Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.545
Filtrar
2.
Int J Pharm Compd ; 24(5): 397-402, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886638

RESUMO

In the formulation of parenteral dosage forms, pH is a critical factor and can be a complicated factor in compounding intravenous admixtures since the additives and the vehicle may have different pH values. This is especially important, as a significant number of parenteral medications require compounding involving dissolution of lyophilized powders; dilution of drug doses for infusion; mixing of dextrose, amino acids, vitamins, and electrolytes for parenteral nutrition; etc. Compounding intravenous admixtures is common practice, but each admixture may present a different set of problems to consider, especially as it relates to pH.


Assuntos
Nutrição Parenteral , Administração Intravenosa , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Infusões Parenterais/métodos
3.
Int J Pharm Compd ; 24(5): 413-419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32886640

RESUMO

Allopurinol is an orally administered inhibitor of xanthine oxidase used primarily in the treatment of hyperuricemia associated with gout. Allopurinol reduces serum and urinary uric acid concentrations. Its use should be individualized for each patient. The dosage of allopurinol to accomplish full control of gout and to lower serum uric acid to normal or near-normal levels varies with the severity of the disease, and needs to be flexible to permit precise, customized dose titration for individual patients. This flexibility is readily achieved using an oral liquid dosage form. However, no commercial liquid dosage form of allopurinol currently exists. Allopurinol is commercially available as 100-mg and 300-mg scored tablets. An extemporaneously compounded suspension from pure drug powder or commercial tablets would provide a convenient option to meet unique patient needs. The purpose of this study was to determine the physicochemical stability of extemporaneously compounded allopurinol suspensions in the PCCA Base SuspendIt. This base is a sugar-free, paraben-free, dye-free, and gluten-free thixotropic vehicle containing a natural sweetener obtained from the monk fruit. The study design included two allopurinol concentrations to provide stability documentation over a bracketed concentration range for eventual use by compounding pharmacists. A robust stability-indicating ultra-performance liquid chromatography assay for the determination of the chemical stability of allopurinol in SuspendIt was developed and validated. Suspensions of allopurinol were prepared in SuspendIt at 10.0-mg/mL and 20.0-mg/mL concentrations, selected to represent a range within which the drug is commonly dosed. Samples were stored in plastic amber prescription bottles at two temperature conditions (5°C and 25°C). Samples were assayed initially and at the following time points: 7 days, 14 days, 30 days, 45 days, 60 days, 88 days, 120 days, and 182 days. Physical data such as pH, viscosity, and appearance were also noted. All measurements were obtained in triplicate. A stable extemporaneous product is defined as one that retains at least 90% of the initial drug concentration throughout the sampling period. The study showed that allopurinol concentrations did not go below 93% of the label claim (initial drug concentration) at both temperatures studied. Viscosity and pH values also did not change significantly. This study demonstrates that allopurinol is physically and chemically stable in SuspendIt for 180 days in the refrigerator and at room temperature, thus providing a viable, compounded alternative for allopurinol in a liquid dosage form, with an extended beyond-use-date to meet patient needs.


Assuntos
Alopurinol , Ácido Úrico , Administração Oral , Alopurinol/química , Alopurinol/farmacologia , Cromatografia Líquida de Alta Pressão , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Humanos , Suspensões , Ácido Úrico/química
4.
Int J Nanomedicine ; 15: 5417-5432, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801697

RESUMO

Introduction: Green-based materials have been increasingly studied to circumvent off-target cytotoxicity and other side-effects from conventional chemotherapy. Materials and Methods: Here, cellulose fibers (CF) were isolated from rice straw (RS) waste by using an eco-friendly alkali treatment. The CF network served as an anticancer drug carrier for 5-fluorouracil (5-FU). The physicochemical and thermal properties of CF, pure 5-FU drug, and the 5-FU-loaded CF (CF/5-FU) samples were evaluated. The samples were assessed for in vitro cytotoxicity assays using human colorectal cancer (HCT116) and normal (CCD112) cell lines, along with human nasopharyngeal cancer (HONE-1) and normal (NP 460) cell lines after 72-hours of treatment. Results: XRD and FTIR revealed the successful alkali treatment of RS to isolate CF with high purity and crystallinity. Compared to RS, the alkali-treated CF showed an almost fourfold increase in surface area and zeta potential of up to -33.61 mV. SEM images illustrated the CF network with a rod-shaped structure and comprised of ordered aggregated cellulose. TGA results proved that the thermal stability of 5-FU increased within the drug carrier. Based on UV-spectroscopy measurements for 5-FU loading into CF, drug loading encapsulation efficiency was estimated to be 83 ±0.8%. The release media at pH 7.4 and pH 1.2 showed a maximum drug release of 79% and 46%, respectively, over 24 hours. In cytotoxicity assays, CF showed almost no damage, while pure 5-FU killed most of the both normal and cancer cells. Impressively, the drug-loaded sample of CF/5-FU at a 250 µg/mL concentration demonstrated a 58% inhibition against colorectal cancer cells, but only a 23% inhibition against normal colorectal cells. Further, a 62.50 µg/mL concentration of CF/5FU eliminated 71% and 39% of nasopharyngeal carcinoma and normal nasopharyngeal cells, respectively. Discussion: This study, therefore, showed the strong potential anticancer activity of the novel CF/5-FU formulations, warranting their further investigation.


Assuntos
Celulose/química , Portadores de Fármacos/química , Fluoruracila/administração & dosagem , Fluoruracila/farmacologia , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Fluoruracila/farmacocinética , Células HCT116 , Humanos , Neoplasias Nasofaríngeas/tratamento farmacológico , Oryza/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Difração de Raios X
5.
Int J Nanomedicine ; 15: 5459-5471, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801700

RESUMO

Purpose: Indocyanine green (ICG), a near infrared (NIR) dye clinically approved in medical diagnostics, possesses great heat conversion efficiency, which renders itself as an effective photosensitizer for photothermal therapy (PTT) of cancer. However, there remain bottleneck challenges for use in PTT, which are the poor photo and plasma stability of ICG. To address these problems, in this research, ICG-loaded silver nanoparticles were prepared and evaluated for the applicability as an effective agent for photothermal cancer therapy. Methods and Results: PEGylated bovine serum albumin (BSA)-coated silver core/shell nanoparticles were synthesized with a high loading of ICG ("PEG-BSA-AgNP/ICG"). Physical characterization was carried out using size analyzer, transmission electron microscopy, and Fourier transform infrared spectrophotometry to identify successful preparation and size stability. ICG-loading content and the photothermal conversion efficiency of the particles were confirmed with inductively coupled plasma mass spectrometry and laser instruments. In vitro studies showed that the PEG-BSA-AgNP/ICG could provide great photostability for ICG, and their applicability for PTT was verified from the cellular study results. Furthermore, when the PEG-BSA-AgNP/ICG were tested in vivo, study results exhibited that ICG could stably remain in the blood circulation for a markedly long period (plasma half-life: 112 min), and about 1.7% ID/g tissue could be accumulated in the tumor tissue at 4 h post-injection. Such nanoparticle accumulation in the tumor enabled tumor surface temperature to be risen to 50°C (required for photo-ablation) by laser irradiation and led to successful inhibition of tumor growth in the B16F10 s.c. syngeneic nude mice model, with minimal systemic toxicity. Conclusion: Our findings demonstrated that PEG-BSA-AgNPs could serve as effective carriers for delivering ICG to the tumor tissue with great stability and safety.


Assuntos
Antineoplásicos/farmacologia , Nanopartículas Metálicas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos/métodos , Estabilidade de Medicamentos , Difusão Dinâmica da Luz , Meia-Vida , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacocinética , Melanoma Experimental/tratamento farmacológico , Camundongos Endogâmicos ICR , Camundongos Nus , Microscopia Eletrônica de Transmissão , Polietilenoglicóis/química , Soroalbumina Bovina/química , Prata/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Int J Nanomedicine ; 15: 5629-5643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801706

RESUMO

Purpose: Lecithin/chitosan nanoparticles have shown great promise in the transdermal delivery of therapeutic agents. Baicalein, a natural bioactive flavonoid, possesses multiple biological activities against dermatosis. However, its topical application is limited due to its inherently poor hydrophilicity and lipophilicity. In this study, the baicalein-phospholipid complex was prepared to enhance the lipophilicity of baicalein and then lecithin/chitosan nanoparticles loaded with the baicalein-phospholipid complex were developed to improve the transdermal retention and permeability of baicalein. Methods: Lecithin/chitosan nanoparticles were prepared by the solvent-injection method and characterized in terms of particle size distribution, zeta potential, and morphology. The in vitro release, the ex vivo and in vivo permeation studies, and safety evaluation of lecithin/chitosan nanoparticles were performed to evaluate the effectiveness in enhancing transdermal retention and permeability of baicalein. Results: The lecithin/chitosan nanoparticles obtained by the self-assembled interaction of chitosan and lecithin not only efficiently encapsulated the drug with high entrapment efficiency (84.5%) but also provided sustained release of baicalein without initial burst release. Importantly, analysis of the permeation profile ex vivo and in vivo demonstrated that lecithin/chitosan nanoparticles prolonged the retention of baicalein in the skin and efficiently penetrated the barrier of stratum corneum without displaying skin irritation. Conclusion: These results indicate the potential of drug-phospholipid complexes in enhancing the entrapment efficiency and self-assembled lecithin/chitosan nanoparticles based on phospholipid complexes in the design of a rational transdermal delivery platform to improve the efficiency of transdermal therapy by enhancing its percutaneous retention and penetration in the skin.


Assuntos
Flavanonas/administração & dosagem , Nanopartículas/administração & dosagem , Fosfolipídeos/química , Administração Cutânea , Animais , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Flavanonas/farmacocinética , Interações Hidrofóbicas e Hidrofílicas , Lecitinas/química , Masculino , Nanopartículas/efeitos adversos , Nanopartículas/química , Permeabilidade , Ratos Sprague-Dawley , Pele/efeitos dos fármacos , Pele/patologia , Absorção Cutânea/efeitos dos fármacos , Testes de Irritação da Pele
7.
Int J Pharm ; 588: 119689, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717282

RESUMO

A handful of singular structures and laws can be observed in nature. They are not always evident but, once discovered, it seems obvious how to take advantage of them. In chemistry, the discovery of reproducible patterns stimulates the imagination to develop new functional materials and technological or medical applications. Two clear examples are helical structures at different levels in biological polymers as well as ring and spherical structures of different size and composition. Rings are intuitively observed as holes able to thread elongated structures. A large number of real and fictional stories have rings as inanimate protagonists. The design, development or just discovering of a special ring has often been taken as a symbol of power or success. Several examples are the Piscatory Ring wore by the Pope of the Catholic Church, the NBA Championship ring and the One Ring created by the Dark Lord Sauron in the epic story The Lord of the Rings. In this work, we reveal the power of another extremely powerful kind of rings to fight against the pandemic which is currently affecting the whole world. These rings are as small as ~1 nm of diameter and so versatile that they are able to participate in the attack of viruses, and specifically SARS-CoV-2, in a large range of different ways. This includes the encapsulation and transport of specific drugs, as adjuvants to stabilize proteins, vaccines or other molecules involved in the infection, as cholesterol trappers to destabilize the virus envelope, as carriers for RNA therapies, as direct antiviral drugs and even to rescue blood coagulation upon heparin treatment. "One ring to rule them all. One ring to find them. One ring to bring them all and in the darkness bind them." J. R. R. Tolkien.


Assuntos
Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Ciclodextrinas/química , Ciclodextrinas/farmacologia , Nanoestruturas , Pneumonia Viral/tratamento farmacológico , Betacoronavirus/metabolismo , Coagulação Sanguínea/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Estabilidade de Medicamentos , Excipientes/química , Excipientes/farmacologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Vacinas Virais/química , Vacinas Virais/farmacologia
8.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717853

RESUMO

As SARS-CoV-2 is spreading rapidly around the globe, adopting proper actions for confronting and protecting against this virus is an essential and unmet task. Reactive oxygen species (ROS) promoting molecules such as peroxides are detrimental to many viruses, including coronaviruses. In this paper, metal decorated single-wall carbon nanotubes (SWCNTs) were evaluated for hydrogen peroxide (H2O2) adsorption for potential use for designing viral inactivation surfaces. We employed first-principles methods based on the density functional theory (DFT) to investigate the capture of an individual H2O2 molecule on pristine and metal (Pt, Pd, Ni, Cu, Rh, or Ru) decorated SWCNTs. Although the single H2O2 molecule is weakly physisorbed on pristine SWCNT, a significant improvement on its adsorption energy was found by utilizing metal functionalized SWCNT as the adsorbent. It was revealed that Rh-SWCNT and Ru-SWCNT systems demonstrate outstanding performance for H2O2 adsorption. Furthermore, we discovered through calculations that Pt- and Cu-decorated SWNCT-H2O2 systems show high potential for filters for virus removal and inactivation with a very long shelf-life (2.2 × 1012 and 1.9 × 108 years, respectively). The strong adsorption of metal decorated SWCNTs and the long shelf-life of these nanomaterials suggest they are exceptional candidates for designing personal protection equipment against viruses.


Assuntos
Betacoronavirus/efeitos dos fármacos , Desinfetantes/farmacologia , Peróxido de Hidrogênio/análise , Nanotubos de Carbono/química , Adsorção , Infecções por Coronavirus/prevenção & controle , Teoria da Densidade Funcional , Desinfetantes/química , Estabilidade de Medicamentos , Humanos , Ferro/química , Ferro/farmacologia , Pandemias/prevenção & controle , Equipamento de Proteção Individual , Platina/química , Platina/farmacologia , Pneumonia Viral/prevenção & controle , Ródio/química , Ródio/farmacologia , Rutênio/química , Rutênio/farmacologia , Inativação de Vírus
9.
AAPS PharmSciTech ; 21(5): 181, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32607628

RESUMO

Cocrystals have gained a lot of consideration regarding its superior role in enhancement of solubility and dissolution of the included API. Cocrystals could be converted to coamorphous systems via different techniques like milling and quench cooling; however, the use of spray-drying technique has not been investigated before. So, the aim of this study was to explore the effect of spray drying on the amorphization of indomethacin/nicotinamide, INDNIC, as model cocrystals. Spray-drying operating parameters were optimized using the Taguchi design of experiment for maximum powder yield and low moisture content. The obtained INDNIC spray-dried cocrystals were characterized for their degree of crystallinity, morphology, moisture content, and dissolution performance. In addition, stability study was performed at different temperature and humidity conditions. Experimental design results delineate that spray-drying inlet temperature and cocrystal concentrations as the most influential factors for maximum powder yield and low moisture content. Powder X-ray diffraction and differential scanning calorimetry studies revealed the conversion of INDNIC cocrystals to a partial coamorphous or coamorphous structure without dissociation of INDNIC molecular structure. INDNIC coamorphous powders showed a significantly higher release of IND compared with cocrystals and remain physically stable for 2 months when stored in the refrigerator.


Assuntos
Dessecação/métodos , Estabilidade de Medicamentos , Indometacina/química , Niacinamida/química , Varredura Diferencial de Calorimetria , Composição de Medicamentos/métodos , Estrutura Molecular , Pós/química , Solubilidade , Difração de Raios X
10.
AAPS PharmSciTech ; 21(5): 183, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32632576

RESUMO

Pulmonary drug delivery is a noninvasive therapeutic approach that offers many advantages including localized drug delivery and higher patient compliance. As with all formulations, the low aqueous solubility of a drug often poses a challenge in the formulation development. Thus, strategies such as cyclodextrin (CD) complexation have been utilized to overcome this challenge. Resveratrol (RES), a natural stilbene, has shown abundant anti-cancer properties. Due to many drawbacks of conventional chemotherapeutics, RES has been proposed as an emerging alternative with promising pharmacological effects. However, RES has limited therapeutic applications due to low water solubility, chemical stability, and bioavailability. This study was aimed at developing an inhalable therapy that would increase the aqueous solubility and stability of RES by complexation with sulfobutylether-ß-cyclodextrin (SBECD). Phase solubility profiles indicated an optimal stoichiometric inclusion complex at 1:1 (SBECD:RES) ratio for formulation considerations. Physiochemical characterizations were performed to analyze CD-RES. Stability studies at pH 7.4 and in plasma indicated significant improvement in RES stability after complexation, with a much longer half-life. The mass median aerodynamic diameter (MMAD) of CD-RES was 2.6 ± 0.7 µm and fine particle fraction (FPF) of 83.4 ± 3.0% are suitable for pulmonary delivery and efficient deposition. Lung cancer was selected as the respiratory model disease, owing to its high relevance as the major cause of cancer deaths worldwide. Cell viability studies in 5 non-small-cell-lung-cancer (NSCLC) cell lines suggest CD-RES retained significant cytotoxic potential of RES. Taken together, CD-RES proves to be a promising inhalation treatment for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclodextrinas/química , Neoplasias Pulmonares/tratamento farmacológico , Resveratrol/administração & dosagem , Administração por Inalação , Disponibilidade Biológica , Portadores de Fármacos/metabolismo , Estabilidade de Medicamentos , Humanos , Pulmão/metabolismo , Solubilidade
11.
PLoS One ; 15(7): e0236198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32687523

RESUMO

Laboratory assays such as MIC tests assume that antibiotic molecules are stable in the chosen growth medium-but rapid degradation has been observed for antibiotics including ß-lactams under some conditions in aqueous solution. Degradation rates in bacterial growth medium are less well known. Here, we develop a 'delay time bioassay' that provides a simple way to estimate antibiotic stability in bacterial growth media, using only a plate reader and without the need to measure the antibiotic concentration directly. We use the bioassay to measure degradation half-lives of the ß-lactam antibiotics mecillinam, aztreonam and cefotaxime in widely-used bacterial growth media based on MOPS and Luria-Bertani (LB) broth. We find that mecillinam degradation can occur rapidly, with a half-life as short as 2 hours in MOPS medium at 37°C and pH 7.4, and 4-5 hours in LB, but that adjusting the pH and temperature can increase its stability to a half-life around 6 hours without excessively perturbing growth. Aztreonam and cefotaxime were found to have half-lives longer than 6 hours in MOPS medium at 37°C and pH 7.4, but still shorter than the timescale of a typical minimum inhibitory concentration (MIC) assay. Taken together, our results suggest that care is needed in interpreting MIC tests and other laboratory growth assays for ß-lactam antibiotics, since there may be significant degradation of the antibiotic during the assay.


Assuntos
Andinocilina/química , Antibacterianos/química , Bactérias/efeitos dos fármacos , Cefotaxima/química , Andinocilina/farmacologia , Antibacterianos/farmacologia , Bioensaio , Cefotaxima/farmacologia , Meios de Cultura , Estabilidade de Medicamentos , Meia-Vida , Testes de Sensibilidade Microbiana , Fatores de Tempo
12.
Int J Pharm Compd ; 24(4): 305-309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649304

RESUMO

The effect of pH on solubility and stability is a critical factor in the formulation of parenteral dosage forms and becomes more complicated in intravenous admixtures since the additives and the vehicle may have different pH values. This is especially important as a significant number of parenteral medications require some compounding involving dissolution of lyophilized powders, dilution of drug doses for infusion, mixing of dextrose, amino acids, vitamins, and electrolytes for parenteral nutrition, etc. A change in the acid-base environment of a drug involves both the solubility and stability characteristics and can be critically related to pH as follows:  (1) as a solution goes away from the pH of maximum solubility, the drug can precipitate out of solution, and  (2) as the solution goes away from the pH of maximum stability, the drug  can degrade more rapidly and have a short beyond-use date. This fifth of a series of articles on intravenous admixture preparation considerations represents an introduction on pH considerations, which is presented in two parts, pH basics and applications, covering pH Considerations - Basics (In part 5 of this series): Basics of pH, pKa and Dissociation Constants, pH and Solubility, pH and Stability; and pH Considerations - Applications (in part 6 of this series): Vehicle Characteristics, Selected Injectable Characteristics, IV Admixtures and Syringe Admixtures, and General Summary of pH Effects.


Assuntos
Nutrição Parenteral , Administração Intravenosa , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Solubilidade
13.
Int J Pharm Compd ; 24(4): 327-336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649306

RESUMO

Extemporaneous compounding in veterinary practice sometimes represents the only possibility for treating animals in the absence of appropriate commercial formulations, especially for particular species. This method involves manipulating pharmaceutical active ingredients to a suitable dosage and formulation for administration to humans or animals. However, veterinarians and pharmacists should focus on the risk of potential incompatibilities and instability of their preparations. To help practitioners in drug compounding, we investigated the stability of oral suspensions of tramadol, fluoxetine, and doxycycline in a commercial ready-to-use vehicle (SyrSpend). A validated high-performance liquid chromatography method was developed to assay these active pharmaceutical ingredients. The oral suspensions were prepared at two concentration ranges and were stored in amber glass bottles under refrigerated conditions and at room temperature. After 90 days, the average recovery rates were between 90% and 110% for tramadol (5 mg/mL to 30 mg/mL) and doxycycline  (2 mg/mL to 10 mg/mL) without organoleptic modification. For fluoxetine, only the formulation at 2 mg/mL was stable; at higher concentrations, the uniformity of the suspension was compromised.


Assuntos
Amido , Administração Oral , Cromatografia Líquida de Alta Pressão , Doxiciclina , Composição de Medicamentos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Fluoxetina , Humanos , Suspensões , Tramadol
14.
PLoS One ; 15(7): e0232435, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32649677

RESUMO

Anxiety disorders (AD) are the most common mental conditions affecting an estimated 40 million adults in the United States. Amiloride, a diuretic agent, has shown efficacy in reducing anxious responses in preclinical models by inhibiting the acid-sensing ion channels (ASIC). By delivering amiloride via nasal route, rapid onset of action can be achieved due to direct "nose-to-brain" access. Therefore, this study reports the formulation, physical, chemical, and microbiological stability of an extemporaneously prepared amiloride 2 mg/mL nasal spray. The amiloride nasal spray was prepared by adding 100 mg of amiloride hydrochloride to 50 mL of sterile water for injection in a sterile reagent bottle. A stability-indicating high-performance liquid chromatography (HPLC) method was developed and validated. Forced-degradation studies were performed to confirm the ability of the HPLC method to identify the degradation products from amiloride distinctively. The physical stability of the amiloride nasal spray was assessed by pH, clarity, and viscosity assessments. For chemical stability studies, samples of nasal sprays stored at room temperature were collected at time-points 0, 3 hr., 24 hr., and 7 days and were assayed in triplicate using the stability-indicating HPLC method. Microbiological stability of the nasal spray solution was evaluated for up to 7 days based on the sterility test outlined in United States Pharmacopoeia (USP) chapter 71. The stability-indicating HPLC method identified the degradation products of amiloride without interference from amiloride. All tested solutions retained over 90% of the initial amiloride concentration for the 7-day study period. There were no changes in color, pH, and viscosity in any sample. The nasal spray solutions were sterile for up to 7 days in all samples tested. An extemporaneously prepared nasal spray solution of amiloride hydrochloride (2 mg/mL) was physically, chemically, and microbiologically stable for 7 days when stored at room temperature.


Assuntos
Amilorida/química , Composição de Medicamentos , Sprays Nasais , Estabilidade de Medicamentos , Armazenamento de Medicamentos
16.
Pharm. pract. (Granada, Internet) ; 18(2): 0-0, abr.-jun. 2020. tab, graf
Artigo em Inglês | IBECS | ID: ibc-194064

RESUMO

BACKGROUND: Although a highly common practice in hospital care, tablet splitting can cause dose variation and reduce drug stability, both of which impair drug therapy. OBJECTIVE: To determine the overall prevalence of tablet splitting in hospital care as evidence supporting the rational prescription of split tablets in hospitals. METHODS: Data collected from inpatients' prescriptions were analyzed using descriptive statistics and used to calculate the overall prevalence of tablet splitting and the percentage of split tablets that had at least one lower-strength tablet available on the market. The associations between the overall prevalence and gender, age, and hospital unit of patients were also assessed. The results of laboratory tests, performed with a commercial splitter, allowed the calculation of the mass loss, mass variation, and friability of the split tablets. RESULTS: The overall prevalence of tablet splitting was 4.5%, and 78.5% of tablets prescribed to be split had at least one lower-strength tablet on the market. The prevalence of tablet splitting was significantly associated with the patient's age and hospital unit. Laboratory tests revealed mean values of mass loss and variation of 8.7% (SD 1.8) and 11.7% (SD 2.3), respectively, both of which were significantly affected by the presence of coating and scoreline. Data from laboratory tests indicated that the quality of 12 of the 14 tablets deviated in at least one parameter examined. CONCLUSIONS: The high percentage of unnecessary tablet splitting suggests that more regular, rational updates of the hospital's list of standard medicines are needed. Also, inappropriate splitting behavior suggests the need to develop tablets with functional scores


No disponible


Assuntos
Humanos , Comprimidos/farmacologia , Prescrições de Medicamentos , Estabilidade de Medicamentos , Uso de Medicamentos/normas , Reprodutibilidade dos Testes , Pacientes Internados , Erros de Medicação/prevenção & controle , Estudos Transversais , Brasil , Comprimidos/análise , Comprimidos/síntese química
17.
Farm Hosp ; 44(7): 49-52, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533671

RESUMO

As in other areas of the health system, COVID-19 has had a dramatic impact on  hospital compounding. This area has faced numerous challenges, including the  shortage of frequent-use products (hydroalcoholic solutions, lopinavir/ritonavir  suspension), the use of new preparations for SARS-CoV-2 (tocilizumab,  remdesivir), or requests from overwhelmed wards unable to assume the safe  preparation of a high volume of medications (intravenous solutions). The  demand for all types of preparations (topic and oral medications, intravenous  solutions) has increased dramatically. This increase has highlighted the shortage of resources allocated to this area, which has made it difficult to meet the high  demand for preparations. In addition, the pandemic has revealed the scarcity of  research on such basic aspects as agent stability and drug compatibility. One of  the most relevant conclusions drawn from the COVID-19 pandemic is that the  basic areas of hospital pharmacy, along with other, must be maintained and  reinforced, as these are the areas that make us essential.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Composição de Medicamentos , Pandemias , Serviço de Farmácia Hospitalar/organização & administração , Pneumonia Viral/tratamento farmacológico , Administração Oral , Antivirais/provisão & distribução , Antivirais/uso terapêutico , Transfusão de Componentes Sanguíneos , Desinfecção , Vias de Administração de Medicamentos , Interações Medicamentosas , Estabilidade de Medicamentos , Contaminação de Equipamentos/prevenção & controle , Excipientes , Previsões , Serviços de Assistência Domiciliar , Humanos , Hidroxicloroquina/administração & dosagem , Hidroxicloroquina/química , Infusões Intravenosas , Lopinavir/administração & dosagem , Equipamento de Proteção Individual/provisão & distribução , Plasma Rico em Plaquetas , Ritonavir/administração & dosagem , Soluções
18.
Clin Chem Lab Med ; 58(9): 1461-1468, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32573468

RESUMO

Objectives: A method based on liquid chromatography coupled to triple quadrupole mass spectrometry detection using 50 µL of plasma was developed and fully validated for quantification of remdesivir and its active metabolites GS-441524. Methods: A simple protein precipitation was carried out using 75 µL of methanol containing the internal standard (IS) remdesivir-13C6 and 5 µL ZnSO4 1 M. After separation on Kinetex® 2.6 µm Polar C18 100A LC column (100 × 2.1 mm i.d.), both compounds were detected by a mass spectrometer with electrospray ionization in positive mode. The ion transitions used were m/z 603.3 â†’ m/z 200.0 and m/z 229.0 for remdesivir, m/z 292.2 â†’ m/z 173.1 and m/z 147.1 for GS-441524 and m/z 609.3 â†’ m/z 206.0 for remdesivir-13C6. Results: Calibration curves were linear in the 1-5000 µg/L range for remdesivir and 5-2500 for GS-441524, with limit of detection set at 0.5 and 2 µg/L and limit of quantification at 1 and 5 µg/L, respectively. Precisions evaluated at 2.5, 400 and 4000 µg/L for remdesivir and 12.5, 125, 2000 µg/L for GS-441524 were lower than 14.7% and accuracy was in the [89.6-110.2%] range. A slight matrix effect was observed, compensated by IS. Higher stability of remdesivir and metabolite was observed on NaF-plasma. After 200 mg IV single administration, remdesivir concentration decrease rapidly with a half-life less than 1 h while GS-441524 appeared rapidly and decreased slowly until H24 with a half-life around 12 h. Conclusions: This method would be useful for therapeutic drug monitoring of these compounds in Covid-19 pandemic.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/sangue , Betacoronavirus , Cromatografia Líquida/métodos , Infecções por Coronavirus/sangue , Monitoramento de Medicamentos/métodos , Pneumonia Viral/sangue , Espectrometria de Massas em Tandem/métodos , Monofosfato de Adenosina/sangue , Monofosfato de Adenosina/farmacocinética , Alanina/sangue , Alanina/farmacocinética , Antivirais/farmacocinética , Estabilidade de Medicamentos , Feminino , Humanos , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Pandemias , Reprodutibilidade dos Testes
19.
PLoS One ; 15(6): e0234502, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32525915

RESUMO

Preservation of blood plasma in the dried state would facilitate long-term storage and transport at ambient temperatures, without the need of to use liquid nitrogen tanks or freezers. The aim of this study was to investigate the feasibility of dry preservation of human plasma, using sugars as lyoprotectants, and evaluate macromolecular stability of plasma components during storage. Blood plasma from healthy donors was freeze dried using 0-10% glucose, sucrose, or trehalose, and stored at various temperatures. Differential scanning calorimetry was used to measure the glass transition temperatures of freeze-dried samples. Protein aggregation, the overall protein secondary structure, and oxidative damage were studied under different storage conditions. Differential scanning calorimetry measurements showed that plasma freeze-dried with glucose, sucrose and trehalose have glass transition temperatures of respectively 72±3.4°C, 46±11°C, 15±2.4°C. It was found that sugars diminish freeze-drying induced protein aggregation in a dose-dependent manner, and that a 10% (w/v) sugar concentration almost entirely prevents protein aggregation. Protein aggregation after rehydration coincided with relatively high contents of ß-sheet structures in the dried state. Trehalose reduced the rate of protein aggregation during storage at elevated temperatures, and plasma that is freeze- dried plasma with trehalose showed a reduced accumulation of reactive oxygen species and protein oxidation products during storage. In conclusion, freeze-drying plasma with trehalose provides an attractive alternative to traditional cryogenic preservation.


Assuntos
Proteínas Sanguíneas/metabolismo , Plasma/química , Preservação Biológica/métodos , Conservantes Farmacêuticos/química , Trealose/química , Proteínas Sanguíneas/química , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Liofilização , Humanos , Agregados Proteicos , Conformação Proteica em Folha beta , Estabilidade Proteica , Temperatura de Transição , Vitrificação
20.
PLoS One ; 15(6): e0233632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32492039

RESUMO

Increasing pandemic influenza vaccine manufacturing capacity is considered strategic by WHO. Adjuvant use is key in this strategy in order to spare the vaccine doses and by increasing immune protection. We describe here the production and stability studies of a squalene based oil-in-water emulsion, adjuvant IB160, and the immune response of the H7N9 vaccine combined with IB160. To qualify the production of IB160 we produced 10 consistency lots of IB160 and the average results were: pH 6.4±0.05; squalene 48.8±.0.03 mg/ml; osmolality 47.6±6.9 mmol/kg; Z-average 157±2 nm, with polydispersity index (PDI) of 0.085±0.024 and endotoxin levels <0.5 EU/mL. The emulsion particle size was stable for at least six months at 25°C and 24 months at 4-8°C. Two doses of H7N9 vaccine formulated at 7.5 µg/dose or 15 µg/dose with adjuvant IB160 showed a significant increase of hemagglutination inhibition (HAI) titers in sera of immunized BALB/c mice when compared to control sera from animals immunized with the H7N9 antigens without adjuvant. Thus the antigen-sparing capacity of IB160 can potentially increase the production of the H7N9 pandemic vaccine and represents an important achievement for preparedness against pandemic influenza and a successful North (IDRI) to South (Butantan Institute) technology transfer for the production of the adjuvant emulsion IB160.


Assuntos
Adjuvantes Farmacêuticos/síntese química , Emulsões/síntese química , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Infecções por Orthomyxoviridae/prevenção & controle , Pandemias/prevenção & controle , Adjuvantes Farmacêuticos/química , Animais , Brasil/epidemiologia , Estabilidade de Medicamentos , Emulsões/química , Testes de Inibição da Hemaglutinação , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Polissorbatos/química , Esqualeno/química , Transferência de Tecnologia , Vacinação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA