Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.364
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Artigo em Inglês | LILACS | ID: biblio-1538056

RESUMO

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Assuntos
Folhas de Planta/química , Croton/química , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Estruturas Vegetais/metabolismo , Estruturas Vegetais/química , Folhas de Planta/metabolismo , Croton/metabolismo , Anti-Inflamatórios , Antioxidantes
2.
BMC Plant Biol ; 24(1): 683, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020306

RESUMO

Campanumoea javanica Bl. (CJ) traditionally used in Southwestern China, is now widely consumed as a health food across the nation. Due to its similar efficacy to Codonopsis Radix (CR) and their shared botanical family, CJ is often used as a substitute for CR. According to the Chinese Pharmacopoeia, Codonopsis pilosula var. modesta (Nannf.) L.T. Shen (CPM), Codonopsis pilosula (Franch.) Nannf. (CP), and Codonopsis tangshen Oliv. (CT) are the primary sources of CR. However, details on the differences in composition, effectiveness, and compositional between CJ and CR are still limited. Besides, there is little evidence to support the application of CJ as a drug. In this study, we employed widely targeted metabolomics, network pharmacology analysis, and molecular docking to explore the disparities in metabolite profiles between CJ and CR and to predict the pharmacological mechanisms of the dominant differential metabolites of CJ and their potential medicinal applications. The widely targeted metabolomics results indicated that 1,076, 1,102, 1,102, and 1,093 compounds, most phenolic acids, lipids, amino acids, and flavonoids, were characterized in CJ, CPM, CP, and CT, respectively. There were an average of 1061 shared compounds in CJ and CRs, with 95.07% similarity in metabolic profiles. Most of the metabolites in CJ were previously unreported. Twelve of the seventeen dominant metabolites found in CJ were directly associated with treating cancer and lactation, similar to the traditional medicinal efficacy. The molecular docking results showed that the dominant metabolites of CJ had good docking activity with the core targets PIK3R1, PIK3CA, ESR1, HSP90AA1, EGFR, and AKT1. This study provides a scientific basis for understanding the similarities and differences between CJ and CR at the metabolome level, offering a theoretical foundation for developing innovative medications from CJ. Additionally, it significantly enhances the metabolite databases for both CJ and CR.


Assuntos
Codonopsis , Metabolômica , Farmacologia em Rede , Codonopsis/química , Codonopsis/metabolismo , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Raízes de Plantas/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo
3.
J Agric Food Chem ; 72(29): 16298-16311, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38982710

RESUMO

From the fruits of Cordia dichotoma, 11 new phenolic compounds, dichotomins A-K, were isolated, together with 19 known compounds. Through the analysis of detailed NMR data and HRESIMS data, the planar structures of all compounds were confirmed. Using NMR calculations, the absolute configuration of dichotomins A-K was elucidated by comparing their observed and computed electronic circular dichroism (ECD) spectra. Dichotomin H (8) and dichotomin I (9) were determined as two pairs of enantiomers. The enantiomers of compounds 8 and 9 were separated using chiral-phase high-performance liquid chromatography (HPLC), and the stereostructure of each enantiomer was determined by similarly calculating the ECD. Compounds 3, 5, 7, 17, 18, 23-25, and 27-30 increased glucose uptake by 1.04- to 2.85-folds at concentrations of 30 µg/mL. Further studies revealed that compounds 3 and 5 had a moderate effect on glucose transporter 4 (GLUT4) translocation activity in L6 cells. At 30 µg/mL, compound 3 significantly enhanced AMPK phosphorylation and GLUT4 expression. As a whole, compound 3 has the potential to be a drug candidate for the treatment of type 2 diabetes mellitus (T2DM).


Assuntos
Frutas , Transportador de Glucose Tipo 4 , Glucose , Fenóis , Extratos Vegetais , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Frutas/química , Glucose/metabolismo , Fenóis/química , Fenóis/farmacologia , Fenóis/metabolismo , Animais , Ratos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Transporte Biológico/efeitos dos fármacos , Estrutura Molecular , Linhagem Celular , Transporte Proteico , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/química
4.
Arch Microbiol ; 206(8): 359, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033087

RESUMO

In this experiment, the eutrophication system was established by adding sucrose and yeast powder, and the pH and dissolved oxygen were measured in a bioreactor in real time to study the effect of aerobic environment on the fermentation process of Polygonati Rhizoma extract by Lactiplantibacillus plantarum. To further analyze metabolic changes, UPLC-Q-Exactive MS was used for metabolomic analysis and metabolic profiling. Multivariate analysis was performed using principal component analysis and Orthogonal projections to latent structures discriminant analysis. Finally, 313 differential metabolites were selected, 196 of which were annotated through database matching. After fermentation, the content of short-chain fatty acids, lactic acid, and their derivatives increased significantly, and there were 13 kinds and 4 kinds, respectively. Both compounds and their derivatives are beneficial to the intestinal flora. Consequently, incorporating L. plantarum into the aerobic fermentation process of Polygonati Rhizoma extract within the eutrophic system is potentially advantageous in enhancing the impact of its fermentation solution on the gut microbiota and its effects on human health. Our findings for this kind of edible and medicinal material research and development offer useful insights.


Assuntos
Fermentação , Lactobacillus plantarum , Polygonatum , Rizoma , Polygonatum/química , Polygonatum/metabolismo , Rizoma/química , Lactobacillus plantarum/metabolismo , Eutrofização , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Ácido Láctico/metabolismo , Ácidos Graxos Voláteis/metabolismo , Reatores Biológicos/microbiologia , Microbioma Gastrointestinal , Metabolômica
5.
J Agric Food Chem ; 72(23): 13240-13249, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38825967

RESUMO

Acrolein (ACR), methylglyoxal (MGO), and glyoxal (GO) are a class of reactive carbonyl species (RCS), which play a crucial role in the pathogenesis of chronic and age-related diseases. Here, we explored a new RCS inhibitor (theanine, THE) and investigated its capture capacity on RCS in vivo by human experiments. After proving that theanine could efficiently capture ACR instead of MGO/GO by forming adducts under simulated physiological conditions, we further detected the ACR/MGO/GO adducts of theanine in the human urine samples after consumption of theanine capsules (200 and 400 mg) or green tea (4 cups, containing 200 mg of theanine) by using ultraperformance liquid chromatography-time-of-flight-high-resolution mass spectrometry. Quantitative assays revealed that THE-ACR, THE-2ACR-1, THE-MGO, and THE-GO were formed in a dose-dependent manner in the theanine capsule groups; the maximum value of the adducts of theanine was also tested. Furthermore, besides the RCS adducts of theanine, the RCS adducts of catechins could also be detected in the drinking tea group. Whereas, metabolite profile analysis showed that theanine could better capture RCS produced in the renal metabolic pathway than catechins. Our findings indicated that theanine could reduce RCS in the body in two ways: as a pure component or contained in tea leaves.


Assuntos
Glutamatos , Glioxal , Aldeído Pirúvico , Chá , Humanos , Chá/química , Glutamatos/metabolismo , Glutamatos/análise , Masculino , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/química , Glioxal/metabolismo , Glioxal/química , Adulto , Acroleína/metabolismo , Acroleína/química , Cápsulas/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Feminino , Adulto Jovem , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/administração & dosagem , Cromatografia Líquida de Alta Pressão
6.
Food Chem ; 456: 139979, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38852441

RESUMO

Pulsed light (PL) is a prospective non-thermal technology that can improve the degradation of ginkgolic acid (GA) and retain the main bioactive compounds in Ginkgo biloba leaves (GBL). However, only using PL hasn't yet achieved the ideal effect of reducing GA. Fermentation of GBL to make ginkgo dark tea (GDT) could decrease GA. Because different microbial strains are used for fermentation, their metabolites and product quality might differ. However, there is no research on the combinative effect of PL irradiation fixation and microbial strain fermentation on main bioactive compounds and sensory assessment of GDT. In this research, first, Bacillus subtilis and Saccharomyces cerevisiae were selected as fermentation strains that can reduce GA from the five microbial strains. Next, the fresh GBL was irradiated by PL for 200 s (fluences of 0.52 J/cm2), followed by B. subtilis, S. cerevisiae, or natural fermentation to make GDT. The results showed that compared with the control (unirradiated and unfermented GBL) and the only PL irradiated GBL, the GA in GDT using PL + B. subtilis fermentation was the lowest, decreasing by 29.74%; PL + natural fermentation reduced by 24.53%. The total flavonoid content increased by 14.64% in GDT using PL + B. subtilis fermentation, whose phenolic and antioxidant levels also increased significantly. Sensory evaluation showed that the color, aroma, and taste of the tea infusion of PL + B. subtilis fermentation had the highest scores. In conclusion, the combined PL irradiation and solid-state fermentation using B. subtilis can effectively reduce GA and increase the main bioactive compounds, thus providing a new technological approach for GDT with lower GA.


Assuntos
Bacillus subtilis , Fermentação , Flavonoides , Ginkgo biloba , Ginkgolídeos , Saccharomyces cerevisiae , Salicilatos , Paladar , Ginkgo biloba/química , Ginkgo biloba/metabolismo , Ginkgo biloba/microbiologia , Salicilatos/metabolismo , Salicilatos/análise , Saccharomyces cerevisiae/metabolismo , Bacillus subtilis/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Humanos , Ginkgolídeos/metabolismo , Ginkgolídeos/análise , Luz , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Irradiação de Alimentos
7.
Food Chem ; 456: 139933, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38852462

RESUMO

Neglected and underutilised plants such as Pseudocydonia sinensis (Chinese quince) have garnered global interest as invaluable sources of natural bioactive compounds. Herein, a wide-targeted metabolomics-based approach revealed 1199 concurrent metabolites, with further analysis of their fluctuations across with the five stages of fruit growth. The bioactive compounds in Chinese quince primarily comprised sugars and organic acids, flavonoids, and terpenoids. Moreover, 395 metabolites were identified as having medicinal properties and rutin was the most content of them. Transcriptome analysis further provided a molecular basis for the metabolic changes observed during fruit development. By thoroughly analysing metabolite and transcriptome data, we revealed changes in bioactive compounds and related genes throughout fruit development. This study has yielded valuable insights into the ripening process of Chinese quince fruit, presenting substantial implications for industrial applications, particularly in quality control.


Assuntos
Frutas , Metabolômica , Frutas/crescimento & desenvolvimento , Frutas/química , Frutas/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Transcriptoma , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/química
8.
Food Chem ; 456: 140006, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870814

RESUMO

Crocus sativus L. is a perennial crop for its valuable active compounds. Plant-associated microbes impact on the quality and efficacy of medicinal herbs by promoting bioactive components accumulation. However, how microbes influence the accumulation of bioactive components in saffron have not been well studied. Here, the microbiome in C. sativus derived from 3 core production areas were deciphered by 16S rDNA sequencing and the relationship between endophytes and bioactive ingredients were further investigated. The main results are as follows: (1) Both Comamonadaceae and Burkholderiaceae were positively correlated with the content of bioactive components in the stigmas. (2) The synthesis of crocin was positively correlated with Xanthomonadaceae, negatively correlated with Lachnospiraceae and Prevotellaceae. Therefore, further investigation is required to determine whether Xanthomonadaceae plays an unknown function in the synthesis of crocin. These findings provide guidelines for disentangling the function of endophytes in the production of bioactive ingredients and thus for microbe-mediated breeding.


Assuntos
Bactérias , Carotenoides , Crocus , Endófitos , Microbiota , Crocus/química , Crocus/microbiologia , Crocus/metabolismo , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Endófitos/metabolismo , Endófitos/genética , Endófitos/química , Endófitos/isolamento & purificação , Carotenoides/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
9.
Food Res Int ; 188: 114326, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823825

RESUMO

Tormentilla erecta (L.) Raeusch is a widespread plant in Europe and Western Asia. Its rhizomes (Tormentilae rhizoma) are the main ingredient of herbal alcoholic beverages and can be used as a natural preservative in beer production. Apart from its unique taste qualities, therapeutic properties in gastrointestinal tract ailments are attributed to the tincture obtained from Tormentillae rhizoma. The presented research aimed to determine the mutual relationship between the components of Tormentillae tincture, present in popular alcoholic beverages, and intestinal epithelium (Caco-2 cell monolayers). A comprehensive qualitative and quantitative analysis of the tincture was performed, including the determination of condensed and hydrolyzable tannins as well as triterpenoids (UHPLC-DAD-MS/MS). Incubation of the tincture with Caco-2 monolayers has shown that only triterpenes pass through the monolayer, while condensed tannins are mainly bound to the monolayer surface. Ellagic acid derivatives were the only components of the Tormentillae tinctura being metabolized by cell monolayers to the compounds not previously described in the literature, which may be crucial in the treatment of intestinal diseases with inflammatory background.


Assuntos
Mucosa Intestinal , Rizoma , Humanos , Células CACO-2 , Rizoma/química , Mucosa Intestinal/metabolismo , Triterpenos/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem , Transporte Biológico , Cromatografia Líquida de Alta Pressão , Bebidas Alcoólicas/análise , Proantocianidinas/metabolismo , Taninos Hidrolisáveis/metabolismo , Ácido Elágico/metabolismo
10.
J Agric Food Chem ; 72(23): 12975-12987, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38807047

RESUMO

This study discovered the impact of high-tunnel (i.e., unheated greenhouse) and open-field production on two industrial hemp cultivars (SB1 and CJ2) over their yield parameters, cannabinoid development, and volatile profiles. Development of neutral cannabinoids (CBD, THC, and CBC), acidic cannabinoids (CBDA, THCA, and CBCA), and total cannabinoids during floral maturation were investigated. The volatile profiles of hemp flowers were holistically compared via HS-SPME-GC/MS. Findings indicated a high tunnel as an efficient practice for achieving greater total weight, stem number, and caliper, especially in the SB1 cultivar. Harvesting high-tunnel-grown SB1 cultivars during early flower maturation could obtain a high CBD yield while complying with THC regulations. Considering the volatile profiles, hemp flowers mainly consisted of mono- and sesquiterpenoids, as well as oxygenated mono- and sesquiterpenoids. Volatile analysis revealed the substantial impact of cultivars on the volatile profile compared to the production systems.


Assuntos
Canabinoides , Cannabis , Cromatografia Gasosa-Espectrometria de Massas , Inflorescência , Compostos Orgânicos Voláteis , Cannabis/química , Cannabis/crescimento & desenvolvimento , Cannabis/metabolismo , Canabinoides/análise , Canabinoides/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Inflorescência/química , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Flores/química , Flores/crescimento & desenvolvimento , Flores/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159505, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729236

RESUMO

Tylophora indica (Burm f.) Merrill, belong to family Asclepiadaceae, is considered to be a natural remedy with high medicinal benefits. The objective of this work is to assess the metabolomic profile of T. indica leaves enriched in alkaloids, as well as to evaluate the in vitro cytotoxicity of these leaves using the MTT assay on human breast MCF-7 and liver HepG2 cancer cell lines. Dried leaves of T. indica were extracted by sonication, using methanol containing 2 % (v/v) of acetic acid and obtained fraction was characterized by HPTLC and UPLC-MS. The UPLC-MS study yielded a preliminary identification of 32 metabolites, with tylophorine, tylophorine B, tylophorinine, and tylophorinidine being the predominant metabolites. The cytotoxicity of the extract of T. indica was evaluated on HepG2 and MCF-7 cell lines, yielding inhibitory concentration (IC50) values of 75.71 µg/mL and 69.60 µg/mL, respectively. Data suggested that the phytochemical screening clearly showed presence of numerous secondary metabolites with moderate cytotoxic efficacy. In conclusion, the future prospects of T. indica appear promising for the advancement of phytopharmaceutical-based anticancer medications, as well as for the design of contemporary pharmaceuticals in the field of cancer chemotherapy.


Assuntos
Alcaloides , Metabolômica , Extratos Vegetais , Folhas de Planta , Tylophora , Humanos , Folhas de Planta/metabolismo , Folhas de Planta/química , Alcaloides/metabolismo , Alcaloides/farmacologia , Alcaloides/química , Células Hep G2 , Metabolômica/métodos , Células MCF-7 , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Tylophora/metabolismo , Tylophora/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo
12.
Metabolomics ; 20(3): 62, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796627

RESUMO

INTRODUCTION: The chemical classification of Cannabis is typically confined to the cannabinoid content, whilst Cannabis encompasses diverse chemical classes that vary in abundance among all its varieties. Hence, neglecting other chemical classes within Cannabis strains results in a restricted and biased comprehension of elements that may contribute to chemical intricacy and the resultant medicinal qualities of the plant. OBJECTIVES: Thus, herein, we report a computational metabolomics study to elucidate the Cannabis metabolic map beyond the cannabinoids. METHODS: Mass spectrometry-based computational tools were used to mine and evaluate the methanolic leaf and flower extracts of two Cannabis cultivars: Amnesia haze (AMNH) and Royal dutch cheese (RDC). RESULTS: The results revealed the presence of different chemical compound classes including cannabinoids, but extending it to flavonoids and phospholipids at varying distributions across the cultivar plant tissues, where the phenylpropnoid superclass was more abundant in the leaves than in the flowers. Therefore, the two cultivars were differentiated based on the overall chemical content of their plant tissues where AMNH was observed to be more dominant in the flavonoid content while RDC was more dominant in the lipid-like molecules. Additionally, in silico molecular docking studies in combination with biological assay studies indicated the potentially differing anti-cancer properties of the two cultivars resulting from the elucidated chemical profiles. CONCLUSION: These findings highlight distinctive chemical profiles beyond cannabinoids in Cannabis strains. This novel mapping of the metabolomic landscape of Cannabis provides actionable insights into plant biochemistry and justifies selecting certain varieties for medicinal use.


Assuntos
Cannabis , Metabolômica , Folhas de Planta , Cannabis/química , Cannabis/metabolismo , Metabolômica/métodos , Folhas de Planta/metabolismo , Folhas de Planta/química , Flores/metabolismo , Flores/química , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Canabinoides/metabolismo , Canabinoides/análise , Simulação de Acoplamento Molecular , Flavonoides/metabolismo , Flavonoides/análise , Espectrometria de Massas/métodos
13.
Food Chem ; 452: 139574, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733683

RESUMO

Barley leaves (BLs) naturally contained abundant phenolics, most of which are hardly completely released from food matrix during gastrointestinal digestion. Superfine grinding (SFG) and high hydrostatic pressure (HHP) are generally used to treat the functional plants due to their effectiveness to cell wall-breaking and improvement of nutraceutical bioavailability. Thus, this study investigated the synergistic effects of SFG and HHP (100, 300, 500 MPa/20 min) on the bioaccessbility of typical phenolics in BLs during the simulated in-vitro digestion. The results demonstrated that the highest bioaccessbility (40.98%) was found in the ultrafine sample with HHP at 500 MPa. CLSM and SEM confirmed SFG led to microstructurally rapture of BLs. Moreover, the recovery index of ABTS radical scavenging activity and FRAP of HHP-treated ultrafine and fine BLs samples maximumly increased by 53.62% and 9.61%, respectively. This study is expecting to provide the theoretical basis to improve the consumer acceptance of BLs.


Assuntos
Antioxidantes , Digestão , Hordeum , Pressão Hidrostática , Folhas de Planta , Polifenóis , Hordeum/química , Hordeum/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Manipulação de Alimentos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Humanos
14.
Food Chem ; 452: 139355, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733679

RESUMO

Differently colored foxtail millet (Setaria italica) cultivars were compared regarding their amylose, B-complex vitamin, vitamin E, and phenolic compositions, as well as the bioaccessibility of their phenolics in simulated in vitro digestion. Dark-colored foxtail millets contained more thiamine, pyridoxine, and tocopherols, but less riboflavin, than light-colored ones. Phenolics were more abundant in dark-colored cultivars. Insoluble bound fractions accounted for 75%-83% of the total phenolics, with ferulic acid detected as the most plentiful compound. The major bioaccessible phenolic was free ferulic acid, with 100%-120% bioaccessibility, depending on cultivar, followed by p-coumaric acid and isoferulic acid (50%-80%). These relatively high bioaccessibilities were likely due to the release of soluble conjugated or insoluble bound phenolics during digestion. However, the contents of other free phenolics were largely decreased following in vitro digestion, resulting in low bioaccessibility, which also means that the release from the conjugated and bound fractions was poor.


Assuntos
Digestão , Fenóis , Setaria (Planta) , Fenóis/metabolismo , Fenóis/química , Fenóis/análise , Setaria (Planta)/química , Setaria (Planta)/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Disponibilidade Biológica , Modelos Biológicos
15.
Food Chem ; 452: 139552, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38733684

RESUMO

This study explores the impact of processing techniques on the bioactive composition and antioxidant properties of Bambusa nutans shoots, an underutilized superfood. Boiling resulted in a significant reduction of total phenols (39.52%), flavonoid (8.07%), and tannin (27.77%). Conversely, fermentation increased total phenols (25.92%), tannin (34.72%), and phytosterol (75.39%). Antioxidant activities were notably higher in fermented-shoots, as indicated by DPPH and FRAP assays, and in-vivo experiments demonstrated increased GSH (31.85%) and decreased LPO levels (11.12%) post-administration of fermented-shoots extract. Spectral analysis revealed an increased diversity of compounds in fermented shoots, with GC/MS identifying hexadecane-1-ol in significantly higher proportions and 11 characteristic bands in FTIR spectra. HPLC analysis demonstrated changes in phenolic acids and flavonoid content, with fermentation enhancing 3,4,5-trihydroxybenzoic acid, 4'-hydroxycinnamic acid, benzene-1,2-diol, and luteolin contents. This study underscores the dynamic nature of B. nutans shoots, highlighting the potential for enhanced bioactivity and antioxidant properties through fermentation, offering promising avenues for culinary and pharmaceutical developments.


Assuntos
Antioxidantes , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais , Brotos de Planta , Antioxidantes/química , Antioxidantes/análise , Antioxidantes/metabolismo , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Flavonoides/análise , Flavonoides/química , Flavonoides/metabolismo , Fenóis/metabolismo , Fenóis/análise , Fenóis/química , Fermentação , Animais
16.
Food Chem ; 452: 139584, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38735110

RESUMO

Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.


Assuntos
Frutas , Metabolômica , Rosa , Paladar , Rosa/química , Rosa/metabolismo , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/metabolismo , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/análise , Espectrometria de Massas em Tandem , Flavonoides/análise , Flavonoides/metabolismo , Humanos , Hidroxibenzoatos/análise , Hidroxibenzoatos/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo
17.
Food Chem ; 452: 139606, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744127

RESUMO

In this study, two pectic polysaccharides (PFP-T and PFP-UM) were extracted from fresh passion fruit peels using three-phase partitioning (TPP) and sequential ultrasound-microwave-assisted TPP methods, respectively, and their effects on the in vitro gastrointestinal digestion and fecal fermentation characteristics were examined. The results indicate that gastrointestinal digestion has a minimal effect on the physicochemical and structural characteristics of PFP-T and PFP-UM. However, during in vitro fecal fermentation, both undigested PFP-T and PFP-UM are significantly degraded and utilized by intestinal microorganisms, showing increased the total relative abundance of Firmicutes and Bacteroidota in the intestinal flora. Notably, compared with PFP-UM, PFP-T better promoted the reproduction of beneficial bacteria such as Prevotella, Megasphaera and Dialister, while suppressed the growth of harmful genera including Escherichia-Shigella, producing higher content of short-chain fatty acids. Therefore, our findings suggest that PFP-T derived from passion fruit peel has potential as a dietary supplement for promoting intestinal health.


Assuntos
Bactérias , Digestão , Fermentação , Frutas , Passiflora , Passiflora/química , Passiflora/metabolismo , Frutas/química , Frutas/metabolismo , Bactérias/metabolismo , Humanos , Polissacarídeos/metabolismo , Polissacarídeos/química , Pectinas/metabolismo , Pectinas/química , Fezes/microbiologia , Fezes/química , Microbioma Gastrointestinal , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Modelos Biológicos
18.
Food Chem ; 453: 139628, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38761731

RESUMO

Umami taste is a key criteria of green tea quality evaluation. The aim of this study was to comprehensively explore the key umami taste contributors in Longjing tea. The taste and molecular profiles of 36 Longjing green tea infusions were characterized by sensory quantitative descriptive analysis and LC-MS based metabolomics, respectively. By uni-/multi-variate statistical analysis, 84 differential compounds were screened among tea infusions with varied umami perceptions. Among them, 17 substances were identified as candidate umami-enhancing compounds, which showed significant positive correlations with umami intensities. Their natural concentrations were accurately quantified, and their umami taste-modifying effects were further investigated by taste addition into glutamic acid solution. Glutamic acid, aspartic acid, glutamine, theanine, phenylalanine, histidine, theogallin, galloylglucose, 1,2,6-trigalloylglucose significantly enhanced the umami taste. This study uncovered for the first time of some bitter amino acids and galloylglucose homologous series as important umami-enhancers, which provided a novel perspective into the tea taste.


Assuntos
Camellia sinensis , Metabolômica , Paladar , Chá , Chá/química , Humanos , Camellia sinensis/química , Camellia sinensis/metabolismo , Aromatizantes/química , Aromatizantes/metabolismo , Masculino , Adulto , Espectrometria de Massas , Feminino , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/análise , Cromatografia Líquida de Alta Pressão
19.
Food Chem ; 453: 139659, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38776792

RESUMO

There is a lack of research on how Tibetan kefir grains fermentation alters the physicochemical properties and biological activity of Lycium barbarum pulp polysaccharides, despite some reports that fermentation can affect the structure and activity of plant polysaccharides. This study demonstrated that, through fermentation, the molecular weight of polysaccharides decreased from 25.33 to 15.11 kg/mol while the contents of total sugar and uronic acid increased by 19.11% and 40.38%, respectively. Furthermore, after fermentation, the polysaccharides exhibited an uneven and rough surface along with a reduced number of branched chains and triple helix structures. Tibetan kefir grains fermentation enhanced the antioxidant activity of polysaccharides, which may be attributed to an increase in arabinose, galactose, and uronic acid content and a decrease in polysaccharide molecular weight. This research offers an alternative viewpoint on the potential application of Tibetan kefir grains-fermented Lycium barbarum pulp polysaccharides in functional foods.


Assuntos
Antioxidantes , Fermentação , Kefir , Lycium , Polissacarídeos , Lycium/química , Lycium/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Kefir/microbiologia , Kefir/análise , Polissacarídeos/química , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Peso Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Medicamentos de Ervas Chinesas
20.
J Agric Food Chem ; 72(20): 11531-11548, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38700894

RESUMO

Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored. The results indicated that the presence of phenols and alkylamides significantly increased or decreased their respective bioaccessibility, depending on the Zanthoxylum varieties. Furthermore, although antagonistic phenol/alkylamide interaction was evident during α-glucosidase inhibition, cellular oxidative stress alleviation, and antioxidant gene transcription upregulation, this effect weakened gradually as digestion progressed. Glycoside bond cleavage and the methylation of phenols as well as alkylamide isomerization and addition were observed during digestion, modifying the hydrogen bonding sites and interaction behavior. This study provided insights into the phenol/alkylamide interaction in the gastrointestinal tract.


Assuntos
Amidas , Antioxidantes , Digestão , Inibidores de Glicosídeo Hidrolases , Extratos Vegetais , Zanthoxylum , alfa-Glucosidases , Zanthoxylum/química , Zanthoxylum/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/genética , Humanos , Amidas/química , Amidas/metabolismo , Amidas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Fenóis/química , Fenóis/metabolismo , Modelos Biológicos , Fenol/metabolismo , Fenol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA