Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.729
Filtrar
1.
Food Chem ; 367: 130667, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34339981

RESUMO

The main purpose of the present study was to investigate the effect of different fertilizers on the physicochemical properties, multi-element and volatile composition of cucumbers. All samples were divided into five groups according to different combinations and amounts of chicken manure, NPK 17-17-17 fertilizer and microbial fertilizer. The co-application of chicken manure (120,000 kg/ha) and NPK 17-17-17 fertilizer (750 kg/ha) achieved the best texture properties, whereas the addition of the microbial fertilizer at 6000 kg/ha significantly improved the color quality of cucumbers. Similarly, the co-application of chicken manure, NPK 17-17-17 fertilizer and microbial fertilizer at 6000 kg/ha enhanced the number and abundance of volatile components detected in the cucumbers. Cucumbers from the control group contained the highest levels of most of the determined elements. Overall, a combination of chicken manure, NPK 17-17-17 fertilizer and 6000 kg/ha microbial fertilizer is recommended as a relatively efficient fertilizer utilization for cucumbers.


Assuntos
Cucumis sativus , Fertilizantes , Agricultura , Fertilizantes/análise , Esterco , Solo
2.
J Environ Manage ; 301: 113825, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571473

RESUMO

The application of the circular economy concept should utilize the cycles of nature to preserve materials, energy and nutrients for economic use. A full-scale pig farm plant was developed and validated, showing how it is possible to integrate a circular economy concept into a wastewater treatment system capable of recovering energy, nutrients and enabling water reuse. A low-cost swine wastewater treatment system consisting of several treatment modules such as solid-liquid separation, anaerobic digestion, biological nitrogen removal by nitrification/denitrification and physicochemical phosphorus removal and recovery was able to generate 1880.6 ± 1858.5 kWh d-1 of energy, remove 98.6% of nitrogen and 89.7% of phosphorus present in the swine manure. In addition, it was possible to produce enough fertilizer to fertilize 350 ha per year, considering phosphorus and potassium. In addition, the effluent after the chemical phosphorus removal can be safely used in farm cleaning processes or disposed of in water bodies. Thus, the proposed process has proven to be an environmentally superior swine waste management technology, with a positive impact on water quality and ensuring environmental sustainability in intensive swine production.


Assuntos
Esterco , Fósforo , Anaerobiose , Animais , Nitrogênio/análise , Nutrientes , Suínos
3.
J Environ Manage ; 301: 113807, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571475

RESUMO

Modified lignite and black coal (BC) are potential amendments for animal bedding to abate ammonia (NH3) emissions due to their large adsorption capacities for ammoniacal nitrogen (N). However, the ability of modified lignite and BC in reducing NH3 volatilization from livestock manure and the underlying mechanisms remain unknown. The present study has investigated the effect of lignite, modified lignite, BC and modified BC on NH3 volatilization from cattle manure, biological immobilization of manure ammoniacal N and manure properties. Modified lignite and BC reduced the NH3 volatilization from manure by 44 and 36%, respectively, which were comparable with original lignite (43%). The biological immobilization of applied stable isotope labelled 15N in lignite, modified lignite, BC and modified BC amended manures was 15, 18, 11 and 16%, respectively, which were significantly higher than that in unamended manure (4%, P < 0.001). In addition, NH4+-N concentrations of lignite, modified lignite and modified BC amended manures (7.0-7.3 mg g-1) were significantly higher than that of the unamended and original BC amended manures (3.3 and 4.8 mg g-1, respectively, P < 0.001). However, the manure pH in all treatments remained alkaline (pH > 8.2). Our results highlight that the adsorption and immobilization of manure ammoniacal N induced by amendments are the key drivers in reducing NH3 loss from manure, outweighing the pH effect. The findings of this study provide new insights into the mechanisms of coal amendments reducing NH3 loss from animal manure and their potential applications in intensive livestock systems.


Assuntos
Amônia , Esterco , Amônia/análise , Animais , Bovinos , Carvão Mineral , Nitrogênio/análise , Volatilização
4.
J Environ Manage ; 301: 113708, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619591

RESUMO

Estrone (E1), 17α-estradiol (17α-E2), 17ß-estradiol (17ß-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17ß-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17ß-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.


Assuntos
Esterco , Poluentes Químicos da Água , Animais , Criança , Monitoramento Ambiental , Estradiol/toxicidade , Estrogênios/análise , Estrogênios/toxicidade , Estrona/análise , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Chemosphere ; 287(Pt 3): 132338, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563774

RESUMO

Manure fertilization contributes to crop production and sustainable agriculture by introducing large amounts of nutrients and exogenous microbes into soil. However, the contribution of exogenous microbes in shaping soil bacterial community and network structure after fertilization are still controversial. In this study, bacterial communities and network structure that received unsterilized (R + C) or sterilized (R + SC) manure fertilizers, as well as no fertilizer control (R), were characterized using high throughput sequencing. Results showed that the relative abundance of fertilizer-derived OTUs decreased from 10.4% to 4.6% after 90 days incubation, while the Bray-Curtis distance between the control and fertilization group (R + C and R + SC) gradually increased with the culture time. It can be supposed that manure fertilization altered soil bacterial communities by interfering the growth of indigenous bacteria rather than the colonization of fertilizer-derived bacteria. Network analysis showed that a subset of the fertilizer-derived OTUs identified as Xanthomonadales order and Promicromonospora, Constrictibacter genera acted as connectors between modules. They enhanced the interactions not only between soil-derived OTUs and fertilizer-derived OTUs, but also within indigenous bacteria, supported that the introduction of fertilizer-derived exogenous bacteria contributes large to soil bacterial network association. Moreover, fertilizer-derived OTUs presented to be positively correlated with soil pH, while majority soil-derived OTUs presented to be negatively correlated with various physicochemical variables (pH, DOC, NO3-, and LAP). Our study highlighted the critical role of fertilizer-derived bacteria in regulating indigenous soil microbial community and network formation after fertilization.


Assuntos
Fertilizantes , Solo , Agricultura , Bactérias/genética , Fertilizantes/análise , Esterco , Microbiologia do Solo
6.
Chemosphere ; 287(Pt 3): 132304, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34563783

RESUMO

Microbial inoculums (MIs) were the widely used biofortification strategy in composting. However, lack of efficient MIs and unclear strengthening mechanisms might impaired the efficiency of MIs. Here, three experimental group (precise strains, commercial MI, Inoculum HJ) and one control group (untreated) were investigated to close these gaps. Adding MIs could significantly prolong the duration of thermophilic period (1.5-2.8 times), but the difference in GI, pH value, EC value and moisture content were marginal. Furthermore, it could be observed that adding Inoculum HJ could improve the degradation rate of lignocellulose and organic matters for 1.22-1.25 times. The high-throughput sequencing results showed that adding Inoculum HJ made additional genus dominant, with their relative abundance raised from 2.58 to 3.39 times. Results of network analysis showed that microbial interaction could be strengthened by adding MIs, and significantly improved composting quality. The most intensive interaction was observed in the pile with Inoculum HJ, which was 1.20 times higher than other piles. To explore how Inoculum HJ strengthened microbial interaction, module based connectivity analysis was used to distinguish key hubs. Results showed that twelve hkey OTUs in the thermophilic period were similar to additional strains' full-length 16S rRNA gene. These results showed that additional strains behaved like the key hubs to strengthen microbial interaction in the thermophilic period. This research indicated that additional strains from the most efficient inoculum could behave as key hubs to increase the network complexity and had the potential to strengthen microbial interaction.


Assuntos
Compostagem , Esterco , RNA Ribossômico 16S/genética , Solo
7.
Sci Total Environ ; 803: 150023, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500268

RESUMO

Application of organic wastes as soil fertilizers represents an important route of agricultural soil contamination by antibiotics such as sulfamethoxazole (SMX). Soil contamination may be influenced by the storage time of organic wastes before soil spreading. The objective of this work was to study the fate of SMX in two organic wastes, a co-compost of green waste and sewage sludge and a bovine manure, which were stored between 0 and 28 days, then incorporated in an agricultural soil that has never received organic waste and monitored for 28 days under laboratory conditions. Organic wastes were spiked with 14C-labelled SMX at two concentrations (4.77 and 48.03 mg kg-1 dry organic waste). The fate of SMX in organic wastes and soil-organic waste mixtures was monitored through the distribution of radioactivity in the mineralised, available (2-hydroxypropyl-ß-cyclodextrin extracts), extractable (acetonitrile extracts) and non-extractable fractions. SMX dissipation in organic wastes, although partial, was due to i) incomplete degradation, which led to the formation of metabolites detected by high performance liquid chromatography, ii) weak adsorption and iii) formation of non-extractable residues. Such processes varied with the organic wastes, the manure promoting non-extractable residues, and the compost leading to an increase in extractable and non-extractable residues. Short storage does not lead to complete SMX elimination; thus, environmental contamination may occur after incorporating organic wastes into soil. After addition of organic wastes to the soil, SMX residues in the available fraction decreased quickly and were transferred to the extractable and mostly non-extractable fractions. The fate of SMX in the soil also depended on the organic wastes and on the prior storage time for manure. However the fate of SMX in the organic wastes and soil-organic waste mixtures was independent on the initial spiked concentration.


Assuntos
Compostagem , Poluentes do Solo , Animais , Bovinos , Esterco , Esgotos , Solo , Sulfametoxazol
8.
Sci Total Environ ; 803: 150017, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500278

RESUMO

Circular economy principle aims to achieve sustainable production systems, focusing on the waste valorisation and the reduction of gaseous losses to the atmosphere. Nitrogen (N) compounds in terms of ammonia (NH3) and nitrous oxide (N2O) represent the major losses to the atmosphere of laying hen manure management chain. We present a study aimed to evaluate NH3 and N2O emission and mitigation strategies at housing, storage and land spreading stages. The whole manure management chain was evaluated under different scenarios which combined mitigation strategies of each stage. Two intensive laying hen facilities were involved in the study. Evaluated mitigation strategies were: (i) frequency of manure removal from housing facility, (ii) dried manure storage after passing throughout a manure drying tunnel (MDT) compared to fresh manure storage and (iii) fresh or dried manure incorporation versus surface land application. Increasing the frequency of manure removal from 4 days to 1/3 daily, reduced N losses around 68%. Dried manure storage achieved around 75% reduction in N losses compared to fresh manure storage. Spreading dried manure on grassland surface reduced ≈77% NH3 losses in relation to the emission level reached by fresh manure. The reduction was similar when dried manure was incorporated compared to surface application of fresh manure (≈79%). A 40% reduction in N losses was achieved using the MDT compared to no drying strategy. In the whole manure management chain, the combination of strategies that most reduced N losses was: removal frequency of 1/3 daily, dry storage after passing through the MDT and incorporated land application. These strategies reduced N losses between 40 and 60% compared to the 4 days of removal frequency, fresh storage and surface application of fresh manure.


Assuntos
Esterco , Óxido Nitroso , Amônia/análise , Animais , Galinhas , Fazendas , Feminino , Óxido Nitroso/análise
9.
Sci Total Environ ; 803: 150029, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525714

RESUMO

The effect of microplastics (MPs) on the biological treatment of organic waste has been extensively studied, but little is known about the influence of different MPs on composting humification and the fungal community. In this study, PE, PVC, and PHA MPs were individually mixed with cow dung and sawdust and then composted. The results showed that different MPs had various influences on humification, and the humic acid to fulvic acid ratio of all MP-added treatments (0.44-0.83) was lower than that of the control (0.91). During the composting process, Ascomycota (26.32-89.14%) and Basidiomycota (0.47-4.78%) are the dominant phyla in all treatments and all microplastics decreased the diversity and richness of the fungal community at the thermophilic stage of composting. Exposure to MPs had an obvious effect on the fungal community at the genus level, and the addition of PHA and PE MPs increased the relative abundance of phytopathogenic fungi. LEfSe and network analysis indicated that MPs reduced the number of biomarkers and led to a simpler and more unstable fungal community structure compared to the control. This study has important implications for assessing microplastic pollution and organic waste disposal.


Assuntos
Ascomicetos , Compostagem , Micobioma , Animais , Bovinos , Feminino , Esterco , Microplásticos , Plásticos , Solo
10.
Sci Total Environ ; 803: 150126, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525757

RESUMO

This work explored the feasibility of dewatered swine manure-derived biochar (DSMB) as an additive to facilitate anaerobic digestion (AD) of swine wastewater for energy recovery and antibiotic resistance genes (ARG) attenuation enhancements. With 20 g/L DSMB assistance, the methanogenic lag time of swine wastewater was shortened by 17.4-21.1%, and the maximum CH4 production rate increased from 40.8 mL/d to 48.3-50.5 mL/d, among which DSMB prepared under 300 °C exhibited a better performance than that prepared under 500 °C and 700 °C. Integrated analysis of DSMB electrochemical properties, microbial electron transfer system activity, and microbial community succession revealed the potential of DSMB-300 to act as redox-active electron transfer mediators between syntrophic microbes to accelerate syntrophic methanogenesis via potential direct interspecies electron transfer. Meanwhile, DSMB preparation by pyrolysis dramatically reduced ARG abundance by almost 4 logs. Adding DSMB into AD not only strengthened the attenuation efficiency of ARG in the original swine wastewater, but also effectively controlled the potential risk of horizontal gene transfer by mitigating 74.8% of the mobile gene elements abundance. Accordingly, we proposed a win-win scenario for bio-waste management in swine farms, highlighting the more advanced energy recovery and ARG attenuation compared to the current status.


Assuntos
Esterco , Águas Residuárias , Anaerobiose , Animais , Antibacterianos/farmacologia , Carvão Vegetal , Resistência Microbiana a Medicamentos/genética , Suínos
11.
Sci Total Environ ; 804: 150239, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798750

RESUMO

It is common practice to apply manure onto soil as an effective way to increase soil fertility. However, the impact of different carbon sources on the transformation and fate of manure derived nitrogen (N) remains poorly understood. This study investigated the mineralization and immobilization turnover (MIT) of various manure-N fractions using sequential extractions and 15N tracing techniques combined after soil amendment with biochar, straw and mixtures thereof. Soil N was fractionated into mineral nitrogen (NH4+ and NO3-), microbial biomass nitrogen (MBN), hot water extractable organic nitrogen (HWDON), hydrochloric acid extractable organic nitrogen (HCl-N), and residual nitrogen (RN). Results showed that biochar addition increased the 15NH4+ content by 45% during the early stage. However, the high pH and labile C absence of biochar inhibited the remineralization of microbial immobilization N during the mid-to-late stage. Straw addition enhanced 15NH4+ assimilation by 10% to form HCl-15N. After that, microbial cellular structures and secondary metabolites were remineralized to meet crop N requirements. Adding carbon source mixtures with the organic fertilizer manifested the relationship between biochar and straw. The labile C content of the carbon sources rather than the C/N ratio was the critical factor regulating the N-MIT process. Overall, these findings offer new insights into the N transformation approaches using the co-application technique of organic amendments.


Assuntos
Esterco , Solo , Carvão Vegetal , Fertilizantes , Nitrogênio/análise
12.
Bioresour Technol ; 343: 126094, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34624473

RESUMO

Links between carbon/nitrogen (C/N) ratio, synergy and microbial characteristics of anaerobic co-digestion of food waste (FW), cattle manure (CS) and corn straw (CS) were investigated. Digesters with 100% CS, 25% FW + 75% CS, 25% CM + 75% CS suffered acid inhibition, in close association with unbalanced C/N and the resulting recessions of Syntrophomonadaceae and Methanosaeta. Co-digestion overcame C/N imbalance and achieved multiple synergies. Process performance had a positive correlation with Syntrophomonadaceae. Digester with 75% FW + 25% CS had most Syntrophomonadaceae (26.7%) and methane yield (467.3-507.6 mL/g VS) among co-digestion trials. Synergy was greater under higher load and exhibited a good correlation with C/N ratio. Co-digestion of FW, CM and CS (2:2:1) with suitable C/N ratio (20.79) obtained the greatest synergistic rate (14.6%). Unstable systems were improved by adjusting C/N ratio to 30 via urea, which stimulated Methanosarcina growth therefore enhanced methanogenic pathway diversity and ensured powerful methanogenic functions.


Assuntos
Esterco , Eliminação de Resíduos , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Carbono , Bovinos , Digestão , Alimentos , Metano , Nitrogênio , Zea mays
13.
Bioresour Technol ; 343: 126118, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34653629

RESUMO

Low temperatures result in poor anaerobic digestion (AD). To investigate whether bioaugmentation can improve anaerobic co-digestion of cattle manure and corn straw at 20 °C, five different doses of methanogenic propionate-degrading culture (4%, 8%, 12%, 14%, and 16%) were added to batch AD systems to compare bioaugmentation performance. The results showed that the methane production of all the bioaugmented digesters was enhanced compared to the control, increasing 2.80-4.20-fold with digestion times (T80) shorter by 11-22 d. The recommended dose for biogas production was 14%, and the recommended dose for the highest bioaugmentation efficiency of microbes was 4%. These improvements were due to the addition of methanogenic propionate-degrading culture, which alleviated volatile fatty acids (VFA) accumulation, especially that of acetate and propionate. Metagenomic sequencing analysis indicated that the increased proportion of propionate-oxidizing bacteria, syntrophic butyrate-oxidizing bacteria, and acetoclastic methanogens in bioaugmentation reactors may be responsible for better AD performance.


Assuntos
Esterco , Zea mays , Anaerobiose , Animais , Reatores Biológicos , Bovinos , Digestão , Metano
14.
Bioresour Technol ; 343: 126136, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34655776

RESUMO

The objective of this study was to explore the changes in physicochemical properties and bacterial community during swine manure composting with a new compost tray (CT). The results showed that the organic matter (OM), moisture content (MC), and C/N decreased. The total Kjeldahl nitrogen (TKN), P2O5, K2O and humic acids (HAs) contents of the compost increased. The properties of the final compost product comply with the requirements of regulation except for the moisture according to NY/T 525-2012. Firmicutes, Actinobacteria, Proteobacteria and Bacteroidetes were the major phyla during the composting. Genus Terrisporobacter played a key role in degrading organic (OM). The content of K2O was main factors driving the succession of bacterial communities. These findings shed some novel lights into the dynamic changes of physicochemical propertied and their impact on bacterial community in a composting process.


Assuntos
Compostagem , Animais , Bactérias/genética , Esterco , Nitrogênio , Proteobactérias , Suínos
15.
Bioresour Technol ; 343: 126137, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34655781

RESUMO

The high-nitrogen content and dense structure of poultry manure compost cause volatilization of N to ammonia (NH3). This study evaluated the combined application of biochar and biotrickling filtration (BTF) to remove of odor in chicken manure mixed straw compost (w/w, 2.5:1). Adding of 10% biochar reduced NH3, hydrogen sulfide (H2S), and total volatile organic compounds (TVOCs) contents by 20.04%, 16.18%, and 17.55% respectively, and decreased the N loss rate by 8.27%, compared with those observed in control. The organic matter content decreased by 28.11% and germination index reached 97.36% in the experimental group. Meanwhile, the N-cycling microorganisms such as Pusillimonas and Pseudomonas became more active, and the relative abundance of sulfur-cycling microorganisms Hydrogenispora decreased in the experimental group. Following BTF application, the NH3, H2S, and TVOCs removal rates reached 95%, 97%, and 53%, respectively.


Assuntos
Compostagem , Microbiota , Animais , Carvão Vegetal , Galinhas , Esterco , Nitrogênio/análise , Solo
16.
Sci Total Environ ; 805: 150086, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34537705

RESUMO

Heavy metals driven co-selection of antibiotic resistance in soil and water bodies has been widely concerned, but the response of antibiotic resistance to co-existence of antibiotics and heavy metals in composting system is still unknown. Commonly used sulfamethoxazole and copper were individually and jointly added into four reactors to explore their effects on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), heavy metal resistance genes (MRGs) and bacterial community structure. The abundance of total ARGs and MGEs were notably decreased by 68.64%-84.95% and 91.27-97.38%, respectively, after the composting. Individual addition of sulfamethoxazole, individual addition of copper, simultaneously addition of sulfamethoxazole and copper increased the abundance of ARGs and MGEs throughout the composting period. Co-exposure of sulfamethoxazole and copper elevated the total abundance of ARGs by 1.17-1.51 times by the end of the composting compared to individual addition of sulfamethoxazole or copper. Network analysis indicated that the shifts in potential host bacteria determined the ARGs variation. Additionally, MGEs and MRGs had significant effects on ARGs, revealing that horizontal gene transfer and heavy metals induced co-resistance could promote ARGs dissemination.


Assuntos
Compostagem , Metais Pesados , Animais , Antibacterianos/farmacologia , Cobre/toxicidade , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco , Sulfametoxazol/farmacologia , Suínos
17.
Sci Total Environ ; 805: 150337, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34543788

RESUMO

Globally, agriculture sector is the significant source of greenhouse gases (GHGs) emissions into the atmosphere. To achieve the goal of limiting or mitigating these emissions, a rigorous abatement strategy with an additional focus on improving crop productivity is now imperative. Replacing traditional agriculture with soil conservation-based farming can have numerous ecological benefits. However, most assessments only consider improvements in soil properties and crop productivity, and often preclude the quantitative impact analysis on GHGs emissions. Here, we conducted a meta-analysis to evaluate crop productivity (i.e., biomass, grain, total yield) and GHGs emissions (i.e., CO2, N2O, CH4) for three major soil conservation practices i.e., no-tillage, manures, and biochar. We also examined the yield potential of three major cereal crops (i.e., wheat, rice, maize) and their significance in mitigating GHGs emissions. None of the manures were able to reduce GHGs emissions, with poultry manure being the largest contributor to all GHGs emissions. However, pig-manure had the greatest impact on crop yield while emitting the least CO2 emissions. Use of biochar showed a strong coupling effect between reduction of GHGs (i.e., CH4 by -37%; N2O by -25%; CO2 by -5%) and the increase in crop productivity. In contrast, no-tillage resulted in higher GHGs emissions with only a marginal increase in grain yield. Depending on crop type, all cereal crops showed varied degrees of GHGs mitigation under biochar application, with wheat responding most strongly due to the additional yield increment. The addition of biochar significantly reduced CO2 and N2O emissions under both rainfed and irrigated conditions, although CH4 reductions were identical in both agroecosystems. Interestingly, the use of biochar resulted in a greater yield benefit in rainfed than in irrigated agriculture. Despite significant GHGs emissions, manure application contributed to higher crop yields, regardless of soil type or agroecosystem. Moreover, no-tillage showed a significant reduction in CH4 and N2O emissions under rainfed and irrigated conditions. Notably , biochar application in coarse while no-till in fine textured soils contributed to N2O mitigation. Most importantly, effectiveness of no-tillage as a countermeasure to GHGs emissions while providing yield benefits is inconsistent. Overall, the decision to use farm manures should be reconsidered due to higher GHGs emissions. We conclude that the use of biochar could be an ideal way to reduce GHGs emissions. However, further understanding of the underlying mechanisms and processes affecting GHGs emissions is needed to better understand the feedback effects in conservation agriculture.


Assuntos
Gases de Efeito Estufa , Agricultura , Animais , Produção Agrícola , Fertilizantes/análise , Esterco , Metano/análise , Óxido Nitroso/análise , Solo , Suínos
18.
J Environ Manage ; 301: 113891, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34731939

RESUMO

In recent decades, the innovative practice of management and valorization of agrozootechnical waste as energy through anaerobic digestion (AD) has been rapidly growing. However, whether applying digestate to soil as biofertilizer can be a source of antibiotics (ABs) and antibiotic resistance genes (ARGs) has not been fully investigated so far. In this work the ARGs responsible for sulfamethoxazole (SMX) resistance (sul1, sul2), ciprofloxacin (CIP) resistance (qnrS, qepA, aac-(6')-Ib-cr) and the mobile genetic element intl1, together with the concentrations of the antibiotics SMX and CIP, were measured in several anaerobic digesters located in Central Italy. Based on these results, the concentrations of antibiotics and ARGs which can potentially reach soil through amendment with digestate were also estimated. The highest CIP and SMX concentrations were found during winter and spring in anaerobic digesters. The highest ARG abundances were found for the aac-(6')-Ib-cr and sul2 genes. The overall results showed that application of digestate to soil does not exclude AB contamination and spread of ARGs in agroecosystems, especially in the case of ciprofloxacin, owing to its high intrinsic persistence.


Assuntos
Antibacterianos , Solo , Anaerobiose , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos/genética , Esterco , Sulfametoxazol
19.
J Hazard Mater ; 421: 126809, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34388932

RESUMO

The germination index (GI) was widely applied to evaluate the phytotoxicity of compost. This study investigated the key phytotoxicity factors affecting seed germination in compost by using aqueous extracts in seed germination tests. The relationship between water-soluble substances in compost and seed germination, and their association with the microbial community were identified. In this study, sheep manure (SM) composted along or with three carbon additives (mushroom substrate, MS; cornstalks, CS; garden substrate, GS) for 49 days and, during this time, changes in multiple physical-chemical parameters, carbon and nitrogen matters, germination indexes (GI) and the compost microbiome were monitored. The results showed that all additives decreased water-soluble total nitrogen (TN), ammonium nitrogen (NH4+-N) and low molecular weight organic acids, and significantly improved the seed germination indexes (seed germination rate, radical length and GI). The GI was correlated with water-soluble carbon degradation products (TOC, butyric acid, humic acid) and certain bacteria (Planifilum, Oceanobacillus, Ruminococcaceae_UCG_005 and Saccharomonospora). A structural equation model revealed that the main factors affecting seed germination were TOC (SM compost), acetic acid (SM+MS compost), humic acid (SM+CS compost), and pH (SM+GS compost). Low TOC and low molecular weight organic acids contents and higher humic acid content promoted GI. The research results could provide theoretical basis and measures for directional regulation of compost maturity.


Assuntos
Compostagem , Esterco , Animais , Carbono , Germinação , Nitrogênio/análise , Ovinos , Solo
20.
Sci Total Environ ; 803: 149933, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482141

RESUMO

To ensure global food security, agriculture must increase productivity while reducing environmental impacts associated with chemical nitrogen (N) fertilisation. This necessitates towards more sustainable practices such as recycling organic waste to substitute chemical fertiliser N inputs. However, hitherto how such strategy controls the succession of microbial communities and their relationship with crop yields and environmental impacts have not been comprehensively investigated. We conducted a field experiment with vegetable production in China examining partial substitution (25-50%) of chemical fertiliser with organic forms (pig manure or municipal sludge compost) considering key sustainability metrics: productivity, soil health, environmental impacts and microbial communities. We demonstrate that partial organic substitution improved crop yields, prevented soil acidification and improved soil fertility. Treatments also reduced detrimental environmental impacts with lower N2O emission, N leaching and runoff, likely due to reduced inorganic nitrogen surplus. Microbial communities, including key genes involved in the N cycle, were dynamic and time-dependent in response to partial organic substitution, and were also important in regulating crop yields and environmental impacts. Partial organic substitution increased bacterial diversity and the relative abundance of several specific microbial groups (e.g. Sphingomonadales, Myxococcales, Planctomycetes, and Rhizobiales) involved in N cycling. Additionally, partial organic substitution reduced the number of bacterial ammonia oxidizers and increased the number of denitrifiers, with the proportion of N2O-reducers being more pronounced, suggesting a mechanism for reducing N2O emissions. Comprehensive economic cost-benefit evaluation showed that partial organic substitution increased economic benefit per unit area by 37-46%, and reduced agricultural inputs and environmental impacts per unit product by 22-44%. Among them, 50% substitution of pig manure was the most profitable strategy. The study is crucial to policy-making as it highlights the potential advantages of shifting towards systems balancing chemical and organic fertilisers with economic benefits for farmers, reduced environmental damage and an efficient way for organic waste disposal.


Assuntos
Agricultura , Fertilizantes , Animais , Fertilizantes/análise , Esterco , Nitrogênio , Solo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...