Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 494
Filtrar
1.
Sci Total Environ ; 746: 141244, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768787

RESUMO

Global climate change has exacerbated flooding in coastal areas affected by soil salinization. Ammonium (NH4+) is the predominant form of nitrogen in flooded soils, but the role played by NH4+ in the plant response to salt stress has not been fully clarified. We investigated the responses of Arabidopsis thaliana, Oryza sativa, and Nicotiana benthamiana plants fed with NH4+. All species were hypersensitive to NaCl stress and accumulated more Cl- and less Na+ than those fed with NO3-. Further investigation of A. thaliana indicated that salt hypersensitivity induced by the presence of NH4+ was abolished by removing the Cl- but was not affected by the removal of Na+, suggesting that excess accumulation of Cl- rather than Na+ is involved in NH4+-conferred salt hypersensitivity. The expression of nitrate transporter NRT1.1 protein was also up-regulated by NH4+ treatment, which increased root Cl- uptake due to the Cl- uptake activity of NRT1.1 and the absence of uptake competition from NO3-. Knockout of NRT1.1 in plants decreased their root Cl- uptake and retracted the NH4+-conferred salt hypersensitivity. Our findings revealed that NH4+-aggravated salt stress in plants is associated with Cl- over-accumulation through the up-regulation of NRT1.1-mediated Cl- uptake. These findings suggest the significant impact of Cl- toxicity in flooded coastal areas, an issue of ecological significance.


Assuntos
Compostos de Amônio , Nitratos/toxicidade , Nitrogênio , Raízes de Plantas , Estresse Salino
2.
DNA Cell Biol ; 39(10): 1850-1861, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32790504

RESUMO

Strigolactones (SLs) are the major plant hormones that play important roles in regulating organ development and environmental stress tolerance in plants. Even though the SL-related genes have been identified and well characterized in some plants, the information of SL-related genes in soybean is not fully established yet, especially in response to salt and alkaline stresses. In this study, we identified nine SL biosynthetic genes that include two D27, two CCD7, two CCD8, and three MAX1, as well as seven SL signaling genes that comprised two D14, two MAX2, and three D53 in the soybean genome. We found that SL biosynthetic and signaling genes are evolutionary conserved among different species. Syntenic analysis of these genes revealed their location on nine chromosomes as well as the presence of 10 pairs of duplication genes. Moreover, plant hormone and stress-responsive elements were identified in the promoter regions of SL biosynthetic and signaling genes. By using reverse transcription quantitative real-time PCR, we confirmed that SL genes have different tissue expressions in roots, stems, and leaves. The expression profile of SL biosynthetic and signaling genes under salt and alkaline stresses further confirmed the regulatory roles of SL biosynthetic and signaling genes under stress. In conclusion, we identified and provided valuable information on the soybean SL biosynthetic and signaling genes, and established a foundation for further functional analysis of soybean SL-related genes in response to salt and alkaline stresses.


Assuntos
Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Proteínas de Plantas/genética , Estresse Salino , Soja/genética , Cromossomos de Plantas/genética , Duplicação Gênica , Proteínas de Plantas/metabolismo , Transdução de Sinais , Soja/metabolismo , Sintenia
3.
Ecotoxicol Environ Saf ; 203: 110964, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32678754

RESUMO

Soil salinization is the most common abiotic stress limiting agricultural productivity worldwide. Recent research has suggested that the application of silicon (Si) has beneficial effects against salt stress in sorghum (Sorghum bicolor L. Moench) and sunflower (Helianthus annuus L.) by regulating the antioxidant system, mineral nutrients, and other important mechanisms. However, whether these effects can be achieved through foliar application of Si, or whether Si application affects Si-accumulating (e.g., sorghum), and intermediate-Si-accumulating (e.g., sunflower) plant species differently, remains unclear. This study investigated different methods of Si application in attenuating the detrimental effects of salt stress, based on the biological responses of two distinct species of Si accumulators, under greenhouse conditions. Two pot experiments were designed as a factorial (2 × 4), randomized complete blocks design (RCBD) with control and salt-stress groups (0 and 100 mmol.L-1 NaCl), and four Si-treatment groups: control (no Si), foliar application (28.6 mmol.L-1), root application (2 mmol.L-1), and combined foliar and root applications. Our results showed that the harmful effects of salt stress were attenuated by Si treatments in both plant species, which decreased Na+ uptake and lipid peroxidation, and increased Si and K+ uptake, relative leaf water content, antioxidant enzyme activities, leaf area, and shoot dry matter. These results were more prominent when Si was applied via nutrient solution in the sorghum plants, and the combined foliar and root applications of Si in sunflower plants. In addition, foliar application of Si alone is an efficient alternative in attenuating the effects of salinity in both plant species when Si is not available in the growth medium. These results suggest that the Si application method plays an important role in Na+ detoxification by modifying the antioxidative defense mechanism, which could actively mediate some important physiological and biochemical processes and helps to increase the shoot dry matter production in sorghum and sunflower plants under salt stress.


Assuntos
Antioxidantes/metabolismo , Helianthus/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Salino , Silício/farmacologia , Sorghum/efeitos dos fármacos , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Helianthus/metabolismo , Componentes Aéreos da Planta/efeitos dos fármacos , Componentes Aéreos da Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Distribuição Aleatória , Salinidade , Solo/química , Sorghum/metabolismo
4.
PLoS One ; 15(7): e0236424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32730292

RESUMO

Grapevines, although adapted to occasional drought or salt stress, are relatively sensitive to growth- and yield-limiting salinity stress. To understand the molecular mechanisms of salt tolerance and endoplasmic reticulum (ER) stress and identify genes commonly regulated by both stresses in grapevine, we investigated transcript profiles in leaves of the salt-tolerant grapevine rootstock 1616C under salt- and ER-stress. Among 1643 differentially expressed transcripts at 6 h post-treatment in leaves, 29 were unique to ER stress, 378 were unique to salt stress, and 16 were common to both stresses. At 24 h post-treatment, 243 transcripts were unique to ER stress, 1150 were unique to salt stress, and 168 were common to both stresses. GO term analysis identified genes in categories including 'oxidative stress', 'protein folding', 'transmembrane transport', 'protein phosphorylation', 'lipid transport', 'proteolysis', 'photosynthesis', and 'regulation of transcription'. The expression of genes encoding transporters, transcription factors, and proteins involved in hormone biosynthesis increased in response to both ER and salt stresses. KEGG pathway analysis of differentially expressed genes for both ER and salt stress were divided into four main categories including; carbohydrate metabolism, amino acid metabolism, signal transduction and lipid metabolism. Differential expression of several genes was confirmed by qRT-PCR analysis, which validated our microarray results. We identified transcripts for genes that might be involved in salt tolerance and also many genes differentially expressed under both ER and salt stresses. Our results could provide new insights into the mechanisms of salt tolerance and ER stress in plants and should be useful for genetic improvement of salt tolerance in grapevine.


Assuntos
Estresse do Retículo Endoplasmático/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/genética , Estresse Salino/genética , Vitis/genética , Metabolismo dos Carboidratos/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Análise de Sequência com Séries de Oligonucleotídeos , Osmose , Reguladores de Crescimento de Planta/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Estresse Salino/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Fatores de Transcrição/metabolismo , Tunicamicina/farmacologia
5.
Mar Environ Res ; 159: 104997, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32662433

RESUMO

The influence of changing salinity on community composition and functional activity (Bacterial Production (BP) and ectoenzyme activity) of major bacterial taxa was evaluated using microcosm experiments in a tropical monsoon influenced estuary. Natural bacterial inocula at different salinities, representing marine, brackish, and freshwater, were inter-transferred and elucidated their response with an emphasis on community composition and ß-Glucosidase (BGase) activity. The results revealed a significant decrease in the total bacterial count (TBC) and BP on the translocation of bacterial inocula to different salinity conditions in the case of freshwater bacteria. However, a significant increase in BGase activity coupled with shifts in the studied bacterial groups was evident in the case of marine as well as freshwater bacteria. Quantitative PCR (qPCR) revealed a shift in major bacterial taxa upon translocation to different waters, which was dependent on salinity and the source of inocula. Redundancy and qPCR analyses showed that members belonging to Gammaproteobacteria and Betaproteobacteria were higher, and possibly influenced BGase activity in marine and freshwater, respectively. Translocation of marine inocula to brackish and freshwater resulted in an emergence of Bacteroidetes, Actinobacteria, and Betaproteobacteria, respectively. Whereas, when freshwater inocula were translocated to marine or brackish water, Alphaproteobacteria and Gammaproteobacteria taxa emerged, and this was coupled with increased BGase activity. In contrast, brackish water bacteria showed a strong persistence in bacterial community composition when translocated to different salinities within this estuary. Such phylogenetic persistence or changes suggests species level shifts in specific bacterial taxa, and unravelling the same using different functional gene markers would ascertain their role in organic matter processing and is way forward.


Assuntos
Bactérias , Celulases , Estuários , Estresse Salino , Filogenia , Salinidade
6.
Bioresour Technol ; 315: 123833, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32683286

RESUMO

In this study, the cross-talk between gama-aminobutyric acid (GABA) and calcium ion (Ca2+) signalling in the regulation of lipid production and cell growth in microalgae under fulvic acid and salinity stress (FA-salinity treatment) was investigated. GABA enhanced the lipid content and lipid productivity rate considerably, which were 1.27 and 1.29 times higher than those of the control, respectively. The levels of biosynthetic gene transcription, GSH, Ca2+ and cellular GABA were promoted by GABA addition, but decreased the ROS levels. Furthermore, the application of Ca2+ also increased lipid synthesis by regulating ROS and GABA signalling and lipogenesis-related genes. These results indicated that cytosolic GABA and Ca2+ levels exert crucial cross-talk in the modulation of cell growth and lipid accumulation induced by FA-salinity treatment. Collectively, this study demonstrated the beneficial effects caused by induction of the combination of chemical compounds on lipid production and provided new insights into lipid synthesis in microalgae.


Assuntos
Cálcio , Microalgas , Aminobutiratos , Benzopiranos , Lipídeos , Lipogênese , Salinidade , Estresse Salino
7.
Phytochemistry ; 177: 112436, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32563719

RESUMO

The giant reed is a fast growing herbaceous non-food crop considered as eligible alternative energy source to reduce the usage of fossil fuels. Tolerance of this plant to abiotic stress has been demonstrated across a range of stressful conditions, thus allowing cultivation in marginal or poorly cultivated land in order not to compromise food security and to overcome land use controversies. In this work, we de novo sequenced, assembled and analyzed the A. donax low G34 ecotype leaf transcriptome (RNAseq analysis) subjected to severe long-term salt stress (256.67 mM NaCl corresponding to 32 dS m-1 electric conductibility). In order to shed light upon the response to high salinity of this non model plant, we analyzed clusters related to salt sensory and signaling transduction, transcription factors, hormone regulation, Reactive Oxygen Species (ROS) scavenging and osmolyte biosynthesis, all of them showing different regulation compared to untreated plants. The analysis of clusters related to ethylene biosynthesis and signaling indicated that gene transcription is modulated towards the minimization of ethylene negative effects upon plant growth. Certainly, the photosynthesis is strongly affected since genes involved in Rubisco biosynthesis and assembly are down-regulated. However, a shift towards C4 photosynthesis is likely to occur as gene regulation is aimed to activate the primary CO2 fixation to PEP (phosphoenolpyruvate). The analysis of "carbon metabolism" category revealed that G34 ecotype under salt stress induces the expression of glycolysis and Krebs cycle related genes, this being consistent with the hypothesis that some sort of salt avoidance might be occurred in A. donax G34 low ecotype. By comparing our results with findings obtained with other giant reed ecotype, we identified several differences in the response to salt that are in accordance with the possibility that heritable phenotypic differences among clones of A. donax might be accumulated especially in ecotypes originating from distant geographical areas, despite their asexual reproduction modality. Additionally, 26,838 simple sequence repeat (SSR) markers were identified and validated. This SSR dataset definitely expands the marker catalogue of A. donax facilitating the genotypic characterization of this species.


Assuntos
Ecótipo , Poaceae , Regulação da Expressão Gênica de Plantas , Fotossíntese , Folhas de Planta , Estresse Salino
8.
Phytochemistry ; 177: 112422, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32593901

RESUMO

Melatonin (Mel) and calcium (Ca2+) have a regulatory role in the induction of specialized metabolites production and defensive responses against stresses. Therefore, in this study, the effects of Mel and Ca2+ and the possible relationship between them in the increase of the production of phenolic compounds in Dracocephalum kotschyi Boiss. under both control and salinity stress conditions were investigated. The results showed that 75 mM NaCl reduced shoot dry biomass but elevated H2O2 content, electrolyte leakage (EL) level, total phenolic and flavonoid contents (TPC and TFC), and DPPH scavenging capacity. Salinity stress also upregulated gene expression of phenylalanine ammonia-lyase (PAL) and rosmarinic acid synthase (RAS), as well as the activities of PAL and tyrosine ammonia-lyase (TAL) enzymes. Pre-treatment of the plants with CaCl2 and Mel affected these attributes in a dose-dependent manner. Application of 5 mM Ca2+ and 100 µM Mel improved shoot dry biomass and reduced the level of EL and H2O2 content but enhanced TPC and TFC, DPPH scavenging capacity, PAL and TAL activities, PAL and RAS transcripts, and content of rosmarinic acid (RA), luteolin flavone (LF) and apigenin flavone (AF) under salinity stress. Pre-treatment of D. kotschyi with lanthanum chloride (LaCl3) as a plasma membrane channel blocker, ethylene glycol tetra-acetic acid (EGTA) as a Ca2+ chelator and trifluoperazine (TFP) as a calmodulin (CaM) antagonist, impaired Mel effects on the above attributes under salinity stress. In contrast, pre-treatment with p-chlorophenylalanine (p-CPA), as an inhibitor of Mel biosynthesis, did not impair the impacts of Ca2+ on the production of phenolic compounds in salt-exposed plants. These results suggested that the effect of Mel on the induction of phenolic compounds production requires the influx of extracellular Ca2+ into the cells and is dependent on Ca2+/CaM signaling.


Assuntos
Luteolina , Melatonina , Apigenina , Cálcio , Cinamatos , Depsídeos , Peróxido de Hidrogênio , Salinidade , Estresse Salino
9.
Environ Sci Pollut Res Int ; 27(29): 36939-36953, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32577958

RESUMO

This research with a factorial arrangement was undertaken to investigate physiological responses of ajowan plants to foliar treatment of salicylic acid (1 mM) and nano-Fe2O3 (3 mM) under various salinity levels (0, 4, 8, 12 dS m-1 NaCl, respectively). Rising salinity enhanced sodium and endogenous SA contents, soluble sugars, protein, glycine betaine, proline, antioxidant enzymes activities, ROS generation, and lipid peroxidation, while reduced potassium and iron contents, membrane stability index, leaf water content, leaf pigments, root and shoot biomasses, and seed yield. Application of particularly SA and SA+nano-Fe2O3 alleviated salt toxicity via enhancing K+ uptake, K+/Na+ ratio, Fe content, endogenous level of SA, the activities of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, and polyphenol oxidase), and most of the osmolytes. These changes were resulted in improving membrane stability index, leaf water content, leaf pigments, root and shoot growth, and finally seed yield of plants under moderate and severe salinities. Therefore, these treatments can additively enhance salt tolerance and physiological performance of ajowan through increasing antioxidant capacity, osmolytes, and photosynthetic pigments. Graphical Abstract .


Assuntos
Ammi , Carum , Nanopartículas , Antioxidantes , Compostos Férricos , Ácido Salicílico , Estresse Salino
10.
PLoS One ; 15(6): e0235415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598354

RESUMO

To better understand the mechanism of inherent salt resistance in Jerusalem artichoke (Helianthus tuberosus L.), physiological and metabolic responses of tubers at the initiation stage of sprouting under different salt stress levels were evaluated in the present study. As a result, 28 metabolites were identified using proton nuclear magnetic resonance (1H-NMR) spectroscopy. Jerusalem artichoke tubers showed minor changes in metabolic response under moderate salt stress when they had not yet sprouted, where metabolism was downregulated at the start of sprouting and then upregulated significantly after plants became autotrophic. However, mild and severe salt stress levels caused different metabolic response patterns. In addition, the accumulation of fructose and sucrose was enhanced by moderate salt stress, while glucose was highly consumed. Aspartate and asparagine showed accelerated accumulation in sprouting Jerusalem artichoke tubers that became autotrophic, suggesting the enhancement of photosynthesis by moderate salt stress.


Assuntos
Frutose/metabolismo , Glucose/metabolismo , Helianthus/metabolismo , Tubérculos/metabolismo , Estresse Salino , Sacarose/metabolismo , Helianthus/crescimento & desenvolvimento , Fotossíntese , Tubérculos/crescimento & desenvolvimento
11.
PLoS One ; 15(6): e0234085, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32497140

RESUMO

Late embryogenesis abundant (LEA) proteins are widely involved in many adverse conditions among plants. In this study, we isolated a LEA4 gene from alfalfa (Medicago sativa L.) termed MsLEA4-4 via a homology cloning strategy. MsLEA4-4 encodes 166 amino acids, and the structural analysis showed that the gene contained five repeating TAQAAKEKTQQ amino acid motifs. There were a large number of α-helix in MsLEA4-4, and belongs to hydrophilic amino acid. Subcellular localization analysis showed that MsLEA4-4 was localized in the nucleus. The MsLEA4-4 promoter consisted of G-box and A-box elements, abscisic acid-responsive elements (ABREs), photo regulation and photoperiodic-controlling cis-acting elements, and endosperm expression motifs. The MsLEA4-4 overexpressing in Arabidopsis conferred late-germination phenotypes. Resistance of the overexpressed plants to abiotic stress significantly outperformed the wild-type (WT) plants. Under salt stress and abscisic acid treatment, with more lateral roots and higher chlorophyll content, the overexpressed plants has a higher survival rate measured against WT. Compared to those in the WT plants, the levels of soluble sugar and the activity of various antioxidant enzymes were elevated in the overexpressed plants, whereas the levels of proline and malondialdehyde were significantly reduced. The expression levels of several genes such as ABF3, ABI5, NCED5, and NCED9 increased markedly in the overexpressed plants compared to the WT under osmotic stress.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Secas , Medicago sativa/genética , Estresse Oxidativo/genética , Proteínas de Plantas/genética , Estresse Salino/genética , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Sequência de Bases , Clonagem Molecular , Expressão Gênica , Germinação , Pressão Osmótica , Proteínas de Plantas/química , Regiões Promotoras Genéticas/genética
12.
Plant Mol Biol ; 103(4-5): 545-560, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32504260

RESUMO

KEY MESSAGE: OsGTγ-2, a trihelix transcription factor, is a positive regulator of rice responses to salt stress by regulating the expression of ion transporters. Salinity stress seriously restricts rice growth and yield. Trihelix transcription factors (GT factors) specifically bind to GT elements and play a diverse role in plant morphological development and responses to abiotic stresses. In our previous study, we found that the GT-1 element (GAAAAA) is a key element in the salinity-induced OsRAV2 promoter. Here, we identified a rice OsGTγ family member, OsGTγ-2, which directly interacted with the GT-1 element in the OsRAV2 promoter. OsGTγ-2 specifically targeted the nucleus, was mainly expressed in roots, sheathes, stems and seeds, and was induced by salinity, osmotic and oxidative stresses and abscisic acid (ABA). The seed germination rate, seedling growth and survival rate under salinity stress was improved in OsGTγ-2 overexpressing lines (PZmUbi::OsGTγ-2). In contrast, CRISPR/Cas9-mediated OsGTγ-2 knockout lines (osgtγ-2) showed salt-hypersensitive phenotypes. In response to salt stress, different Na+ and K+ acclamation patterns were observed in PZmUbi::OsGTγ-2 lines and osgtγ-2 plants were observed. The molecular mechanism of OsGTγ-2 in rice salt adaptation was also investigated. Several major genes responsible for ion transporting, such as the OsHKT2; 1, OsHKT1; 3 and OsNHX1 were transcriptionally regulated by OsGTγ-2. A subsequent yeast one-hybrid assay and EMSA indicated that OsGTγ-2 directly interacted with the promoters of OsHKT2; 1, OsNHX1 and OsHKT1; 3. Taken together, these results suggest that OsGTγ-2 is an important positive regulator involved in rice responses to salt stress and suggest a potential role for OsGTγ-2 in regulating salinity adaptation in rice.


Assuntos
Aclimatação/fisiologia , Proteínas de Ligação a DNA/metabolismo , Oryza/fisiologia , Estresse Salino/fisiologia , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Aclimatação/genética , Adaptação Fisiológica , Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Salinidade , Plântula/genética , Sementes/metabolismo , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Fisiológico/genética , Simportadores/metabolismo , Fatores de Transcrição/genética
13.
Arch Microbiol ; 202(9): 2419-2428, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32591911

RESUMO

For sustainable agriculture in saline soil, extensive exploitation of salt-tolerant plant growth-promoting (PGP) bacteria and other symbiotic bacteria is required. This study was carried out to evaluate the efficiency of native salt-tolerant rice rhizobacteria for plant growth promotion under salt stress. A total of 188 bacteria were screened for assessing salt-tolerant capacity and nine isolates tolerating 12% NaCl (w/v) concentration were selected. Biochemical and molecular identification revealed that the salt-tolerant bacteria belonged to Bacillus sp, Exiguobacterium sp, Enterobacter sp, Lysinibacillus sp, Stenotrophomonas sp, Microbacterium sp, and Achromobacter sp. The increase in NaCl concentration from 2 to 4% decreases the PGP activities such as IAA production, P solubilization, K solubilization, and nitrate reduction. The effects of inoculation of salt-tolerant bacteria on the growth and different physiological properties of rice (Oryza sativa) were studied. It was found that the salinity affected the root and shoot length of the control plants; however, bacterial inoculant were found to effectively promote the growth of paddy under salinity stress. Further, bacterial inoculants substantially enhanced total chlorophyll, proline, total phenol, and oxidative damage such as electrolyte leakage and membrane stability index under salt stress. This study suggests that salt-tolerant PGP bacteria may be used for cultivation of O. sativa in salinized agricultural lands.


Assuntos
Fenômenos Fisiológicos Bacterianos , Oryza/microbiologia , Estresse Salino , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Clorofila/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Salinidade , Plantas Tolerantes a Sal/microbiologia , Solo/química , Simbiose/fisiologia
14.
Ecotoxicol Environ Saf ; 201: 110775, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32535365

RESUMO

Due to the limitation of suitable water for crop production in the world, recycling water is among the most proper methods enhancing water efficiency and availability. One modern method, which is of economic, health, and environmental significance, and may improve water properties for plant use is water magnetization. Medicinal plants are of nutritional, economic and medical values and their growth decreases under salinity stresses. This research was hypothesized and conducted because there is not any data, to our knowledge, on the use of magnetized salty water affecting the growth and biochemical properties of peppermint (Mentha piperita L.). The experiment was a split plot design with three replicates. The main plots consisted of magnetic fields at control (M1), 100 mT (M2), 200 mT (M3), and 300 mT (M4), the sub-plots consisted of salinity treatments (NaCl) at control (S1), 4 dS/m (S2), 8 dS/m (S3), and 12 dS/m (S4), and the growth media including cocopeat (X1), palm (X2), cocopeat + perlite (V/V = 50, X3) and palm + perlite (V/V = 50, X4) were located in the sub-sub-plots. Different plant growth and biochemical properties including plant fresh and dry weight, plant menthol, menthone, chlorophyll and proline contents were determined. Analysis of variance indicated the significant effects of experimental treatments and their interactions on the growth and biochemistry of peppermint. Different magnetic fields significantly increased plant growth, and interestingly with increasing the salinity level the alleviating effects of magnetic field on salinity stress became more clear (significant interaction between salinity and magnetic field treatments). Cocopeat was the most efficient growth medium. At the third level of salinity (8 dS/m) just the two levels of 100 and 200 mT increased plant menthol concentration. Treatments M3S2X4 and M1S1X1 resulted in the highest (38%) and the least menthol percentage (13%), respectively. Treatments S2 and M2 and M3 significantly increased plant menthone concentration, especially in the growth media of X1 and X3. However, at the third level of salinity, M3 and M4 were the most effective treatments. The highest (25.8%) and the least (1.2%) concentrations of menthone were related to treatments M3S2X4 and M2S4X1, respectively. The results indicated that it is possible to alleviate the stress of salinity on peppermint growth and improve its biochemical (medicinal) properties using magnetized salty water, although proline concentration was not much affected by the magnetic field.


Assuntos
Mentha piperita/fisiologia , Estresse Salino , Produção Agrícola , Mentol , Desenvolvimento Vegetal/efeitos dos fármacos , Águas Salinas , Salinidade , Cloreto de Sódio/farmacologia , Água/farmacologia
15.
Ying Yong Sheng Tai Xue Bao ; 31(2): 508-514, 2020 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-32476344

RESUMO

The effects of root abscisic acid (ABA) signal on Na+ transport and photosystem 2 (PS2) in Jerusalem artichoke (Helianthus tuberosus) under salt stress (150 mmol·L-1 NaCl) were examined by applying ABA synthesis inhibitor sodium tungstate to roots. Sodium tungstate inhibited ABA synthesis in roots, reduced root Na+ efflux, and increased the efficiency of Na+ transport from roots to leaves under salt stress. Salt stress increased leaf Na+ content and did not affect leaf membrane lipid peroxidation, PS2 reaction center protein and PS2 maximum photochemical efficiency (Fv/Fm ). The inhibition on root ABA synthesis significantly increased leaf Na+ accumulation, aggravated leaf membrane lipid peroxidation, impaired PS2 reaction center protein, decreased Fv/Fm, and induced PS2 photoinhibition. In conclusion, root ABA signal was beneficial to reducing leaf Na+ accumulation and preventing PS2 oxidative damage by inducing root Na+ efflux and inhibiting Na+ transport to the aerial part in H. tuberosus under salt stress.


Assuntos
Ácido Abscísico , Helianthus , Complexo de Proteína do Fotossistema II , Folhas de Planta , Raízes de Plantas , Estresse Salino
16.
Ying Yong Sheng Tai Xue Bao ; 31(5): 1653-1659, 2020 May.
Artigo em Chinês | MEDLINE | ID: mdl-32530244

RESUMO

To understand the responsive mechanism of leaf photosynthesis of cotton to salinity stress, we investigated the effects of salt stress on leaf photosynthetic characteristics of cotton seedlings with the FvCB model under five levels of salt concentration, i.e., 0 (CK), 50, 100, 150 and 200 mmol·L-1. Results showed that, compared with CK, the salt concentrations of 50 and 100 mmol·L-1 increased the maximum carboxylation rate (Vc max) and the maximum electron transport rate (Jmax), while the salt concentrations of 150 and 200 mmol·L-1 significantly decreased Vc max and Jmax. The net photosynthetic rate (Pn), mesophyll conductance (gm) and dark respiration rate (Rd) gradually decreased with the increases of salt concentration. Compared with CK, the salt concentrations of 50 and 100 mmol·L-1 did not affect gm, but significantly decreased Pn and Rd. The salt concentrations of 150 and 200 mmol·L-1 significantly decreased Pn, gm and Rd, which were significantly different from the salt concentrations of 0, 50 and 100 mmol·L-1. Pn of cotton seedlings under different salt concentrations was simulated by the FvCB model. Compared with the results from the FvCB model without considering gm, the FvCB model with gm improved the determination coefficient between the simulated and measured values and decreased the mean absolute error. The salinity threshold of cotton seedlings ranged between 100 and 150 mmol·L-1. With the increases of salt concentration, the limiting factor of leaf photosynthesis changed from mesophyll conductance to impaired components of photosynthetic apparatus. The FvCB model combined gm could improve the accuracy of photosynthesis simulation.


Assuntos
Fotossíntese , Folhas de Planta , Transporte de Elétrons , Estresse Salino , Plântula
17.
Mycorrhiza ; 30(4): 475-489, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32519068

RESUMO

Cultivation of olive trees covers large coastal areas of land in Mediterranean regions, many of them characterized by low soil fertility and exposed to salinity and seasonal drought. In this frame, we developed mixed community inocula of arbuscular mycorrhizal fungi (AMF) derived from the extreme, seasonally arid environments of six Mediterranean sand dunes and evaluated their effects, in the form of community inocula, on rooted semi-woody olive tree cuttings (Olea europaea cv. Koroneiki). The plantlets were grown in the greenhouse for 10 months under 50 mM and 100 mM concentrations of NaCl, successively applied to induce osmotic stress. Inoculation had a positive effect on plant growth and nutrient uptake. However, the three best-performing inocula in early colonization and in plant growth enhancement also resulted in high plant sensitivity to high salinity, which was not observed for the other three inocula. This was expressed by decreased nutrient uptake and drastically lower plant growth, plant photosynthesis, and stomatal conductance (generally an over 50% reduction compared to no salinity application). Amplicon sequencing analysis of the olive plants under salinity stress showed that the AMF communities in the roots were clearly differentiated by inoculation treatment. We could not, however, consistently associate the plant responses observed under high salinity with specific shared AMF community membership or assembly attributes. The observed physiological overreaction to osmotic stress may be an adaptation trait, potentially brought about by host selection coupled to abiotic environmental filtering, in the harsh conditions from which the AMF inocula were derived. The overreaction may, however, be undesirable if conveyed to allochthonous plants at an agronomic level.


Assuntos
Micorrizas , Olea , Raízes de Plantas , Salinidade , Estresse Salino , Areia
18.
Gene ; 753: 144803, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32446917

RESUMO

R2R3-type MYBs are a key group of regulatory factors that control diverse developmental processes and stress tolerance in plants. Soybean is a major legume crop with the richness of seed protein and edible vegetable oil, and 244 R2R3-type MYBs have been identified in soybean. However, the knowledge regarding their functional roles has been greatly limited as yet. In this study, a novel R2R3-type MYB (GmMYB81) was functionally characterized in soybean, and it is closely related to two abiotic stress-associated regulators (AtMYB44 and AtMYB77). GmMYB81 transcripts not only differentially accumulated in soybean tissues and during embryo development, but also were significantly enhanced by drought, salt and cold stress. Histochemical GUS assay in Arabidopsis indicated that GmMYB81 promoter showed high activity in seedlings, rosette leaves, inflorescences, silique wall, mature anthers, roots, and germinating seeds. Further investigation indicated that over-expression of GmMYB81 in Arabidopsis caused auxin-associated phenotypes, including small flower and silique, more branch, and weakened apical dominance. Moreover, over-expression of GmMYB81 significantly elevated the rates of seed germination and green seedling under salt and drought stress, indicating that GmMYB81 might confer plant tolerance to salt and drought stress during seed germination. Additionally, protein interaction analysis showed that GmMYB81 interacts with the abiotic stress regulator GmSGF14l. Further observation indicated that they displayed similar expression patterns under drought and salt stress, suggesting GmMYB81 and GmSGF14l might cooperatively affect stress tolerance. These findings will facilitate future investigations of the regulatory mechanisms of GmMYB81 in response to plant stress tolerance, especially seed germination under abiotic stresses.


Assuntos
Proteínas de Arabidopsis/genética , Soja/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Fabaceae/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Germinação/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Salino/genética , Tolerância ao Sal/genética , Sementes/metabolismo , Fatores de Transcrição/metabolismo
19.
Gene ; 753: 144802, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32454178

RESUMO

Synchronous and timely regulation of multiple genes results in an effective defense response that decides the fate of the host when challenged with pathogens or unexpected changes in environmental conditions. One such gene, which is downregulated in response to multiple bacterial pathogens, is a putative nonspecific lipid transfer protein (nsLTP) of unknown function that we have named DISEASE RELATED NONSPECIFIC LIPID TRANSFER PROTEIN 1 (DRN1). We show that upon pathogen challenge, DRN1 is strongly downregulated, while a putative DRN1-targeting novel microRNA (miRNA) named DRN1 Regulating miRNA (DmiR) is reciprocally upregulated. Furthermore, we provide evidence that DRN1 is required for defense against bacterial and fungal pathogens as well as for normal seedling growth under salinity stress. Although nsLTP family members from different plant species are known to be a significant source of food allergens and are often associated with antimicrobial properties, our knowledge on the biological functions and regulation of this gene family is limited. Our current work not only sheds light on the mechanism of regulation but also helps in the functional characterization of DRN1, a putative nsLTP family member of hitherto unknown function.


Assuntos
Arabidopsis/genética , Proteínas de Transferência de Fosfolipídeos/genética , Estresse Salino/genética , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Resistência à Doença/genética , Secas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Transferência de Fosfolipídeos/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Patologia Vegetal , Plantas Geneticamente Modificadas , Salinidade , Tolerância ao Sal/genética , Plântula/genética , Estresse Fisiológico/genética
20.
Proc Biol Sci ; 287(1926): 20200062, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32370671

RESUMO

The stress-induced susceptibility hypothesis, which predicts chronic stress weakens immune defences, was proposed to explain increasing infectious disease-related mass mortality and population declines. Previous work characterized wetland salinization as a chronic stressor to larval amphibian populations. Thus, we combined field observations with experimental exposures quantifying epidemiological parameters to test the role of salinity stress in the occurrence of ranavirus-associated mass mortality events. Despite ubiquitous pathogen presence (94%), populations exposed to salt runoff had slightly more frequent ranavirus related mass mortality events, more lethal infections, and 117-times greater pathogen environmental DNA. Experimental exposure to chronic elevated salinity (0.8-1.6 g l-1 Cl-) reduced tolerance to infection, causing greater mortality at lower doses. We found a strong negative relationship between splenocyte proliferation and corticosterone in ranavirus-infected larvae at a moderate elevation of salinity, supporting glucocorticoid-medicated immunosuppression, but not at high salinity. Salinity alone reduced proliferation further at similar corticosterone levels and infection intensities. Finally, larvae raised in elevated salinity had 10 times more intense infections and shed five times as much virus with similar viral decay rates, suggesting increased transmission. Our findings illustrate how a small change in habitat quality leads to more lethal infections and potentially greater transmission efficiency, increasing the severity of ranavirus epidemics.


Assuntos
Anfíbios/virologia , Infecções por Vírus de DNA/veterinária , Ranavirus , Anfíbios/fisiologia , Animais , Corticosterona/metabolismo , Infecções por Vírus de DNA/epidemiologia , Epidemias , Estresse Salino/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA