Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91.540
Filtrar
1.
Talanta ; 266(Pt 2): 125138, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657378

RESUMO

Herein, we introduce a novel integrated system that merges an enantio-discriminative bio-MOF-packed centrifugal microfluidic chip made from PDMS with a user-friendly on-site colorimetric sensor. This innovative approach enables the precise enantioselective recognition of L-tryptophane (L-Trp). This chiral recognition probe was successfully synthesized through meticulous control of nano-ovals-shaped gold nanoparticles morphology and surface passivation. The operational factor of this methodology was optimized to ensure simplicity, practicality, and efficiency. This optimization led to reduced reagent consumption and instantaneous analytical feedback. The integrated system was effectively applied for enantioselective separation and quantification of L-Trp across an extensive linear range of 50 µM-1.5 mM, impressive limit of detection as low as 15 µM. It is noteworthy that this integrated system demonstrated desirable selectivity even in the presence of similar biomolecules, showcasing its robust performance and rapid detection capability. Further extended the application of this strategy to exceptional performance across enantioselective sensing of L-Trp in various sample matrices, comprising bovine serum albumin, bovine milk, blood plasma and urine samples. This integrated microfluidic sample pretreatment, chiroptical sensing, and on-site signal recording with a smartphone hold tremendous potential for widespread implementation, practical applications engaging healthcare and environmental, food safety, and point-of-needs analysis, facilitating successive solution mixing and colorimetric detection.


Assuntos
Ouro , Nanopartículas Metálicas , Animais , Colorimetria , Microfluídica , Estereoisomerismo , Triptofano , Leite
2.
Talanta ; 266(Pt 1): 124977, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487268

RESUMO

Amino-functional silica-coated N-doped carbon dots (NH2-SiO2-CDs) were covalently modified by l-tryptophan (chiral selector) by producing an amide bond between carboxyl groups of L-try and amino groups of NH2-SiO2-CDs to develop a novel high throughput chiral nanoprobes (L-try-CONH-SiO2-CDs) for highly sensitive and enantioselective quantification of S-/R-mandelic acid (S-/R-Man). The method showed a great difference between S- and R-isomers (enantioselectivity coefficient = 4.17) due to the ultra-stability of the Meisenheimer complex that was formed between S-isomer and nanoprobe (KS-Man/KR-man = 2122.7, where K is the binding-constant). At optimal experimental conditions, two linear ranges of 0.5-25.0 (LOD of 0.05 µM) and 0.5-22.0 µM (LOD of 0.27 µM) for S- and R-Man, respectively, along with an enhanced sensitivity toward S-isomer (about 5.7-fold higher than R-isomer) were attained. High selectivity for the determination of mandelic acid was achieved compared to metal ions, amino acids, and sugars that commonly coexist with it. Intra-day as well as inter-day assays, respectively, showed RSD values of about 3.2 and 3.9%. The mechanistic studies were performed for proving the enantioselective behavior of the developed nanoprobe. The method was then used for S-/R-mandelic acid determination in bio-samples. The figures of merit for the method were found to be better than those already reported for enantioselective detection of R-/S-Man.


Assuntos
Dióxido de Silício , Triptofano , Humanos , Espectrometria de Fluorescência , Estereoisomerismo , Carbono , Ácidos Mandélicos
3.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687059

RESUMO

Quality control of essential oils is fundamental for verifying their authenticity and conformity with quality standards, ensuring their safety and regulatory compliance, and monitoring their consistency. Companies that produce or market essential oils routinely evaluate the quality and authenticity of their products. However, they also must deal with increasing attention to environmental sustainability as well as practical considerations such as productivity, cost, and simplicity of methods. In this study, enantioselective gas chromatography (GC) was adopted to evaluate the quality of sweet and bitter orange essential oils, used as a case study. The analytical conditions were optimized and translated to fast GC to evaluate the impact of this approach on the environmental footprint of the analyses. The greenness of fast GC, compared with conventional GC, was quantitatively evaluated using a dedicated metric tool (AGREE), and important improvements have been calculated. The developed methods were applied to a set of commercial essential oils, and the data about the enantiomeric composition and relative percentage abundance were elaborated through multivariate statistics (principal component analysis). The results showed that fast chiral gas chromatography enables the classification of citrus essential oil samples and can be considered an environmentally friendly and sustainable approach for evaluating their quality.


Assuntos
Citrus , Óleos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Estereoisomerismo , Controle de Qualidade , Cromatografia Gasosa , Extratos Vegetais
4.
Chem Commun (Camb) ; 59(73): 10916-10919, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37606059

RESUMO

A newly synthesized charged chiral tag-enabled enantioselective imaging of D-,L-2-hydroxyglutaric acid, which are independently associated with the regulation of DNA methylation. The tag-conjugated diastereomers were ionized efficiently through MALDI, separated by ion mobility spectrometry, and further separated from other molecules in mass spectrometry. On-tissue chiral derivatization using the tag facilitated the visualization of different distributions of the two isomers in the mouse testis.


Assuntos
Diagnóstico por Imagem , Espectrometria de Mobilidade Iônica , Animais , Camundongos , Masculino , Estereoisomerismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
5.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569673

RESUMO

The catalytic epoxidation of small alkenes and allylic alcohols includes a wide range of valuable chemical applications, with many works describing vanadium complexes as suitable catalysts towards sustainable process chemistry. But, given the complexity of these mechanisms, it is not always easy to sort out efficient examples for streamlining sustainable processes and tuning product optimization. In this review, we provide an update on major works of tunable vanadium-catalyzed epoxidations, with a focus on sustainable optimization routes. After presenting the current mechanistic view on vanadium catalysts for small alkenes and allylic alcohols' epoxidation, we argue the key challenges in green process development by highlighting the value of updated kinetic and mechanistic studies, along with essential computational studies.


Assuntos
Alcenos , Vanádio , Alcenos/química , Vanádio/química , Compostos de Epóxi/química , Estereoisomerismo , Propanóis/química , Catálise , Álcoois/química
6.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570600

RESUMO

Chiral surface is a critical mediator that significantly impacts interaction with biological systems on regulating cell behavior. To better understand how the properties of interfacial Chirality affect cell behavior and address the limitations of chiral materials for biomedical applications, in this review, we mainly focus on the recent developments of chiral bio-interfaces for the controllable and accurate guidance of chiral biomedical phenomena. In particular, we will discuss how cells or organisms sense and respond to the chiral stimulus, as well as the chirality mediating cell fate, tissue repair, and organism immune response will be reviewed. In addition, the biological applications of chirality, such as drug delivery, antibacterial, antivirus and antitumor activities, and biological signal detection, will also be reviewed. Finally, the challenges of chiral bio-interfaces for controlling biological response and the further application of interface chirality materials for biomedical will be discussed.


Assuntos
Estereoisomerismo , Diferenciação Celular
7.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570614

RESUMO

Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and ß-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and ß-mannoside, via the 1,2-cis glycosylation pathway and ß-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.


Assuntos
Glucanos , Polissacarídeos , Glicosilação , Glucanos/química , Glucosídeos , Manosídeos , Estereoisomerismo
8.
J Chem Phys ; 159(6)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37551802

RESUMO

Biological systems are homochiral, raising the question of how a racemic mixture of prebiotically synthesized biomolecules could attain a homochiral state at the network level. Based on our recent results, we aim to address a related question of how chiral information might have flowed in a prebiotic network. Utilizing the crystallization properties of the central ribonucleic acid (RNA) precursor known as ribose-aminooxazoline (RAO), we showed that its homochiral crystals can be obtained from its fully racemic solution on a magnetic mineral surface due to the chiral-induced spin selectivity (CISS) effect [Ozturk et al., arXiv:2303.01394 (2023)]. Moreover, we uncovered a mechanism facilitated by the CISS effect through which chiral molecules, such as RAO, can uniformly magnetize such surfaces in a variety of planetary environments in a persistent manner [Ozturk et al., arXiv:2304.09095 (2023)]. All this is very tantalizing because recent experiments with tRNA analogs demonstrate high stereoselectivity in the attachment of L-amino acids to D-ribonucleotides, enabling the transfer of homochirality from RNA to peptides [Wu et al., J. Am. Chem. Soc. 143, 11836 (2021)]. Therefore, the biological homochirality problem may be reduced to ensuring that a single common RNA precursor (e.g., RAO) can be made homochiral. The emergence of homochirality at RAO then allows for the chiral information to propagate through RNA, then to peptides, and ultimately through enantioselective catalysis to metabolites. This directionality of the chiral information flow parallels that of the central dogma of molecular biology-the unidirectional transfer of genetic information from nucleic acids to proteins [F. H. Crick, in Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules, edited by F. K. Sanders (Cambridge University Press, Cambridge, 1958), pp. 138-163; and F. Crick, Nature 227, 561 (1970)].


Assuntos
Peptídeos , Proteínas , Humanos , Peptídeos/química , Estereoisomerismo , Aminoácidos/química , RNA
9.
J Am Chem Soc ; 145(33): 18240-18246, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37561549

RESUMO

The stereoselective total synthesis of structure 1 assigned to the macrolide natural product neaumycin B is reported in a 2.3% overall yield on 90 mg scale. The synthesis features a gram-scale nickel-catalyzed reductive cross-coupling/spiroketalization tactic to construct the spiroketal core of neaumycin B. The stereostructures of the C3-C6, C8-C14, and C20-C41 segments of synthetic neaumycin B were unambiguously verified by X-ray crystallography.


Assuntos
Antibacterianos , Estrutura Molecular , Antibacterianos/química , Estereoisomerismo
10.
Nat Protoc ; 18(9): 2745-2771, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37542183

RESUMO

Atropisomers are molecules whose stereogenicity arises from restricted rotation about a single bond. They are of current importance because of their applications in catalysis, medicine and materials science. The defining feature of atropisomeric molecules is that their stereoisomers are related to one another by bond rotation: as a result, evaluating their configurational stability (i.e., the rate at which their stereoisomers interconvert) is central to any work in this area. Important atropisomeric scaffolds include C-C linked biaryls, such as the ligand BINAP and the drug vancomycin, and C-N linked amine derivatives such as the drug telenzepine. This article focuses on the three most widely used experimental methods that are available to measure the rate of racemization in atropisomers, namely: (i) kinetic analysis of the racemization of an enantioenriched sample, (ii) dynamic HPLC and (iii) variable-temperature NMR. For each technique, an explanation of the theory is set out, followed by a detailed experimental procedure. A discussion is also included of which technique to try when confronted with a new molecular structure whose properties are not yet known. None of the three procedures require complex experimental techniques, and all can be performed by using standard analytical equipment (NMR and HPLC). The time taken to determine a racemization rate depends on which experimental method is required, but for a new compound it is generally possible to measure a racemization rate in <1 d.


Assuntos
Cinética , Estrutura Molecular , Temperatura , Espectroscopia de Ressonância Magnética , Estereoisomerismo
11.
J Pharm Biomed Anal ; 235: 115639, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37619294

RESUMO

Human exposure to contaminants of emerging concern, like pesticides, has increased in the past decades. Diclofop-methyl (DFM) is a chiral herbicide that is employed as a racemic mixture (rac-DFM) in soybean and other crops against wild oats. Studies have shown that DFM has enantioselective action (higher for R-DFM), degradation (faster for S-DFM), and metabolism, producing diclofop (DF) which is also a pesticide. Although toxic effects have been reported for DFM, information regarding how DFM affects humans is lacking, especially when its chirality is concerned. In this study, the in vitro metabolism of rac-DFM and its isolated enantiomers was assessed by using a human model based on human liver microsomes. The kinetic model and parameters were obtained, and the hepatic clearance (CLH) and hepatic extraction ratio (EH) were estimated. Enzyme phenotyping was carried out by employing carboxylesterase isoforms (CES 1 and CES 2). DFM was metabolized through positive homotropic cooperativity with slight preference for (-)-DFM metabolism to (-)-DF. CLH and EH were above 19.60 mL min-1 kg-1 and 98 % for all the monitored reactions, respectively, and CES 1 was the main enzyme underlying the metabolism. These findings point out that liver contributes to DFM metabolism, which is fast, resulting in nearly complete conversion to DF after exposition to DFM.


Assuntos
Herbicidas , Praguicidas , Humanos , Herbicidas/toxicidade , Estereoisomerismo , Toxicocinética , Praguicidas/toxicidade
12.
J Am Chem Soc ; 145(32): 17656-17664, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530568

RESUMO

The study of non-natural biocatalytic transformations relies heavily on empirical methods, such as directed evolution, for identifying improved variants. Although exceptionally effective, this approach provides limited insight into the molecular mechanisms behind the transformations and necessitates multiple protein engineering campaigns for new reactants. To address this limitation, we disclose a strategy to explore the biocatalytic reaction space and garner insight into the molecular mechanisms driving enzymatic transformations. Specifically, we explored the selectivity of an "ene"-reductase, GluER-T36A, to create a data-driven toolset that explores reaction space and rationalizes the observed and predicted selectivities of substrate/mutant combinations. The resultant statistical models related structural features of the enzyme and substrate to selectivity and were used to effectively predict selectivity in reactions with out-of-sample substrates and mutants. Our approach provided a deeper understanding of enantioinduction by GluER-T36A and holds the potential to enhance the virtual screening of enzyme mutants.


Assuntos
Ciência de Dados , Ciência de Dados/métodos , Biocatálise , Estereoisomerismo , Especificidade por Substrato , Ligantes , Mutação , Modelos Moleculares
13.
Org Lett ; 25(31): 5745-5749, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37530592

RESUMO

Convergent total synthesis of (+)-muricatetrocin B, a tetrahydrofuran-containing acetogenin with potent and selective cytotoxicity against the HT-29 human colon adenocarcinoma cell line, was achieved in 13 steps. Our synthesis is highlighted by a late-stage sequential olefin cross-metathesis/Hartung-Mukaiyama cyclization for convergent assembly of the 2,5-trans-substituted tetrahydrofuran ring.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Ciclização , Estrutura Molecular , Estereoisomerismo , Furanos , Catálise
14.
Pestic Biochem Physiol ; 194: 105499, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532357

RESUMO

Paclobutrazol is a plant growth inhibitor widely used in agricultural production. However, toxicology studies of paclobutrazol enantiomers towards aquatic organisms are limited. Herein, effects of paclobutrazol and its two enantiomers (2R, 3R; 2S, 3S) on glycolipid metabolism of zebrafish have been systemically explored at the concentration of 10 mg/L through biochemical analyses, LC-MS/MS, molecular dynamics simulation, and gene expression. In all treatments, the contents of glucose, citric acid and lactate significantly were increased while the glycogen and pyruvate contents were decreased, in which (2R, 3R)-paclobutrazol exhibited a greater effect than the (2S, 3S)-enantiomer (P < 0.05). Then, activities of hexokinase and lactate dehydrogenase in (2R, 3R)-paclobutrazol treatment were 0.74- and 1.18-fold higher than (2S, 3S)-enantiomer treatment, respectively (P < 0.001), and the results of molecular dynamics simulation revealed that the binding free energy of hexokinase 1 to (2R, 3R)-paclobutrazol was higher than that to the antipode. Moreover, lipids including triglycerides, total cholesterol, fatty acids, bile acids and glycerophospholipids in zebrafish were strikingly affected after paclobutrazol exposure. The (2R, 3R)-paclobutrazol-treated group showed the most obvious changes, indicating that it possessed much stronger disruption ability on the lipid metabolism of zebrafish. Furthermore, qRT-PCR analysis results revealed that (2R, 3R)-enantiomer significantly impacted expressions of glycolipid metabolism-related genes (hk1, g6pc, pck1, pk, aco, cebpa, cyp51, fasn and ppara) in zebrafish than (2S, 3S)-enantiomer (P < 0.05). Briefly, this study provides new evidences for the toxicity of paclobutrazol to aquatic organisms and the potential risk to human health at the chiral level.


Assuntos
Hexoquinase , Peixe-Zebra , Humanos , Animais , Estereoisomerismo , Cromatografia Líquida , Hexoquinase/genética , Espectrometria de Massas em Tandem , Glicolipídeos
15.
Anal Chem ; 95(35): 13029-13035, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37611167

RESUMO

The unusual d-amino acids (d-AAs), as the counter enantiomer of usual l-amino acids (l-AAs), have evoked increasing attention because of their potential relevance with diseases. Accordingly, it is essential to establish sensitive and selective detection methods for d-AAs without the interferences from l-AAs. The surface-enhanced Raman scattering (SERS) technique is efficacious for the detection of molecules but routinely ineffective in enantiomeric differentiation. d-Proline (d-Pro) and d-alanine (d-Ala) are regarded as biomarkers of gastric cancer. Herein, Raman-active boronate modified SERS chips are constructed to develop a d-amino acid oxidase (DAAO)-mediated cascade reaction-based SERS enantioselective assay for d-Pro and d-Ala. The principle is that DAAO selectively catalyzes the deamination of d-Pro and d-Ala, and the produced H2O2 oxidizes boronate to present a new SERS peak at 883 cm-1 for quantitative analysis in a ratiometric way. A linear range from 20 to 400 µmol/L and a limit of detection down to 14.8 µmol/L are reached. In addition, interferences from l-AAs and many other possible species coexisting in biofluids with the detection of d-Pro and d-Ala are ignorable. Enzyme-mediated cascade reaction-based SERS chips are further utilized for saliva sample analysis, and the total levels of d-Pro and d-Ala in salivary samples from gastric cancer patients are much higher than those of healthy persons. This work provides a solution for SERS enantioselective analysis and noninvasive screening chiral biomolecules for disease diagnosis.


Assuntos
Antifibrinolíticos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Aminoácidos , Peróxido de Hidrogênio , Saliva , Análise Espectral Raman , Estereoisomerismo , Alanina , Prolina
16.
J Chromatogr A ; 1707: 464289, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37573727

RESUMO

In this study, the attention was focused on quizalofop-ethyl, a chiral herbicide whose formulation has recently been marketed as quizalofop-P-ethyl, i.e. the (+)-enantiomer exhibiting herbicidal activity. To verify the real enantiomeric purity of this product as well as to study its environmental fate, the enantioselective separation of the P- and M- enantiomers of quizalofop-ethyl was achieved on Lux Cellulose-2 column (3­chloro,4-methylphenilcarbamate cellulose) under isocratic conditions in polar organic mode. Once established that the commercial formulation contains ˜ 0.6% (enantiomeric fraction) of M as an impurity, an HPLC-MS/MS method was developed, validated and applied to the analysis of soil, carrots and turnips treated with the herbicide. A simple solid-liquid extraction allowed recoveries greater than 70%; limits of detections of P and M enantiomers were below 5 ng g-1. The analyses of the real samples showed a modification of the enantiomeric fraction of quizalofop-M-ethyl between the commercial formulation (EFM = 0.63 ± 0.03%) and the analysed matrices (EFM = 7.6 ± 0.1% for carrots; EFM = 0% for the other matrices). This outcome highlighted the occurrence of an enantioselective biotic dissipation, responsible for a greater persistency of the distomer in carrots. On the other hand, since screening analyses revealed the occurrence of residues of the metabolite quizalofop-acid with the same EFs as the ester precursor, it was concluded that the hydrolytic conversion was an abiotic process.


Assuntos
Herbicidas , Solo , Cromatografia Líquida de Alta Pressão/métodos , Solo/química , Espectrometria de Massas em Tandem/métodos , Estereoisomerismo , Herbicidas/análise
17.
J Org Chem ; 88(16): 11735-11747, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37525574

RESUMO

Borate esters have been applied widely as coupling partners in organic synthesis. However, the direct utilization of borate acceptors in O-glycosylation with glycal donors remains underexplored. Herein, we describe a novel O-glycosylation resulting in the formation of 2,3-unsaturated O-glycosides and 2-deoxy O-glycosides mediated by palladium and copper catalysis, respectively. This O-glycosylation method tolerated a broad scope of trialkyl/triaryl borates and various glycals with exclusive stereoselectivities in high yields. All the desired aliphatic/aromatic O-glycosides and 2-deoxy O-glycosides were generated successfully, without the hemiacetal byproducts and O→C rearrangement because of the nature of borate esters. The utility of this strategy was demonstrated by functionalizing the 2,3-unsaturated glycoside products to form saturated ß-O-glycosides, 2,3-deoxy O-glycosides, and 2,3-epoxy O-glycosides.


Assuntos
Boratos , Glicosídeos , Estereoisomerismo , Glicosilação , Ésteres , Catálise
18.
J Org Chem ; 88(16): 11905-11912, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37526991

RESUMO

2,2-Disubstituted-3-hydroxycyclopentanones are important chiral intermediates for natural products and pharmaceuticals. Through semirational engineering of a thermostable carbonyl reductase CBCR from Cupriavidus sp. BIS7, a mutant L91C/F93I was obtained. Mutant L91C/F93I showed 4- to 36-fold enhanced activities toward 2-methyl-2-benzyl-1,3-cyclopentanedione and its analogues, affording the (2R,3R)-stereoisomers with >99% ee and >99% de. Enzyme-substrate docking studies were performed to reveal the molecular basis for the activity and stereoselectivity improvements.


Assuntos
Oxirredutases do Álcool , Estereoisomerismo
19.
Environ Int ; 179: 108139, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37595535

RESUMO

Pydiflumetofen (PYD), a highly effective and broad-spectrum fungicide, is commonly employed for the control of fungal diseases. In this study, the uptake, translocation, and biotransformation of PYD by wheat (Triticum aestivum L.) were firstly investigated at a chiral level. The findings revealed that the residue concentration of R-PYD in wheat was higher than that of S-PYD, because of its higher uptake rate (k1 = 0.0421 h-1) and lower elimination rate (k2 = 0.0459 h-1). Additionally, R-PYD exhibited higher root bioconcentration factors and translocation factors compared with S-enantiomer, indicating R-PYD was more easily accumulating in roots and translocating to shoots. Furthermore, a total of 9 metabolites, including hydroxylated, demethylated, demethoxylated, dechlorinated, hydrolyzed, and glycosylated-conjugated products, were detected qualitatively in wheat roots or shoots. Symplastic pathway-mediated uptake, which predominantly relied on aquaporins and anion channels, was confirmed by root adsorption and inhibition experiments, without displaying any enantioselective effect. Molecular simulations demonstrated that R-PYD exhibited stronger binding affinity with TaLTP 1.1 with a lower grid score (-6.79 kcal/mol), whereas weaker interaction with the metabolic enzyme (CYP71C6v1) compared to the S-enantiomer. These findings highlight the significance of plant biomacromolecules in the enantioselective bioaccumulation and biotransformation processes. Importantly, a combination of experimental and theoretical evidence provide a comprehensive understanding of the fate of chiral pesticides in plants from an enantioselective perspective.


Assuntos
Triticum , Estereoisomerismo , Transporte Biológico , Biotransformação
20.
J Agric Food Chem ; 71(33): 12372-12389, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37565661

RESUMO

Unreasonable application of pesticides may result in residues in the environment and foods. Chiral pesticides consist of two or more enantiomers, which may exhibit different behaviors. This Review intends to provide progress on the enantioselective residues of chiral pesticides in foods. Among the main chiral analytical methods, high performance liquid chromatography (HPLC) is the most frequently utilized. Most chiral pesticides are utilized as racemates; however, due to enantioselective dissipation, bioaccumulation, biodegradation, and chiral conversion, enantiospecific residues have been found in the environment and foods. Some chiral pesticides exhibit strong enantioselectivity, highlighting the importance of evaluation on an enantiomeric level. However, the occurrence characteristics of chiral pesticides in foods and specific enzymes or transport proteins involved in enantioselectivity needs to be further investigated. This Review could help the production of some chiral pesticides to single-enantiomer formulations, thereby reducing pesticide consumption as well as increasing food production and finally reducing human health risks.


Assuntos
Praguicidas , Humanos , Praguicidas/química , Estereoisomerismo , Cromatografia Líquida de Alta Pressão , Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...