Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.894
Filtrar
1.
Phys Chem Chem Phys ; 21(35): 19469-19479, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31461098

RESUMO

Using all-atom molecular dynamics simulations of aqueous solutions of the globular protein SNase, the dynamic behavior of water molecules and cosolvents (trimethylamine-N-oxide (TMAO) and urea) in the hydration shell of the protein was studied for different solvent compositions. TMAO is a potent protein-stabilizing osmolyte, whereas urea is known to destabilize proteins. For molecules that are initially located in successive narrow layers at a given distance from the protein, the mean displacements and the distribution of displacements for short time intervals are calculated. For molecules that are initially located in solvation shells of a given thickness around the protein, the characteristic residence times in these shells are determined to characterize the dynamic behavior of the solvent molecules as a function of the distance to the protein. A combined consideration of these characteristics allows to reveal additional features of the dynamics of the cosolvents. It is shown that TMAO molecules leave the nearest vicinity of the protein faster than urea molecules, despite the fact that the mobility of TMAO molecules, measured by their mean displacements, is lower than that of urea. Moreover, we show that the rate of release of TMAO molecules from the hydration shell is lower in ternary (TMAO + urea + H2O) solvent mixtures than in the binary ones. This is consistent with a recent observation that the fraction of TMAO near the protein decreases in the presence of urea. From the analysis of the decay of the number of particles initially located in the region of the first peak of the distribution function of solvent molecules around the protein, we estimated that about 20 water molecules and 6-7 urea molecules stay near the protein for more than 1000 ps.


Assuntos
Endodesoxirribonucleases/química , Endodesoxirribonucleases/metabolismo , Metilaminas/química , Simulação de Dinâmica Molecular , Ureia/química , Água/química , Estabilidade Proteica , Solventes/química
2.
Phys Chem Chem Phys ; 21(32): 17893-17900, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31380529

RESUMO

The dispersion interaction was reported to play a critical role in the stabilization of model dipeptide Z-Arg-OH, even greater than the conventional hydrogen bond (HB), which is opposite to the traditional opinion. Here the conformation of Z-Arg-OH has been systematically searched by the effective fragment based step-by-step strategy. All the newly-found low-energy conformers determined at the advanced DSD-PBEP86-D3(BJ)/aug-cc-pVTZ level are clearly in the stretched form with strong conventional HBs, rather than the reported folded structures with emphasis on the dispersion interactions. The simulated IR spectra of the stretched conformers fit better than those of the folded ones compared with the previous experimental observations. Near-edge X-ray absorption fine-structure (NEXAFS) spectra and X-ray photoelectron spectra (XPS) at C, N and O K-edges have also been simulated to unambiguously identify different isomers. This work thus provides valuable insight into the competitions between the conventional HB and the dispersion interactions and demonstrates that the conventional hydrogen bonding is still more important for such small peptides.


Assuntos
Arginina/análogos & derivados , Arginina/química , Dipeptídeos/química , Modelos Moleculares , Ligações de Hidrogênio , Isomerismo , Fenômenos Físicos , Conformação Proteica , Estabilidade Proteica , Solventes/química , Termodinâmica
3.
Soft Matter ; 15(33): 6660-6676, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31389467

RESUMO

The dynamic behavior of monoclonal antibodies (mAbs) at high concentration provides insight into protein microstructure and protein-protein interactions (PPI) that influence solution viscosity and protein stability. At high concentration, interpretation of the collective-diffusion coefficient Dc, as determined by dynamic light scattering (DLS), is highly challenging given the complex hydrodynamics and PPI at close spacings. In contrast, self-diffusion of a tracer particle by Brownian motion is simpler to understand. Herein, we develop fluorescence correlation spectroscopy (FCS) for the measurement of the long-time self-diffusion of mAb2 over a wide range of concentrations and viscosities in multiple co-solute formulations with varying PPI. The normalized self-diffusion coefficient D0/Ds (equal to the microscopic relative viscosity ηeff/η0) was found to be smaller than η/η0. Smaller ratios of the microscopic to macroscopic viscosity (ηeff/η) are attributed to a combination of weaker PPI and less self-association. The interaction parameters extracted from fits of D0/Ds with a length scale dependent viscosity model agree with previous measurements of PPI by SLS and SAXS. Trends in the degree of self-association, estimated from ηeff/η with a microviscosity model, are consistent with oligomer sizes measured by SLS. Finally, measurements of collective diffusion and osmotic compressibility were combined with FCS data to demonstrate that the changes in self-diffusion between formulations are due primarily to changes in the protein-protein friction in these systems, and not to protein-solvent friction. Thus, FCS is a robust and accessible technique for measuring mAb self-diffusion, and, by extension, microviscosity, PPI and self-association that govern mAb solution dynamics.


Assuntos
Anticorpos Monoclonais/química , Fenômenos Biofísicos , Difusão , Fluorescência , Corantes Fluorescentes/química , Microscopia de Fluorescência , Modelos Químicos , Multimerização Proteica , Estabilidade Proteica , Soluções , Viscosidade
4.
Pharm Res ; 36(11): 152, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31463609

RESUMO

PURPOSE: To develop an analytical platform for the estimation as well as characterization of aggregates over the complete size spectrum (from invisible monomer to visible precipitates). METHODS: Two mAb samples were incubated at 30°C in different buffer systems of protein A chromatography for observing degradation due to aggregation. The aggregation in these samples was quantified by size exclusion chromatography (SEC), dynamic light scattering (DLS), and micro flow imaging (MFI). RESULTS: The results obtained from various characterization tools were analysed in various size ranges - size exclusion chromatography (SEC) (1 nm - 25 nm), dynamic light scattering (DLS) (10 nm - 5 µm), and micro flow imaging (MFI) (2 µm - 300 µm). Since each characterization tool covers a particular size range, data from multiple tools was collected in the "handover" regions to demonstrate accuracy of the platform. CONCLUSIONS: Based on the observations from the experiments, an analytical platform has been proposed covering the whole size spectrum that would be of utility to those engaged in formulation development as well as other aspects related to stability of biotherapeutic products.


Assuntos
Anticorpos Monoclonais/análise , Tampões (Química) , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Difusão Dinâmica da Luz , Nanopartículas/química , Tamanho da Partícula , Multimerização Proteica , Estabilidade Proteica
5.
Chemistry ; 25(50): 11635-11640, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31368214

RESUMO

Disulfide-containing detergents (DCDs) are introduced, which contain a disulfide bond in the hydrophobic tail. DCDs form smaller micelles than corresponding detergents with linear hydrocarbon chains, while providing good solubilization and reconstitution of membrane proteins. The use of this new class of detergents in structural biology is illustrated with solution NMR spectra of the human G protein-coupled receptor A2A AR, which is an α-helical protein, and the ß-barrel protein OmpX from E. coli.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Detergentes/química , Proteínas de Escherichia coli/química , Hidrolases/química , Receptor A2A de Adenosina/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Dissulfetos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Hidrolases/metabolismo , Micelas , Ressonância Magnética Nuclear Biomolecular , Estabilidade Proteica , Receptor A2A de Adenosina/metabolismo
6.
Biomed Khim ; 65(3): 180-201, 2019 Apr.
Artigo em Russo | MEDLINE | ID: mdl-31258142

RESUMO

New data on peptide drugs have been summarized; their high stability is due to both the introduction of Pro-Gly-Pro in various amino acid sequences and the modification of the glyproline fragment itself. Pro-Gly-Pro-Leu, ACTH(6-9)Pro-Gly-Pro, 5-oxo-Pro-Arg-Pro and 5-oxo-Pro-His-Pro-NH2 were used as proline-containing peptides. Tritiated peptides were obtained: Pro-Gly-Pro-Leu with specific radioactivity of 135 Ci/mmol, ACTH(6-9)Pro-Gly-Pro - 26 Ci/mmol, 5-oxo-Pro-Arg-Pro - 60 Ci/mmol and 5-oxo-Pro-His-Pro-NH2 - 75 Ci/mmol. The concentration of Pro-Gly-Pro-Leu, ACTH(6-9)Pro-Gly-Pro, 5-oxo-Pro-Arg-Pro and 5-oxo-Pro-His-Pro-NH2 in the blood was found to be about 200 times more than in the brain for intranasal administration, and in average 600 times more for intravenous administration. The stability of proline-containing peptides in vitro experiments was determined using different commercially available peptidases (leucine aminopeptidases, dipeptidases, carboxypeptidases B and Y), and using nasal mucus, microsomal fraction of the rat brain (IMPC) and rat blood plasma. During peptidase hydrolysis of Pro-Gly-Pro-Leu, the main metabolites were Gly-Pro-Leu, Pro-Gly-Pro, Gly-Pro and Pro-Gly. For ACTH(6-9)Pro-Gly-Pro, the main metabolites were Phe-Arg-Trp-Pro-Gly-Pro and Trp-Pro-Gly-Pro. In peptidase hydrolysis of 5-oxo-Pro-His-Pro-NH2, the major metabolite was 5-oxo-Pro-His-Pro. It was shown that with different methods of peptides administration the composition of the metabolites formed is different. Based on the data obtained, resistance to enzymatic cleavage of peptides and their metabolic pathways were evaluated. Thus, these new data have shown that the above approaches can be used to prolong the action of glyprolines in living objects. In this case, the degradation of proline-containing peptides occurs mainly not due to the action of proteases, but due to other ways of degradation. In general, the data presented in the review indicate the promise of intranasal way of introducing biologically active peptides into the brain of living organisms.


Assuntos
Peptídeos/química , Prolina/química , Sequência de Aminoácidos , Animais , Peptídeo Hidrolases/química , Estabilidade Proteica , Ratos
7.
BMC Bioinformatics ; 20(Suppl 14): 335, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31266447

RESUMO

BACKGROUND: Predicting the effect of single point variations on protein stability constitutes a crucial step toward understanding the relationship between protein structure and function. To this end, several methods have been developed to predict changes in the Gibbs free energy of unfolding (∆∆G) between wild type and variant proteins, using sequence and structure information. Most of the available methods however do not exhibit the anti-symmetric prediction property, which guarantees that the predicted ∆∆G value for a variation is the exact opposite of that predicted for the reverse variation, i.e., ∆∆G(A → B) = -∆∆G(B → A), where A and B are amino acids. RESULTS: Here we introduce simple anti-symmetric features, based on evolutionary information, which are combined to define an untrained method, DDGun (DDG untrained). DDGun is a simple approach based on evolutionary information that predicts the ∆∆G for single and multiple variations from sequence and structure information (DDGun3D). Our method achieves remarkable performance without any training on the experimental datasets, reaching Pearson correlation coefficients between predicted and measured ∆∆G values of ~ 0.5 and ~ 0.4 for single and multiple site variations, respectively. Surprisingly, DDGun performances are comparable with those of state of the art methods. DDGun also naturally predicts multiple site variations, thereby defining a benchmark method for both single site and multiple site predictors. DDGun is anti-symmetric by construction predicting the value of the ∆∆G of a reciprocal variation as almost equal (depending on the sequence profile) to -∆∆G of the direct variation. This is a valuable property that is missing in the majority of the methods. CONCLUSIONS: Evolutionary information alone combined in an untrained method can achieve remarkably high performances in the prediction of ∆∆G upon protein mutation. Non-trained approaches like DDGun represent a valid benchmark both for scoring the predictive power of the individual features and for assessing the learning capability of supervised methods.


Assuntos
Algoritmos , Estabilidade Proteica , Proteínas/química , Sequência de Aminoácidos , Evolução Molecular , Humanos , Mutação Puntual , Proteínas/genética , Termodinâmica
8.
Genes Dev ; 33(15-16): 1083-1094, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31296559

RESUMO

The orphan nuclear receptor SHP (small heterodimer partner) is a well-known transcriptional corepressor of bile acid and lipid metabolism in the liver; however, its function in other tissues is poorly understood. Here, we report an unexpected role for SHP in the exocrine pancreas as a modulator of the endoplasmic reticulum (ER) stress response. SHP expression is induced in acinar cells in response to ER stress and regulates the protein stability of the spliced form of X-box-binding protein 1 (XBP1s), a key mediator of ER stress response. Loss of SHP reduces XBP1s protein level and transcriptional activity, which in turn attenuates the ER stress response during the fasting-feeding cycle. Consequently, SHP-deficient mice also are more susceptible to cerulein-induced pancreatitis. Mechanistically, we show that SHP physically interacts with the transactivation domain of XBP1s, thereby inhibiting the polyubiquitination and degradation of XBP1s by the Cullin3-SPOP (speckle-type POZ protein) E3 ligase complex. Together, our data implicate SHP in governing ER homeostasis and identify a novel posttranslational regulatory mechanism for the key ER stress response effector XBP1.


Assuntos
Estresse do Retículo Endoplasmático/genética , Proteólise , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Células Acinares/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas Exócrino/metabolismo , Pancreatite/genética , Processamento de Proteína , Estabilidade Proteica , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Ubiquitinação/genética
9.
Chem Commun (Camb) ; 55(61): 8935-8938, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31286126

RESUMO

The Eubacterium saburreum serine protease inhibitor from the human gut microbiota inhibits the eukaryotic pancreatic elastase associated with acute pancreatitis. Interestingly, the inhibition efficiency and stability are markedly increased by the para-sulphonato-calix[8]arene capped silver nanoparticles. Moreover, this enzyme is distinguishable by its high inhibitory effect at broad pH range between 2-10 and temperatures from 10 to 40 °C, in the presence of para-sulphonato-calix[8]arene capped silver nanoparticles the enzyme remains active even at 70 °C.


Assuntos
Calixarenos/química , Nanopartículas Metálicas/química , Elastase Pancreática/antagonistas & inibidores , Serpinas/química , Prata/química , Sequência de Aminoácidos , Animais , Ensaios Enzimáticos , Eubacterium/química , Concentração de Íons de Hidrogênio , Estabilidade Proteica , Alinhamento de Sequência , Serpinas/isolamento & purificação , Ácidos Sulfônicos/química , Suínos , Temperatura Ambiente
10.
Chem Biol Interact ; 311: 108773, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31351048

RESUMO

Hemangioma (HA) is tumor formed by hyper-proliferation of vascular endothelial cells. However, the potential effects of mono-(2-ethylhexyl) phthalate (MEHP) on the progression of HA are not well illustrated. Our present study revealed that MEHP exposure can significantly increase the in vitro proliferation of hemangioma-derived endothelial cells (HemECs). MEHP treatment can activate yes-associated protein (YAP), a key effector of Hippo pathway, by inhibiting its phosphorylation. The dephosphorylation of YAP induced by MEHP can promote the nuclear accumulation of YAP. Knockdown of YAP or its inhibitor can block MEHP triggered cell proliferation. MEHP can increase the levels of precursor and mature mRNA of YAP in HemECs. As well, MEHP extended the half-life of YAP protein. Mechanistically, MEHP can decrease the phosphorylation of YAP via suppressing the activity of large tumor suppressor kinase 1/2 (LATS1/2) to inhibit it induced degradation of YAP. Further, MEHP increased the expression of interferon regulatory factor 1 (IRF1), which can bind to the promoter of YAP to initiate its transcription. Collectively, we revealed that Hippo-YAP signal is involved in MEHP-induced proliferation of HA cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Dietilexilftalato/análogos & derivados , Hemangioma/patologia , Proteínas Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Células Cultivadas , Dietilexilftalato/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hemangioma/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Estabilidade Proteica/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Transcrição Genética/efeitos dos fármacos
11.
Fitoterapia ; 137: 104275, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31351126

RESUMO

The non-small cell lung cancer (NSCLC) represents a malignant type of cancer worldwide. The atalantraflavone (AFL) is a natural product isolated from leaves of Atalantia monophylla (L.) DC. However, the function of atalantraflavone in NSCLC is still elusive. In present work, we have unraveled a novel function of AFL in NSCLC. AFL significantly inhibited NSCLC cell viability and colony formation. AFL increased sub-G1 fraction and apoptotic rates in a dose-dependent manner. Furthermore, Twist-related protein 1 (Twist1) was identified as the target of AFL. The association between AFL and Twist1 markedly decreased the stability of Twist1 via elevated ubiquitin mediated proteasomal degradation. AFL induced NSCLC suppression was mediated by Twist1 as Twist1 overexpression could partially reverse the inhibitory effect of AFL on migration and metastasis. Furthermore, AFL could also sensitize NSCLC cells to cisplatin treatment and consistently impair NSCLC proliferation and metastasis. Our current data have identified a tumor suppressive function for AFL in NSCLC by increasing Twist1 degradation. Therefore, the anti-tumor activity of AFL might provide critical insight into pharmaceutic lung cancer intervention to overcome cisplatin resistance.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Flavonas/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Rutaceae/química , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Flavonas/isolamento & purificação , Humanos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Estabilidade Proteica
12.
Nature ; 571(7764): 284-288, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263273

RESUMO

Hedgehog signalling is fundamental to embryonic development and postnatal tissue regeneration1. Aberrant postnatal Hedgehog signalling leads to several malignancies, including basal cell carcinoma and paediatric medulloblastoma2. Hedgehog proteins bind to and inhibit the transmembrane cholesterol transporter Patched-1 (PTCH1), which permits activation of the seven-transmembrane transducer Smoothened (SMO) via a mechanism that is poorly understood. Here we report the crystal structure of active mouse SMO bound to both the agonist SAG21k and to an intracellular binding nanobody that stabilizes a physiologically relevant active state. Analogous to other G protein-coupled receptors, the activation of SMO is associated with subtle motions in the extracellular domain, and larger intracellular changes. In contrast to recent models3-5, a cholesterol molecule that is critical for SMO activation is bound deep within the seven-transmembrane pocket. We propose that the inactivation of PTCH1 by Hedgehog allows a transmembrane sterol to access this seven-transmembrane site (potentially through a hydrophobic tunnel), which drives the activation of SMO. These results-combined with signalling studies and molecular dynamics simulations-delineate the structural basis for PTCH1-SMO regulation, and suggest a strategy for overcoming clinical resistance to SMO inhibitors.


Assuntos
Membrana Celular/química , Proteínas Hedgehog/agonistas , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/agonistas , Receptor Smoothened/metabolismo , Esteróis/farmacologia , Animais , Sítios de Ligação , Técnicas Biossensoriais , Domínio Catalítico/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia , Proteínas Hedgehog/metabolismo , Ligantes , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Receptor Patched-1/antagonistas & inibidores , Receptor Patched-1/metabolismo , Conformação Proteica , Estabilidade Proteica , Anticorpos de Cadeia Única/imunologia , Receptor Smoothened/antagonistas & inibidores , Receptor Smoothened/química , Esteróis/química , Esteróis/metabolismo , Proteínas de Xenopus/química
13.
Nat Commun ; 10(1): 2472, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31171781

RESUMO

The evolution of microbial and viral organisms often generates clonal interference, a mode of competition between genetic clades within a population. Here we show how interference impacts systems biology by constraining genetic and phenotypic complexity. Our analysis uses biophysically grounded evolutionary models for molecular phenotypes, such as fold stability and enzymatic activity of genes. We find a generic mode of phenotypic interference that couples the function of individual genes and the population's global evolutionary dynamics. Biological implications of phenotypic interference include rapid collateral system degradation in adaptation experiments and long-term selection against genome complexity: each additional gene carries a cost proportional to the total number of genes. Recombination above a threshold rate can eliminate this cost, which establishes a universal, biophysically grounded scenario for the evolution of sex. In a broader context, our analysis suggests that the systems biology of microbes is strongly intertwined with their mode of evolution.


Assuntos
Bactérias/genética , Evolução Biológica , Dobramento de Proteína , Estabilidade Proteica , Vírus/genética , Bactérias/metabolismo , Evolução Molecular , Aptidão Genética , Fenótipo , Recombinação Genética , Seleção Genética , Biologia de Sistemas , Vírus/metabolismo
14.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1122-1123: 73-77, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158650

RESUMO

Phenol is commonly used as an antimicrobial agent with an initial concentration of 0.35% (w/v) in injectable diluted tuberculin purified protein derivative (TPPD) solution. The anti-microbial action of phenol in TPPD is directly concentration dependent. Furthermore, high phenol content (>0.5%) may have a negative effect on the stability and clinical effectiveness of TPPD solution. Therefore, simple, rapid and reliable reversed phase liquid chromatographic (RPLC) and capillary zone electrophoretic (CZE) methods were firstly developed and validated for phenol quantification in Connaught tuberculin (CT68) PPD diluted preparations at 5 TU per test dose of 0.1 mL. In RPLC, the elution was carried out by 80% (v/v) ACN mixed with 20% (v/v) phosphate buffer containing 0.05% (v/v) triflouroacetic acid (pH 3.2) at 0.2 mL min-1 flow rate and 20.0 °C column temperature. In addition, phenol was separated from tuberculin (CT68) protein with a resolution of (R = 2.81) and was quantified within 3 min. In CZE, the migration of phenol was performed by 50 mmol L-1 borate buffer (pH 9.8) at -20 kV applied voltage and 25.0 °C capillary temperature. Furthermore, excellent linearity was achieved within 0.17-0.53% (w/v) for the phenol content with coefficients of determination (r2) higher than 0.9995. Moreover, the detection and quantification limits were found to be 0.046 & 0.153% and 0.051 & 0.171% (w/v) with RPLC and CZE respectively. Additionally, the intraday precision (RSD%, n = 9) was ranged between 0.18 and 0.39 and 0.33-54 with RPLC and CZE respectively. Moreover, the interday precision (RSD%, n = 27) was varied between 2.06 and 2.99 and 2.25-3.40 by RPLC and CZE, respectively. Furthermore, the obtained mean recoveries were ranged between 91.32 and 107.51% with RPLC and 90.71-108.92% with CZE. In addition, the effect of different storage temperatures at 4, 25 and 37 °C over storage periods of 2, 7, 14, 21 and 30 days was also studied on the TPPD product. The obtained results have revealed that the phenol content was effectively decreased about 37% of its original content after 30 days at storage temperatures of 25 and 37 °C. However, the phenol content did not change and was stable up to 21 days at storage temperature of 4 °C. Therefore, the simple and rapid proposed analytical methods could be used for a rapid expiry investigation of TPPD products based on phenol quantification, as a marker.


Assuntos
Cromatografia Líquida/métodos , Eletroforese Capilar/métodos , Fenóis/análise , Fenóis/química , Tuberculina/análise , Tuberculina/química , Limite de Detecção , Modelos Lineares , Estabilidade Proteica , Reprodutibilidade dos Testes
15.
Food Chem ; 295: 267-273, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174759

RESUMO

Gamma-aminobutyric acid (GABA) is a non-protein amino acid with various health benefits. GABA enrichment in soy products such as tempeh, doenjang, and soymilk have been reported. However, no study has explored how GABA interacts with soy proteins and affects their properties. The current study investigated the physicochemical and functional properties of soy proteins in a 4% (w/v) slurry treated with 0.2-1.0% of GABA at 80, 90, and 100 °C. The addition of GABA significantly (P < 0.05) reduced the average particle size and increased the ζ-potential and intrinsic fluorescence intensity of the soy protein slurries. GABA treatment resulted in concentration-dependent increases (P < 0.05) in soy protein solubility, viscosity, rheology, emulsifying and foaming properties. This study, for the first time, investigated the effects of GABA on the properties of soy proteins. The findings would be useful in soy product formulation when GABA is added as a functional ingredient.


Assuntos
Proteínas de Soja/química , Ácido gama-Aminobutírico/química , Emulsões/química , Tamanho da Partícula , Estabilidade Proteica , Solubilidade , Leite de Soja/química , Substâncias Viscoelásticas/química , Viscosidade
16.
Pharm Res ; 36(8): 118, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31161359

RESUMO

PURPOSE: The main purposes of this manuscript are to report a surprising and interesting degradation reaction of glucagon from a specific vendor in which glucagon underwent cleavage among several peptide bonds quickly under near neutral to basic conditions, and to propose the root cause of mechanism for the degradation reaction. METHODS: The degradation reaction was monitored by HPLC and the fragment structures were confirmed by LC-MS. Possible impurities responsible for the degradation were either confirmed or excluded by a variety of techniques such as addition of chelator EDTA and transitional metal ions or separation by ultrafiltration. RESULTS: This type of degradation was rarely reported in literature, especially considering its extreme cleavage efficiency. Contamination by a thermostable high molecular impurity (such as a peptidase with molecular weight between 10 and 30 KDa) during the manufacturing process was the main reason for this interesting phenomenon. CONCLUSIONS: The degradation phenomenon described here could be used as an excellent example showing that products ordered from vendors meeting the rudimentary quality standards might contain impurities which could cause significant degradation. We suggest that a simple solution, i.e. additional tests of stability under real or accelerated conditions by manufacturers and inclusion of the "accelerated stability criteria" in the Certificate of Analysis (CoAs), especially for sensitive biological reagents prone to faster degradation, would be very helpful for avoiding losses for both vendors and users.


Assuntos
Glucagon/química , Quelantes/química , Cromatografia Líquida de Alta Pressão , Contaminação de Medicamentos , Estabilidade de Medicamentos , Ácido Edético/química , Concentração de Íons de Hidrogênio , Hidrólise , Peptídeo Hidrolases/química , Estabilidade Proteica , Espectrometria de Massas em Tandem , Elementos de Transição/química , Ultrafiltração
17.
Nat Commun ; 10(1): 2584, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31197144

RESUMO

The Type VI secretion system (T6SS) is important for bacterial competition as well as virulence in many Gram-negative bacteria and its dynamics and regulation varies significantly between species. To gain insights into the mechanisms regulating T6SS assembly, we apply targeted proteomics to determine the abundance of the key T6SS components in Vibrio cholerae, Pseudomonas aeruginosa and Acinetobacter baylyi. We show that while there are species specific exceptions, the abundance of most components is similar in all three bacteria and ranges from less than hundred to tens of thousands of copies per cell. The comparison of T6SS dynamics and protein abundance in V. cholerae grown under various conditions suggests that the critical component TssE and the secreted protein VasX are unstable and this diminishes T6SS assembly when protein synthesis is limited. Our quantitative analysis opens possibilities to build realistic models of T6SS assembly and to identify principles of T6SS regulation in various species.


Assuntos
Proteínas de Bactérias/análise , Bactérias Gram-Negativas/metabolismo , Sistemas de Secreção Tipo VI/análise , Proteínas de Bactérias/metabolismo , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Estabilidade Proteica , Proteômica/métodos , Sistemas de Secreção Tipo VI/metabolismo
18.
Nat Commun ; 10(1): 2636, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201318

RESUMO

The leading cause of cystic fibrosis (CF) is the deletion of phenylalanine 508 (F508del) in the first nucleotide-binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR). The mutation affects the thermodynamic stability of the domain and the integrity of the interface between NBD1 and the transmembrane domain leading to its clearance by the quality control system. Here, we develop nanobodies targeting NBD1 of human CFTR and demonstrate their ability to stabilize both isolated NBD1 and full-length protein. Crystal structures of NBD1-nanobody complexes provide an atomic description of the epitopes and reveal the molecular basis for stabilization. Furthermore, our data uncover a conformation of CFTR, involving detachment of NBD1 from the transmembrane domain, which contrast with the compact assembly observed in cryo-EM structures. This unexpected interface rearrangement is likely to have major relevance for CF pathogenesis but also for the normal function of CFTR and other ABC proteins.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Modelos Moleculares , Cristalografia por Raios X , Regulador de Condutância Transmembrana em Fibrose Cística/isolamento & purificação , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas/genética , Estabilidade Proteica , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Anticorpos de Domínio Único/metabolismo
19.
Nat Commun ; 10(1): 2666, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209254

RESUMO

Ran is a nucleocytoplasmic shuttle protein that is involved in cell cycle regulation, nuclear-cytoplasmic transport, and cell transformation. Ran plays an important role in cancer cell survival and cancer progression. Here, we show that, in addition to the nucleocytoplasmic localization of Ran, this GTPase is specifically associated with the plasma membrane/ruffles of ovarian cancer cells. Ran depletion has a drastic effect on RhoA stability and inhibits RhoA localization to the plasma membrane/ruffles and RhoA activity. We further demonstrate that the DEDDDL domain of Ran is required for the interaction with serine 188 of RhoA, which prevents RhoA degradation by the proteasome pathway. Moreover, the knockdown of Ran leads to a reduction of ovarian cancer cell invasion by impairing RhoA signalling. Our findings provide advanced insights into the mode of action of the Ran-RhoA signalling axis and may represent a potential therapeutic avenue for drug development to prevent ovarian tumour metastasis.


Assuntos
Carcinoma Epitelial do Ovário/patologia , Membrana Celular/metabolismo , Neoplasias Ovarianas/patologia , Proteína ran de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica/patologia , Domínios Proteicos , Estabilidade Proteica , Proteólise , Serina/metabolismo , Transdução de Sinais , Proteína ran de Ligação ao GTP/genética
20.
Genes Dev ; 33(15-16): 1069-1082, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31221664

RESUMO

Embryonic stem (ES) cells are regulated by a network of transcription factors that maintain the pluripotent state. Differentiation relies on down-regulation of pluripotency transcription factors disrupting this network. While investigating transcriptional regulation of the pluripotency transcription factor Kruppel-like factor 4 (Klf4), we observed that homozygous deletion of distal enhancers caused a 17-fold decrease in Klf4 transcript but surprisingly decreased protein levels by less than twofold, indicating that posttranscriptional control of KLF4 protein overrides transcriptional control. The lack of sensitivity of KLF4 to transcription is due to high protein stability (half-life >24 h). This stability is context-dependent and is disrupted during differentiation, as evidenced by a shift to a half-life of <2 h. KLF4 protein stability is maintained through interaction with other pluripotency transcription factors (NANOG, SOX2, and STAT3) that together facilitate association of KLF4 with RNA polymerase II. In addition, the KLF4 DNA-binding and transactivation domains are required for optimal KLF4 protein stability. Posttranslational modification of KLF4 destabilizes the protein as cells exit the pluripotent state, and mutations that prevent this destabilization also prevent differentiation. These data indicate that the core pluripotency transcription factors are integrated by posttranslational mechanisms to maintain the pluripotent state and identify mutations that increase KLF4 protein stability while maintaining transcription factor function.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular , Células-Tronco Embrionárias , Células HEK293 , Humanos , Camundongos , Mutação/genética , Domínios Proteicos , Estabilidade Proteica , Proteólise , RNA Polimerase II/metabolismo , Transdução de Sinais , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA