RESUMO
Mexico has a wide variety of dry chilies used in Mexican food preparation because they are spicy, a property related to the bioactive compound named capsaicin. Apart from capsaicin, dry chilies have compounds such as phenolic compounds and tocopherols. Except for phenolic compounds, capsaicin and tocopherol have not been totally assessed to measure their release from the food matrix (bioaccessibility) after in vitro digestion. Therefore, this study is aimed at analyzing the bioaccessibility of phenolic compounds, tocopherols and capsaicinoids after in vitro digestion process of three dry chilies, namely, chiltepin, Colorado, and de Arbol, as well as the bioactive compounds associated with the indigestible fraction (IF). Results indicated that the bioaccessibility values of capsaicinoids were above 80% for all the three chili varieties without showing significant differences. Although these chilies showed high capsaicinoid bioaccessibility values, there were still compounds associated with the IF that could reach the colon and exhibit bioactivity. Regarding phenolic compounds, no differences in the bioaccessibility values were observed; however, there was a major concentration of flavonoids in the IF of the Colorado and de Arbol chilies, which could have a regulatory effect on the colonic microbiome. Regarding the bioaccessibility of α-tocopherol, there was a significant difference between de Arbol and the other two varieties (above 60%). The IF of Colorado chili was a source of α-tocopherol in the colon because it had the lowest bioaccessibility percentage. The overall results demonstrate that dry chilies are a source of bioactive compounds with bioaccessibility values favorable to human health.
Assuntos
Capsaicina , Capsicum , Digestão , Capsicum/química , Capsicum/metabolismo , Capsaicina/metabolismo , Capsaicina/análise , Fenóis/metabolismo , Fenóis/análise , Disponibilidade Biológica , Tocoferóis/metabolismo , Tocoferóis/análise , México , Extratos Vegetais/metabolismo , HumanosRESUMO
Phenolic compounds (PC) were analyzed by UHPLC-ESI-QTOF-MSE in two sorghum genotypes, harvested in two growing seasons (GS) at five distinct days after flowering (DAF) to evaluate how genotype/GS influences the PC synthesis and antioxidant capacity during grain growth. Total phenolic contents were strongly correlated with antioxidant capacity (r > 0.9, p < 0.05). Globally, 97 PC were annotated, including 20 PC found irrespective of the grain developmental stage and genotype/GS. The phenolic profile clearly differs between stages: phenolic acids were the most abundant class in early stages (50%), and flavonoid accumulation becomes predominant in late ones (3/5 of total ion abundance). Dimeric and trimeric tannins were identified even in 10DAF grains. Chemometry revealed great PC variability between genotypes (27%) and important biomarkers of GS differentiation (e.g., ferulic acid). This work can input open databases of PC and paves the way to understand biosynthetic pathways of PC in sorghum and future sorghum selection.
Assuntos
Antioxidantes , Metabolômica , Fenóis , Sorghum , Sorghum/metabolismo , Sorghum/crescimento & desenvolvimento , Sorghum/química , Sorghum/genética , Antioxidantes/metabolismo , Antioxidantes/química , Fenóis/metabolismo , Fenóis/química , Cromatografia Líquida de Alta Pressão , Sementes/crescimento & desenvolvimento , Sementes/química , Sementes/metabolismo , Sementes/genética , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Genótipo , Flavonoides/metabolismo , Flavonoides/químicaRESUMO
Polyphenolic compounds are common constituents of human and animal diets and undergo extensive metabolism by the gut microbiota before entering circulation. In order to compare the transformations of polyphenols from yerba mate, rosemary, and green tea extracts in the gastrointestinal tract, simulated gastrointestinal digestion coupled with colonic fermentation were used. For enhancing the comparative character of the investigation, colonic fermentation was performed with human, pig and rat intestinal microbiota. Chemical analysis was performed using a HPLC system coupled to a diode-array detector and mass spectrometer. Gastrointestinal digestion diminished the total amount of phenolics in the rosemary and green tea extracts by 27.5 and 59.2 %, respectively. These reductions occurred mainly at the expense of the major constituents of these extracts, namely rosmarinic acid (-45.7 %) and epigalocatechin gallate (-60.6 %). The yerba mate extract was practically not affected in terms of total phenolics, but several conversions and isomerizations occurred (e.g., 30 % of trans-3-O-caffeoylquinic acid was converted into the cis form). The polyphenolics of the yerba mate extract were also the least decomposed by the microbiota of all three species, especially in the case of the human one (-10.8 %). In contrast, the human microbiota transformed the polyphenolics of the rosemary and green extracts by 95.9 and 88.2 %, respectively. The yerba mate-extract had its contents in cis 3-O-caffeoylquinic acid diminished by 78 % by the human microbiota relative to the gastrointestinal digestion, but the content of 5-O-caffeoylquinic acid (also a chlorogenic acid), was increased by 22.2 %. The latter phenomenon did not occur with the rat and pig microbiota. The pronounced interspecies differences indicate the need for considerable caution when translating the results of experiments on the effects of polyphenolics performed in rats, or even pigs, to humans.
Assuntos
Colo , Depsídeos , Digestão , Fermentação , Ilex paraguariensis , Extratos Vegetais , Polifenóis , Ácido Rosmarínico , Rosmarinus , Animais , Humanos , Extratos Vegetais/metabolismo , Rosmarinus/química , Ratos , Ilex paraguariensis/química , Suínos , Depsídeos/metabolismo , Depsídeos/análise , Polifenóis/metabolismo , Polifenóis/análise , Colo/metabolismo , Colo/microbiologia , Masculino , Cinamatos/metabolismo , Cinamatos/análise , Microbioma Gastrointestinal , Chá/química , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Ácido Quínico/análise , Catequina/análogos & derivados , Catequina/metabolismo , Catequina/análise , Cromatografia Líquida de Alta Pressão , Camellia sinensis/químicaRESUMO
This study evaluated the effect of dielectric barrier discharge (DBD) and glow discharge (glow) cold plasma treatments in color, sugars, organic acids, phenolics (concentration and bioaccessibility), antioxidant activity, volatiles, and microbiota of edible mini-roses. Plasma treatments did not affect the flowers' color, while they increased organic acids and phenolics. Flowers treated with DBD had a higher concentration of most phenolics, including hesperidin (84.04 µg/g) related to antioxidant activity, and a higher mass fraction of most volatiles, including octanal (16.46% after 5 days of storage). Flowers treated with glow had a higher concentration of pelargonidin 3,5-diglucoside (392.73 µg/g), greater bioaccessibility of some phenolics and higher antioxidant activity. Plasma treatments reduced the microbiota diversity in mini-roses. Regardless of the plasma treatment, phylum Proteobacteria, family Erwiniaceae, and genus Rosenbergiella were the dominant groups. Results indicate plasma treatments as promising technologies to improve the quality and increase phenolic and specific volatile compounds in mini-roses.
Assuntos
Bactérias , Microbiota , Fenóis , Gases em Plasma , Compostos Orgânicos Voláteis , Fenóis/metabolismo , Fenóis/química , Gases em Plasma/farmacologia , Gases em Plasma/química , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Antioxidantes/metabolismo , Antioxidantes/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Flores/química , Flores/metabolismoRESUMO
BACKGROUND: This study evaluated for the first time the potential of orange passion fruit as a base for alcoholic and acetic fermentations, with a view to assessing its profile of organic acids and polyphenols, in vitro digestion, and biological activities. RESULTS: In terms of aliphatic organic acids, malic acid was the majority in the wine (3.19 g L-1), while in the vinegar, it was acetic acid (46.84 g L-1). 3,4-Dihydroxybenzoic acid (3,4-DHB) was the major phenolic compound in the wine and vinegar samples (3443.93 and 2980.00 µg L-1, respectively). After the in vitro gastrointestinal simulation stage, the wine showed high bioaccessibility for the compounds sinipaldehyde (82.97%) and 2,4-dihydroxybenzoic acid (2,4-DHBA, 81.27%), while the vinegar exhibited high bioaccessibility for sinipaldehyde (89.39%). Through multivariate analysis, it was observed that 3,4-DHB was highly concentrated in the different digested fractions obtained from the wine. In contrast, in the vinegar, the stability of isorahmenetin and Quercetin 3-o-rhamnoside was observed during the in vitro digestion simulation. Lastly, the vinegar stood out for its inhibition rates of α-amylase (23.93%), α-glucoside (18.34%), and angiotensin-converting enzyme (10.92%). In addition, the vinegar had an inhibitory effect on the pathogenic microorganisms Salmonella enteritidis, Escherichia coli, and Listeria monocytogenes. CONCLUSION: Orange passion fruit has proved to be a promising raw material for the development of fermented beverages. Therefore, this study provides an unprecedented perspective on the use and valorization of orange passion fruit, contributing significantly to the advancement of knowledge about fermented products and the associated nutritional and functional possibilities. © 2024 Society of Chemical Industry.
Assuntos
Ácido Acético , Digestão , Fermentação , Frutas , Passiflora , Fenóis , Vinho , Passiflora/química , Passiflora/metabolismo , Frutas/química , Frutas/metabolismo , Ácido Acético/metabolismo , Ácido Acético/química , Ácido Acético/análise , Fenóis/metabolismo , Fenóis/análise , Fenóis/química , Vinho/análise , Humanos , Escherichia coli/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Malatos/análise , Malatos/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Polifenóis/metabolismo , Polifenóis/análise , Polifenóis/químicaRESUMO
Cereal grains play an important role in human health as a source of macro- and micronutrients, besides phytochemicals. The metabolite diversity was investigated in cereal crops and their milling fractions by untargeted metabolomics ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) of 69 samples: 7 species (barley, oat, pearl millet, rye, sorghum, triticale, and wheat), 23 genotypes, and 4 milling fractions (husk, bran, flour, and wholegrain). Samples were also analyzed by in vitro antioxidant activity. UHPLC-MS/MS signals were processed using XCMS, and metabolite annotation was based on SIRIUS and GNPS libraries. Bran and husk showed the highest antioxidant capacity and phenolic content/diversity. The major metabolite classes were phenolic acids, flavonoids, fatty acyls, and organic acids. Sorghum, millet, barley, and oats showed distinct metabolite profiles, especially related to the bran fraction. Molecular networking and chemometrics provided a comprehensive insight into the metabolic profiling of cereal crops, unveiling the potential of coproducts and super cereals such as sorghum and millet as sources of polyphenols.
Assuntos
Antioxidantes , Grão Comestível , Espectrometria de Massas em Tandem , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise , Grão Comestível/química , Grão Comestível/metabolismo , Cromatografia Líquida de Alta Pressão , Sorghum/química , Sorghum/metabolismo , Avena/química , Avena/metabolismo , Avena/genética , Triticum/química , Triticum/metabolismo , Triticum/genética , Flavonoides/metabolismo , Flavonoides/análise , Flavonoides/química , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Milhetes/química , Milhetes/metabolismo , Milhetes/genética , Hordeum/química , Hordeum/metabolismo , Hordeum/genética , Sementes/química , Sementes/metabolismo , Metabolômica , Produtos Agrícolas/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/genéticaRESUMO
The health benefits of functional foods are associated with consumer interest and have supported the growth of the market for these types of foods, with emphasis on the development of new formulations based on plant extracts. Therefore, the present study aimed to characterize a symbiotic preparation based on water-soluble soy extract, supplemented with inulin and xylitol and fermented by Lactiplantibacillus plantarum ATCC 8014. Regarding nutritional issues, the symbiotic formulation can be considered a source of fiber (2 g/100 mL) and proteins (2.6 g/100 mL), and it also has a low-fat content and low caloric value. This formulation, in terms of microbiological aspects, remained adequate to legal standards after storage for 60 days under refrigeration and also presented an adequate quantity of the aforementioned probiotic strain, corresponding to 9.11 Log CFU.mL-1. These viable L. plantarum cells proved to be resistant to simulated human gastrointestinal tract conditions, reaching the intestine at high cell concentrations of 7.95 Log CFU.mL-1 after 60 days of refrigeration. Regarding sensory evaluation, the formulation showed good acceptance, presenting an average overall impression score of 6.98, 5.98, and 5.16, for control samples stored for 30 and 60 days under refrigeration, respectively. These results demonstrate that water-soluble soy extract is a suitable matrix for fermentation involving L. plantarum ATCC 8014, supporting and providing data on the first steps towards the development of a symbiotic functional food, targeting consumers who have restrictions regarding the consumption of products of animal origin, diabetics, and individuals under calorie restrictions.
Assuntos
Fermentação , Glycine max , Lactobacillus plantarum , Probióticos , Glycine max/microbiologia , Glycine max/química , Probióticos/metabolismo , Humanos , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Bebidas/microbiologia , Bebidas/análiseRESUMO
The present study describes the seasonal and circadian variations of the major compounds from Lippia alba leaves. SPSS was used to identify, quantify, and associate the variations in the secondary metabolites of this species through HPLC/DAD analysis of the leaves hydroethanolic extracts of six selected L. alba specimens. For the circadian study, the samples were collected at four different daily hours in each year's season. For the seasonal study, the samples were collected monthly from the same individuals for two consecutive years (2018 and 2019). These samples were analyzed and quantified using a validated HPLC method for flavonoids, iridoids, and phenyl ethanoid glycoside. Mussaenoside, acteoside, and tricin-7-O-diglucuronide showed a moderate positive correlation between their biosynthesis and the precipitation index, while epi-loganin had a moderate negative correlation. Acteoside showed a moderate positive correlation between the minimum registered temperature and its production. Compared with previous studies, a drastic reduction (about 95 %) in the production of tricin-7-O-diglucuronide compared with previous study and this difference could be attributed to the plant's aging. Thus, the data demonstrated that lower temperatures and high rainfall could favor the production of the major L. alba active compounds (acteoside and tricin-7-O-diglucuronide) and that older plants harm their production.
Assuntos
Lippia , Folhas de Planta , Estações do Ano , Folhas de Planta/química , Folhas de Planta/metabolismo , Lippia/química , Lippia/metabolismo , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Extratos Vegetais/metabolismoRESUMO
The comparative metabolic profiling and their biological properties of eight extracts obtained from diverse parts (leaves, flowers, roots) of the medicinal plant Flourensia fiebrigii S.F. Blake, a chemotype growing in highland areas (2750â m a.s.l.) of northwest Argentina, were investigated. The extracts were analysed by GC-MS and UHPLC-MS/MS. GC-MS analysis revealed the presence of encecalin (relative content: 24.86 %) in ethereal flower extract (EF) and this benzopyran (5.93 %) together sitosterol (11.35 %) in the bioactive ethereal leaf exudate (ELE). By UHPLC-MS/MS the main compounds identified in both samples were: limocitrin, (22.31 %), (2Z)-4,6-dihydroxy-2-[(4-hydroxy-3,5-dimethoxyphenyl)methylidene]-1-benzofuran-3-one (21.31 %), isobavachin (14.47 %), naringenin (13.50 %), and sternbin, (12.49 %). Phytocomplexes derived from aerial parts exhibited significant activity against biofilm production of Pseudomonas aeruginosa and Staphylococcus aureus, reaching inhibitions of 74.7-99.9 % with ELE (50â µg/mL). Notably, the extracts did not affect nutraceutical and environmental bacteria, suggesting a selective activity. ELE also showed the highest reactive species scavenging ability. This study provides valuable insights into the potential applications of this chemotype.
Assuntos
Asteraceae , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Cromatografia Líquida de Alta Pressão , Folhas de Planta/metabolismo , Asteraceae/metabolismoRESUMO
The encapsulation of propolis has shown promising results for the protection of bioactive compounds, local and gradual release and masking the astringent taste. Ovoalbumin is a protein of animal origin found in large amounts in egg whites, which has good properties as a wall material for particles.The objective of this study was to microencapsulate propolis by spray drying. The best condition for microencapsulation was achieved with 4% ovalbumin at 120 °C, where there was the greatest encapsulation efficiency (88.20%) and spherical shape. However, the increase of ovalbumin concentration resulted lower yields (< 52%). As for the scanning electron microscopy (SEM), the increase of ovalbumin concentration caused an increase of the size with average diameter and formation of spherical microcapsules. The phenolic compounds were already released in the gastric fluid condition (stomach).
Assuntos
Própole , Ovalbumina , Composição de Medicamentos/métodos , Extratos Vegetais/metabolismo , DigestãoRESUMO
Blighia sapida, commonly known as the ackee, is a member of the Sapindaceae family. The tree is native to the forests of West Africa and was brought to the Caribbean and later Florida, where it is cultivated as an orchard crop in some areas. Arilli of the fruit are processed to make canned ackee in brine whereas the seeds, raphe and pods are discarded. Physiochemical studies were conducted on extracts of the seed. Qualitative analysis detected the presence of phenolics and reducing sugars. Aqueous extracts of the seeds (ASE) exhibited free radical scavenging activity and had an inhibitory concentration of 2.59 mg/mL. Gas chromatography mass spectrometry led to the identification of several metabolites including amino acids and fatty acids. Hypoglycin B was isolated utilizing ion exchange chromatography. Fourier transform infrared spectroscopy of hypoglycin B detected a band resonating at 3070 cm-1 which may be attributed to the methylenecyclopropane moiety of hypoglycin B. The seeds had a lipid content of 5.72 ± 0.25 % (w/w). The ackee seed oil (ASO) had a saponification value of 152.07 ± 37 and a carotenoid content of 23.7 ± 1.8 mg/kg. The ackee seeds are a source of bioactive components.
Assuntos
Blighia , Hipoglicinas , Blighia/química , Hipoglicinas/química , Sementes/química , Frutas/química , Extratos Vegetais/metabolismoRESUMO
Endophytic fungi produce a range of known metabolites and several others, not yet explored, which present important biological activities from the pharmaceutical and industrial perspective. Several studies have reported the diversity of endophytes in Coffea arabica plants, although few have been described in organic cultures. In the current paper, we describe the chemical profile of specialized metabolites in the ethyl acetate phase in a strain of the endophytic fungus Colletotrichum siamense associated with coffee (Coffea arabica L.) (Rubiaceae) and its potential against tumor cells and bacteria of medical and food importance. Cytotoxicity assays in tumor cells MCF-7 and HepG2/C3A were performed by MTT and microdilution in broth to evaluate the antibacterial action of metabolic extract. The antiproliferative assay showed promising results after 24 h of treatment, with 50% injunction concentrations for the two cell types. UHPLC-MS/MS analyses with an electrospray ionization source were used to analyze the extracts and identify compounds of species Colletotrichum siamense, which is still little explored as a source of active metabolites. Many of these compounds observed in the endophytic need to be chemically synthesized in industry, at high costs, while production by the fungus becomes a chemically and economically more viable alternative. Pyrocatechol, gentisyl alcohol, and alpha-linolenic acid, associated with different mechanisms of action against tumor cells, were detected among the main compounds. The extract of the endophytic fungus Colletotrichum siamense presented several compounds with pharmacological potential and antibacterial activity, corroborating its potential in biotechnological applications.
Assuntos
Coffea , Colletotrichum , Coffea/microbiologia , Café/metabolismo , Espectrometria de Massas em Tandem , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , EndófitosRESUMO
The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.
Assuntos
Ansiolíticos , Coriandrum , Transtornos Mentais , Humanos , Coriandrum/química , Simulação de Acoplamento Molecular , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Transtornos Mentais/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismoRESUMO
BACKGROUND: Stroke is a leading cause of death and disability worldwide. A major factor in brain damage following ischemia is excitotoxicity caused by elevated levels of the neurotransmitter glutamate. In the brain, glutamate homeostasis is a primary function of astrocytes. Amburana cearensis has long been used in folk medicine and seed extract obtained with dichloromethane (EDAC) have previously been shown to exhibit cytoprotective activity in vitro. The aim of the present study was to analyse the activity of EDAC in hippocampal brain slices. METHODS: We prepared a dichloromethane extract (EDAC) from A. cearensis seeds and characterized the chemical constituents by 1H and 13C-NMR. Hippocampal slices from P6-8 or P90 Wistar rats were used for cell viability assay or glutamate uptake test. Hippocampal slices from P10-12 transgenic mice SOX10-EGFP and GFAP-EGFP and immunofluorescence for GS, GLAST and GLT1 were used to study oligodendrocytes and astrocytes. RESULTS: Astrocytes play a critical role in glutamate homeostasis and we provide immunohistochemical evidence that in excitotoxicity EDAC increased expression of glutamate transporters and glutamine synthetase, which is essential for detoxifying glutamate. Next, we directly examined astrocytes using transgenic mice in which glial fibrillary acidic protein (GFAP) drives expression of enhanced green fluorescence protein (EGFP) and show that glutamate excitotoxicity caused a decrease in GFAP-EGFP and that EDAC protected against this loss. This was examined further in the oxygen-glucose deprivation (OGD) model of ischemia, where EDAC caused an increase in astrocytic process branching, resulting in an increase in GFAP-EGFP. Using SOX10-EGFP reporter mice, we show that the acute response of oligodendrocytes to OGD in hippocampal slices is a marked loss of their processes and EDAC protected oligodendrocytes against this damage. CONCLUSION: This study provides evidence that EDAC is cytoprotective against ischemia and glutamate excitotoxicity by modulating astrocyte responses and stimulating their glutamate homeostatic mechanisms.
Assuntos
Astrócitos , Ácido Glutâmico , Ratos , Camundongos , Animais , Ácido Glutâmico/metabolismo , Ratos Wistar , Cloreto de Metileno/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Camundongos Transgênicos , Oxigênio/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Homeostase , Oligodendroglia/metabolismo , SementesRESUMO
OBJECTIVES: Alterations in cardiovascular and skeletal muscle function are hallmarks of ageing that lead to exercise intolerance. We aimed to examine whether the treatment with Euterpe oleracea Mart. seed extract (ASE) associated with exercise training improves aerobic exercise performance by promoting healthy ageing in the elderly. METHODS: Male Wistar rats were divided into five groups: Young (3 months), Old (18 months), Old+ASE (ASE 200 mg/kg/day), Old+Training (exercise training 30 min/day; 5 days/week) and Old+Training+ASE, for 4 weeks. KEY FINDINGS: ASE treatment increased the exercise time and the running distance concerning the initial maximal treadmill stress test (MTST) in the Old+Training+ASE group. Exercise training or ASE treatment restored the aorta oxidative damage and antioxidant defence. It reduced the acetylcholine (ACh)-induced vasodilation in the aorta of old animals to the same values as the young and improved hypertension. Only the association of both strategies restored the ACh-induced vasodilation in mesentery arteries. Remarkably, exercise training associated with ASE increased the antioxidant defence, nitrite levels and expression of the mitochondrial SIRT-1, PGC1α in soleus muscle homogenates. CONCLUSIONS: ASE treatment associated with exercise training contributes to better exercise performance and tolerance in ageing by improving vascular function, oxidative stress and activating the muscle SIRT-1/PGC-1α pathway.
Assuntos
Euterpe , Ratos , Masculino , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ratos Wistar , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Estresse Oxidativo , Músculo Esquelético , Desempenho Físico FuncionalRESUMO
Chili is one of the world's most widely used horticultural products. Many dishes around the world are prepared using this fruit. The chili belongs to the genus Capsicum and is part of the Solanaceae family. This fruit has essential biomolecules such as carbohydrates, dietary fiber, proteins, and lipids. In addition, chili has other compounds that may exert some biological activity (bioactivities). Recently, many studies have demonstrated the biological activity of phenolic compounds, carotenoids, and capsaicinoids in different varieties of chili. Among all these bioactive compounds, polyphenols are one of the most studied. The main bioactivities attributed to polyphenols are antioxidant, antimicrobial, antihyperglycemic, anti-inflammatory, and antihypertensive. This review describes the data from in vivo and in vitro bioactivities attributed to polyphenols and capsaicinoids of the different chili products. Such data help formulate functional foods or food ingredients.
Assuntos
Capsicum , Capsicum/metabolismo , Capsaicina/farmacologia , Capsaicina/metabolismo , Frutas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Fenóis/metabolismo , Polifenóis/farmacologia , Polifenóis/metabolismoRESUMO
BACKGROUND: Jaboticaba (Myrciaria trunciflora) belongs to the family Myrtaceae and is a fruit native to the Atlantic Forest of Brazil. The aim of this study was evaluate the activity of the extract of jaboticaba against different stresses in Caenorhabditis elegans. METHODS: Initially, the toxicological profile of the extract was analyzed, evaluating survival, reproduction, and longevity. After the tests of resistance to oxidative stress, thermal and against ultraviolet radiation were carried out. In order to discover a signaling pathway involved in this process the DAF-16 pathway was analyzed. RESULTS: It was found that the extract has no toxicity and is still able to prolong longevity in concentrations of 50 and 100â µg of GAE/mL. It was able to protect against damage from the juglone, temperature and UV radiation. This effect is mediated by the activation of the translocation of the DAF-16 factor to the cell nucleus and subsequent activation of defense pathways. CONCLUSIONS: Together, it is possible to verify that the extract of jaboticaba is important for the protection of the damages to which were daily exposed, in order to decrease the free radicals and consequently the damages that lead to aging and/or the appearance of diseases.
Assuntos
Proteínas de Caenorhabditis elegans , Myrtaceae , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Raios Ultravioleta , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Estresse Oxidativo , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismoRESUMO
Ischemic stroke is one of the principal causes of morbidity and mortality around the world. The pathophysiological mechanisms that lead to the formation of the stroke lesions range from the bioenergetic failure of the cells and the intense production of reactive oxygen species to neuroinflammation. The fruit of the açaí palm, Euterpe oleracea Mart. (EO), is consumed by traditional populations in the Brazilian Amazon region, and it is known to have antioxidant and anti-inflammatory properties. We evaluated whether the clarified extract of EO was capable of reducing the area of lesion and promoting neuronal survival following ischemic stroke in rats. Animals submitted to ischemic stroke and treated with EO extract presented a significant improvement in their neurological deficit from the ninth day onward. We also observed a reduction in the extent of the cerebral injury and the preservation of the neurons of the cortical layers. Taken together, our findings indicate that treatment with EO extract in the acute phase following a stroke can trigger signaling pathways that culminate in neuronal survival and promote the partial recovery of neurological scores. However, further detailed studies of the intracellular signaling pathways are needed to better understand the mechanisms involved.
Assuntos
Lesões Encefálicas , Euterpe , AVC Isquêmico , Ratos , Animais , Extratos Vegetais/metabolismo , Antioxidantes/metabolismo , FrutasRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Alternanthera brasiliana L. is a flowering plant belonging to the family Amaranthaceae and is popularly known as "penicillin". It is used in folk medicine to treat infections, coughs, wound healing, and inflammatory diseases. AIM OF THE STUDY: We investigated the effect of Alternanthera brasiliana L. leaves hydroalcoholic extract (AB) against oxidative stress, inflammation, and fibrotic changes in an experimental model of carbon tetrachloride (CCl4)-induced liver injury and fibrosis in mice. MATERIALS AND METHODS: Thirty-six male Balb/C mice were randomized into five groups: normal control, AB control, CCl4 control, CCl4 + AB-200 mg/kg, and CCl4 + AB-400 mg/kg. In mice, liver injury was induced by intraperitoneal injection of CCl4 (20% in corn oil, 5 ml/kg body weight) thrice a week for six consecutive weeks. AB extract at two doses (200 mg/kg and 400 mg/kg body weight) was administered orally for six consecutive weeks. Liver injury-related serum markers (ALT, AST, ALP), antioxidants (GSH, GST, SOD, and vitamin C), pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-18, ultrasonographic and histological alterations, proteins of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinase-1 (TIMP-1), nuclear factor-κB (p65) (NF-κB), nod-like receptor protein 3 (NLRP3), and TGF-ß/Smad signaling were accessed. LC-Q-TOF-MS/MS analysis of AB was performed. RESULTS: AB treatment significantly decreased the CCl4-induced rise in serum ALT, AST, and ALP activities and improved the histological alterations. Compared with the CCl4-treated group, treatment with AB significantly restored the hepatic antioxidants and reduced the pro-inflammatory cytokines in the liver. The antioxidant activity of AB may be attributed to its terpenoid constituents, which was confirmed by LC-Q-TOF-MS/MS analysis. The CCl4-induced rise in expression of MMP-2 and MMP-9 and decrease in TIMP-1 were markedly restored in the AB-treated groups. Further findings revealed a significant reduction in the protein levels of phospho-NF-κB (p65), NLRP3, TGF-ß, pSmad2/3, collagen I, and α-smooth muscle actin (α-SMA) in the AB treatment groups. CONCLUSIONS: The hepatoprotective effect of AB may be attributed to the high content of terpenoid compounds and alleviates liver injury and associated fibrotic changes through modulating MMPs, NF-κB (p65), and the TGF-ß/Smad axis.
Assuntos
Antioxidantes , Doença Hepática Crônica Induzida por Substâncias e Drogas , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Fator de Crescimento Transformador beta/metabolismo , NF-kappa B/metabolismo , Tetracloreto de Carbono/efeitos adversos , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espectrometria de Massas em Tandem , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Fígado , Cirrose Hepática/tratamento farmacológico , Citocinas/metabolismo , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/metabolismo , Peso CorporalRESUMO
In this study, we have demonstrated, for the first time, the muscular protective effects of Piranhea trifoliata bark extract against Paraquat (PQ)-induced oxidative stress in Drosophila melanogaster. Exposure of D. melanogaster (Canton Special) to PQ caused oxidative stress, as evidenced by protein carbonyl and elevated acetylcholinesterase (AChE) activity levels. However, a diet supplemented with the P. trifoliata extracts (0.1 mg/ml) for 10 days ameliorates protein carbonyl levels and enzymatic activities of AChE and citrate synthase to prevent PQ damage. Also, P. trifoliata bark extracts showed in phytochemical assays the presence of phenols, at 46.06 mg EAG/g extract of total phenolic compounds, and a 40% 2,2-diphenyl-1-picryl-hydrazyl scavenging effect. The study showed the muscular protective function of the P. trifoliata extracts in D. melanogaster exposed to PQ. On the basis of the results, we contemplate that the bark of P. trifoliata might prevent and ameliorate human diseases caused by oxidative stress. The muscular action of the P. trifoliata extract can be attributed to the antioxidant constituents, while the precise mechanism of its action needs further investigation.