoprotein BclA, or biofilm production. Notably, expression of anthrax toxin was not affected by deletion of any of the cdg determinants. Three determinants encoding proteins with active GGDEF domains were found to affect germination kinetics. This study reveals a spore association of cyclic-di-GMP regulatory proteins and a likely role for these proteins in the biology of the B. anthracis spore. IMPORTANCE The genus Bacillus is composed of Gram-positive, rod shaped, soil-dwelling bacteria. As a mechanism for survival in the harsh conditions in soil, the organisms undergo sporulation, and the resulting spores permit the organisms to survive harsh environmental conditions. Although most species are saprophytes, Bacillus cereus and Bacillus anthracis are human pathogens and Bacillus thuringiensis is an insect pathogen. The bacterial c-di-GMP regulatory system is an important control system affecting motility, biofilm formation, and toxin production. The role of c-di-GMP has been studied in the spore-forming bacilli Bacillus subtilis, Bacillus amyloliquefaciens, B. cereus, and B. thuringiensis. However, this regulatory system has not heretofore been examined in the high-consequence zoonotic pathogen of this genus, B. anthracis.


Assuntos
Bacillus anthracis/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Esporos Bacterianos/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/química , Bacillus anthracis/genética , Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Domínios Proteicos , Esporos Bacterianos/química , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento
14.
BMC Microbiol ; 21(1): 172, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34102998

RESUMO

BACKGROUND: Bacillus cereus 0-9, a Gram-positive, endospore-forming bacterium isolated from healthy wheat roots in our previous research, is considered to be an effective biocontrol strain against several soil-borne plant diseases. SpoVG, a regulator that is broadly conserved among many Gram-positive bacteria, may help this organism coordinate environmental growth and virulence to survive. This study aimed to explore the multiple functions of SpoVG in B. cereus 0-9. METHODS: The gene knockout strains were constructed by homologous recombination, and the sporulation process of B. cereus 0-9 and its mutants were observed by fluorescence staining method. We further determined the spore yields and biofilm formation abilities of test strains. Transcriptional fusion strains were constructed by overlapping PCR technique, and the promoter activity of the target gene was detected by measuring its fluorescence intensity. The biofilm production and colonial morphology of B. cereus 0-9 and its mutants were determined to study the functions of the target genes, and the transcription level of the target gene was determined by qRT-PCR. RESULTS: According to observation of the sporulation process of B. cereus 0-9 in germination medium, SpoVG is crucial for regulating sporulation stage V of B. cereus 0-9, which is identical to that of Bacillus subtilis but differs from that of Bacillus anthracis. In addition, SpoVG could influence biofilm formation of B. cereus 0-9. The transcription levels of two genes closely related to biofilm-formation, sipW and calY, were downregulated in a ΔspoVG mutant. The role of SpoVG in regulating biofilm formation was further explored by deleting the genes abrB and sinR in the ΔspoVG mutant, respectively, generating the double mutant strains ΔspoVGΔabrB and ΔspoVGΔsinR. The phenotypes of these double mutants were congruent with those of the single abrB and sinR deletion strains, respectively, which showed increased biofilm formation. This indicated that spoVG was located upstream of abrB and sinR in the regulatory pathway of B. cereus biofilm formation. Further, the results of qRT-PCR and the luminescence intensity of transcriptional fusion strains indicated that spoVG gene deletion could inhibit the transcription of Spo0A. CONCLUSIONS: SpoVG, an important regulator in the sporulation of B. cereus, is located upstream of Spo0A and participates in regulation of biofilm formation of B. cereus 0-9 through regulating the transcription level of spo0A. Sporulation and biofilm formation are crucial mechanisms by which bacteria respond to adverse conditions. SpoVG is therefore an important regulator of Spo0A and is crucial for both sporulation and biofilm formation of B. cereus 0-9. This study provides a new insight into the regulatory mechanism of environmental adaptation in bacteria and a foundation for future studies on biofilm formation of B. cereus.


Assuntos
Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Esporos Bacterianos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Bacillus cereus/genética , Bacillus cereus/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Regiões Promotoras Genéticas , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Fatores de Transcrição/genética , Transcrição Genética
15.
Elife ; 102021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34018921

RESUMO

The Gram-positive bacterium Bacillus subtilis can divide via two modes. During vegetative growth, the division septum is formed at the midcell to produce two equal daughter cells. However, during sporulation, the division septum is formed closer to one pole to yield a smaller forespore and a larger mother cell. Using cryo-electron tomography, genetics and fluorescence microscopy, we found that the organization of the division machinery is different in the two septa. While FtsAZ filaments, the major orchestrators of bacterial cell division, are present uniformly around the leading edge of the invaginating vegetative septa, they are only present on the mother cell side of the invaginating sporulation septa. We provide evidence suggesting that the different distribution and number of FtsAZ filaments impact septal thickness, causing vegetative septa to be thicker than sporulation septa already during constriction. Finally, we show that a sporulation-specific protein, SpoIIE, regulates asymmetric divisome localization and septal thickness during sporulation.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Divisão Celular , Esporos Bacterianos/crescimento & desenvolvimento , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Tomografia com Microscopia Eletrônica , Regulação Bacteriana da Expressão Gênica , Microscopia de Fluorescência , Óperon , Transdução de Sinais , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Esporos Bacterianos/ultraestrutura , Fatores de Tempo
16.
Anaerobe ; 70: 102379, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33940167

RESUMO

BACKGROUND: Sporulation is a complex cell differentiation programme shared by many members of the Firmicutes, the end result of which is a highly resistant, metabolically inert spore that can survive harsh environmental insults. Clostridioides difficile spores are essential for transmission of disease and are also required for recurrent infection. However, the molecular basis of sporulation is poorly understood, despite parallels with the well-studied Bacillus subtilis system. The spore envelope consists of multiple protective layers, one of which is a specialised layer of peptidoglycan, called the cortex, that is essential for the resistant properties of the spore. We set out to identify the enzymes required for synthesis of cortex peptidoglycan in C. difficile. METHODS: Bioinformatic analysis of the C. difficile genome to identify putative homologues of Bacillus subtilis spoVD was combined with directed mutagenesis and microscopy to identify and characterise cortex-specific PBP activity. RESULTS: Deletion of CDR20291_2544 (SpoVDCd) abrogated spore formation and this phenotype was completely restored by complementation in cis. Analysis of SpoVDCd revealed a three domain structure, consisting of dimerization, transpeptidase and PASTA domains, very similar to B. subtilis SpoVD. Complementation with SpoVDCd domain mutants demonstrated that the PASTA domain was dispensable for formation of morphologically normal spores. SpoVDCd was also seen to localise to the developing spore by super-resolution confocal microscopy. CONCLUSIONS: We have identified and characterised a cortex specific PBP in C. difficile. This is the first characterisation of a cortex-specific PBP in C. difficile and begins the process of unravelling cortex biogenesis in this important pathogen.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridioides difficile/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Parede Celular/química , Parede Celular/genética , Parede Celular/metabolismo , Clostridioides difficile/química , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Temperatura Alta , Proteínas de Ligação às Penicilinas/genética , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento
17.
mSphere ; 6(3): e0021121, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34047655

RESUMO

Clostridioides difficile is a leading cause of health care-associated infections worldwide. These infections are transmitted by C. difficile's metabolically dormant, aerotolerant spore form. Functional spore formation depends on the assembly of two protective layers, a thick layer of modified peptidoglycan known as the cortex layer and a multilayered proteinaceous meshwork known as the coat. We previously identified two spore morphogenetic proteins, SpoIVA and SipL, that are essential for recruiting coat proteins to the developing forespore and making functional spores. While SpoIVA and SipL directly interact, the identities of the proteins they recruit to the forespore remained unknown. Here, we used mass spectrometry-based affinity proteomics to identify proteins that interact with the SpoIVA-SipL complex. These analyses identified the Peptostreptococcaceae family-specific, sporulation-induced bitopic membrane protein CD3457 (renamed SpoVQ) as a protein that interacts with SipL and SpoIVA. Loss of SpoVQ decreased heat-resistant spore formation by ∼5-fold and reduced cortex thickness ∼2-fold; the thinner cortex layer of ΔspoVQ spores correlated with higher levels of spontaneous germination (i.e., in the absence of germinant). Notably, loss of SpoVQ in either spoIVA or sipL mutants prevented cortex synthesis altogether and greatly impaired the localization of a SipL-mCherry fusion protein around the forespore. Thus, SpoVQ is a novel regulator of C. difficile cortex synthesis that appears to link cortex and coat formation. The identification of SpoVQ as a spore morphogenetic protein further highlights how Peptostreptococcaceae family-specific mechanisms control spore formation in C. difficile. IMPORTANCE The Centers for Disease Control has designated Clostridioides difficile as an urgent threat because of its intrinsic antibiotic resistance. C. difficile persists in the presence of antibiotics in part because it makes metabolically dormant spores. While recent work has shown that preventing the formation of infectious spores can reduce C. difficile disease recurrence, more selective antisporulation therapies are needed. The identification of spore morphogenetic factors specific to C. difficile would facilitate the development of such therapies. In this study, we identified SpoVQ (CD3457) as a spore morphogenetic protein specific to the Peptostreptococcaceae family that regulates the formation of C. difficile's protective spore cortex layer. SpoVQ acts in concert with the known spore coat morphogenetic factors, SpoIVA and SipL, to link formation of the protective coat and cortex layers. These data reveal a novel pathway that could be targeted to prevent the formation of infectious C. difficile spores.


Assuntos
Clostridioides difficile/genética , Regulação Bacteriana da Expressão Gênica/genética , Peptidoglicano/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/química , Parede Celular/genética , Parede Celular/fisiologia , Clostridioides difficile/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Espectrometria de Massas/métodos , Peptidoglicano/metabolismo , Proteômica
18.
Meat Sci ; 180: 108557, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34052695

RESUMO

A dynamic model was developed to predict growth of Clostridium perfringens in cooked ground pork supplemented with salt (0-3% wt/wt) and sodium pyrophosphate (0-0.3% wt/wt) under varying temperatures. C. perfringens (NCTC 8238, NCTC 8239, and NCTC 10240) spores were heat shocked, cooled, and inoculated into ground pork. Isothermal bacterial growth was quantified with variable salt and phosphate concentrations at temperatures ranging from 15 to 51 °C. The primary Baranyi model was fitted to all C. perfringens growth profiles and gave a satisfactory fit (R2 ≥ 0.85). A quadratic polynomial secondary model was developed (P < 0.0001) to predict the maximum specific growth rate as a function of temperature, salt, and phosphate concentrations (R2 = 0.93). A dynamic model was developed and validated using growth data retrieved from 7 published studies. Thirty three out of 44 predictions were within the acceptable prediction zone (-0.5 ≤ prediction error ≤ 1.0). The developed predictive model can be used to minimize the risk of C. perfringens in pork products supplemented with additives during cooling.


Assuntos
Clostridium perfringens/crescimento & desenvolvimento , Produtos da Carne/microbiologia , Modelos Biológicos , Temperatura , Animais , Culinária , Difosfatos , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Cloreto de Sódio , Esporos Bacterianos/crescimento & desenvolvimento , Suínos
19.
J Microbiol Methods ; 186: 106240, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33992680

RESUMO

Aerobic plate counting assays based on the pour-plate technique are frequently used to enumerate microbial products; however, colony swarming and merging at the agar surface can reduce the accuracy of these assays. Some plating methods mitigate this risk through the inclusion of strategies including agar overlays; however, these interventions may be inadequate to mitigate swarming and merging of certain Bacillus colonies. In the present study, we assessed the accuracy of several pour-plate techniques for the enumeration of a mixed-species Bacillus assemblage. Tested modifications included a customized culture medium formulation, agar overlays, decreased incubation times and increased incubation temperature. Methods which produced countable plates were assessed for agreement with a Bacillus-specific plate counting assay and with total cell counts rendered by flow cytometry. While all tested pour-plate methods underestimated Bacillus endospore concentrations relative to flow cytometry and customized spread-plating, our results suggest that increasing incubation temperature and the inclusion of bile salts into culture medium formulations can improve the accuracy of pour-plate techniques when used to enumerate Bacillus assemblages by decreasing the incidence of spreading colonies. As Bacillus endospore preparations become more ubiquitous in the market, familiar enumeration methods such as the pour-plate technique may require methodological modifications to ensure that the cGMP compliance of Bacillus-based microbial products is assessed accurately.


Assuntos
Bacillus/crescimento & desenvolvimento , Contagem de Colônia Microbiana/métodos , Meios de Cultura/metabolismo , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/metabolismo , Contagem de Colônia Microbiana/instrumentação , Meios de Cultura/química , Esporos Bacterianos/classificação , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/isolamento & purificação , Esporos Bacterianos/metabolismo , Temperatura
20.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006658

RESUMO

A number of bacteria are known to differentiate into cells with distinct phenotypic traits during processes such as biofilm formation or the development of reproductive structures. These cell types, by virtue of their specialized functions, embody a division of labor. However, how bacteria build spatial patterns of differentiated cells is not well understood. Here, we examine the factors that drive spatial patterns in divisions of labor in colonies of Streptomyces coelicolor, a multicellular bacterium capable of synthesizing an array of antibiotics and forming complex reproductive structures (e.g., aerial hyphae and spores). Using fluorescent reporters, we demonstrate that the pathways for antibiotic biosynthesis and aerial hypha formation are activated in distinct waves of gene expression that radiate outwards in S. coelicolor colonies. We also show that the spatiotemporal separation of these cell types depends on a key activator in the developmental pathway, AdpA. Importantly, when we manipulated local gradients by growing competing microbes nearby, or through physical disruption, expression in these pathways could be decoupled and/or disordered, respectively. Finally, the normal spatial organization of these cell types was partially restored with the addition of a siderophore, a public good made by these organisms, to the growth medium. Together, these results indicate that spatial divisions of labor in S. coelicolor colonies are determined by a combination of physiological gradients and regulatory network architecture, key factors that also drive patterns of cellular differentiation in multicellular eukaryotic organisms.IMPORTANCE Streptomyces coelicolor is a multicellular bacterium that differentiates into specialized cell types and produces a diverse array of natural products. While much is known about the genetic networks that regulate development and antibiotic biosynthesis in S. coelicolor, what drives the spatial organization of these activities within a colony remains to be explored. By using time-lapse microscopy to monitor gene expression in developmental and antibiotic biosynthesis pathways, we found that expression in these pathways occurs in spatiotemporally separated waves. Normally, expression of the antibiotic biosynthesis pathway preceded expression in the developmental pathway; however, this order was compromised in a mutant lacking a key developmental regulator. Furthermore, when we disrupted the local gradients during S. coelicolor growth, we observed disordered patterns of gene expression within colonies. Together, these results indicate that spatial divisions of labor in S. coelicolor colonies are determined by a combination of regulatory network architecture and physiological gradients.


Assuntos
Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Redes Reguladoras de Genes , Fenótipo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Streptomyces coelicolor/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...