Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.559
Filtrar
1.
ScientificWorldJournal ; 2024: 8991384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957454

RESUMO

The medicinal plant Bredemeyera floribunda Willd. is used to treat cardiovascular disease, chronic fatigue, low libido, as well as increased diuresis. However, studies considering the toxicity of this plant are scarce. Develop an aqueous extract of B. floribunda considering traditional use and determine the average lethality (LD50), signs, and symptoms of toxicity. The B. floribunda extract was obtained by immersing the root bark in ultrapure water for 18 hours at 4°C, under constant stirring. The test extract was administered in a single dose of 2.000 mg/kg by gavage to rats. Signs and symptoms of toxicity were determined according to the Hippocratic screening test and compared with the control group. In addition, a necropsy was performed for macroscopic evaluation of the organs in the abdominal cavity. A powder was obtained from aqueous extracts that showed the same organoleptic characteristics and emulsification capacity as those presented by the fresh root when prepared according to popular tradition. The LD50 was greater than the test dose with three animals surviving. On the other hand, necropsy of dead rats showed necrosis and reduction in lung mass, in addition to the presence of foam and excessive distension of the stomach and intestines. The main symptoms of toxicity were anesthesia, ataxia, sedation, loss of muscle strength, and excessive drowsiness in the first 24 hours. There was no difference between the control and extract groups with regard to body mass, food, and water intake, as well as in macroscopy of the heart, liver, lungs, intestines, spleen, pancreas, and kidneys. The aqueous extract of the B. floribunda was considered nontoxic or of very low toxicity. However, it is capable of altering the activity of the central nervous system and causing disorders in the respiratory and digestive systems.


Assuntos
Casca de Planta , Extratos Vegetais , Raízes de Plantas , Animais , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Ratos , Casca de Planta/química , Masculino , Raízes de Plantas/química , Dose Letal Mediana , Feminino , Testes de Toxicidade Aguda , Ratos Wistar , Modelos Animais
2.
Afr Health Sci ; 24(1): 295-306, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38962330

RESUMO

Background: The Mediterranean thistle Atractylis gummifera L. (Asteraceae; AG) has diterpenoid glucosides; atractyloside and carboxyatractyloside that interact with mitochondrial protein adenine nucleotide translocator (ANT) and resulted in ATP inhibition. Despite its well-known toxicity, acute poisonings still occur with this plant. Although most symptoms are attributed to ANT and diterpenoids interaction, in-depth investigation of the effects of AG extract on various cellular processes has not been performed. Objective/method: We tested in vitro induction of mitochondrial permeability transition pore (MPTP) opening in bovine liver mitochondria and evaluated its cytotoxicity and genotoxicity using Allium cepa test. Cell division, mitotic index (MI) and total chromosomal and mitotic aberrations (TAs), that all seem potentially affected by ATP shortage, were studied in root cells of Allium cepa exposed to Atractylis gummifera extract. Results: With the two different doses of two purified AG fractions, stronger induction of MPTP was observed compared to the induction with the standard pure atracyloside. Aqueous AG extract exerted inhibition root growth in A. cepa at 6 different doses. The TAs was increased in a dose-dependent manner too, while mitotic index was decreased at the same doses. Evaluation of mitotic phases revealed mitodepressive effect of AG on A. cepa roots. Conclusion: this work highlights cellular and mitochondrial adverse effects of Atractylis gummifera extracts. A purified fraction that likely corresponds to ATR derivatives induces MPTP opening leading to swelling of mitochondria and its dysfunction. Allium cepa test provides the evidence for A. gummifera genotoxicity and cytotoxicity.


Assuntos
Atractilosídeo , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Animais , Bovinos , Atractilosídeo/farmacologia , Atractilosídeo/toxicidade , Cebolas/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos
3.
Toxicology ; 506: 153885, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39004335

RESUMO

Cannabidiol (CBD) has been reported to induce hepatotoxicity in clinical trials and research studies; however, little is known about the safety of other nonintoxicating cannabinoids. New approach methodologies (NAMs) based on bioinformatic analysis of high-throughput transcriptomic data are gaining increasing importance in risk assessment and regulatory decision-making of data-poor chemicals. In the current study, we conducted a concentration response transcriptomic analysis of hemp extract and its four major constituent cannabinoids [CBD, cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN)] in hepatocytes derived from human induced pluripotent stem cells (iPSCs). Each compound impacted a distinctive combination of biological functions and pathways. However, all the cannabinoids impaired liver metabolism and caused oxidative stress in the cells. Benchmark concentration (BMC) analysis showed potencies in transcriptional activity of the cannabinoids were in the order of CBN > CBD > CBC > CBG, consistent with the order of their cytotoxicity IC50 values. Patterns of transcriptomic changes induced by hemp extract and its median overall BMC were very similar to CBD but differed significantly from other cannabinoids, suggesting that potential adverse effects of hemp extract were largely due to its major constituent CBD. Lastly, transcriptomic point-of-departure (tPoD) values were determined for each of the compounds, with the value for CBD (0.106 µM) being concordant with a previously reported one derived from apical endpoints of clinical and animal studies. Taken together, the current study demonstrates the potential utility of transcriptomic BMC analysis as a NAM for hazard assessment of data-poor chemicals, improves our understanding of the possible health effects of hemp extract and its constituent cannabinoids, and provides important tPoD data that could contribute to inform human safety assessment of these cannabinoid compounds.


Assuntos
Canabinoides , Cannabis , Hepatócitos , Extratos Vegetais , Humanos , Cannabis/toxicidade , Canabinoides/toxicidade , Extratos Vegetais/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estresse Oxidativo/efeitos dos fármacos
4.
Pharm Biol ; 62(1): 577-591, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39016037

RESUMO

CONTEXT: The botanical species Bauhinia guianensis Aublet (Leguminosae-Cercidoideae) is traditionally used in the Amazon for medicinal purposes. OBJECTIVE: The acute toxicity of the hydroethanolic extracts from B. guianensis leaves and stems (HELBg and HESBg) was evaluated in zebrafish (Danio rerio), with emphasis on the embryonic developmental stage and adult alterations. MATERIALS AND METHODS: Extracts were analyzed on LC-DAD-MS/MS. Zebrafish eggs were inoculated individually with concentrations of HELBg and HESBg (0.25, 0.5, 0.75, 1.0, and 1.5 µg/mL), observed for 96 h. Adult zebrafish were treated with a single oral dose (100, 200, 500, 1000, and 2000 mg/kg) of HELBg and HESBg, observed for 48 h. RESULTS: HELBg and HESBg analysis detected 55 compounds. Both extracts exhibited toxicity, including embryo coagulation at higher doses of HELBg and absence of heartbeats in embryos at all doses of HESBg. Behavioral variations were observed; tissue alterations in adult zebrafish were found at the highest doses, primarily in the liver, intestine, and kidneys because of HELBg and HESBg effects. The LD50 of HESBg was 1717 mg/kg, while HELBg exceeded the limit dose of 2000 mg/kg. CONCLUSIONS: The study on acute toxicity of B. guianensis extracts exhibits significant toxic potential, emphasizing effects on embryonic and adult zebrafish. The results suggest relative safety of the species preparations, encouraging further clinical trials on potential biological activities.


Assuntos
Bauhinia , Embrião não Mamífero , Extratos Vegetais , Folhas de Planta , Testes de Toxicidade Aguda , Peixe-Zebra , Animais , Extratos Vegetais/toxicidade , Extratos Vegetais/isolamento & purificação , Bauhinia/química , Embrião não Mamífero/efeitos dos fármacos , Dose Letal Mediana , Relação Dose-Resposta a Droga , Caules de Planta , Etanol/toxicidade , Espectrometria de Massas em Tandem , Masculino , Solventes/química , Feminino
5.
J Toxicol Environ Health A ; 87(18): 730-751, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38904345

RESUMO

Achyrocline satureioides, popularly called "marcela" in Brazil, is used in traditional medicine in South America. A. satureioides, inflorescences are used for many conditions, including to minimize the Sars-Cov-2 symptoms. Therefore, the aim of this study was to determine the toxicity profile of A. satureioides aqueous extract (ASAE), using the Caenorhabditis elegans (C. elegans) alternative model. Survival, reproduction, development, and transgenerational assays were performed. The effects of ASAE were investigated under conditions of thermal stress and presence of oxidant hydrogen peroxide (H2O2). In addition, C. elegans strains containing high antioxidant enzyme levels and elevated lineages of daf-16, skn-1 and daf-2 regulatory pathways were examined. The ASAE LC50 value was found to be 77.3 ± 4 mg/ml. The concentration of ASAE 10 mg/ml (frequently used in humans) did not exhibit a significant reduction in worm survival at either the L1 or L4 stage, after 24 or 72 hr treatment. ASAE did not markedly alter the body area. In N2 strain, ASAE (10 or 25 mg/ml) reversed the damage initiated by H2O2. In addition, ASAE protected the damage produced by H2O2 in strains containing significant levels of sod-3, gst-4 and ctl - 1,2,3, suggesting modulation in these antioxidant systems by this plant extract. ASAE exposure activated daf-16 and skn-1 stress response transcriptional pathways independently of daf-2, even under extreme stress. Data suggest that ASAE, at the concentrations tested in C. elegans, exhibits a reliable toxicity profile, which may contribute to consideration for safe use in humans.


Assuntos
Achyrocline , Caenorhabditis elegans , Extratos Vegetais , Animais , Caenorhabditis elegans/efeitos dos fármacos , Extratos Vegetais/toxicidade , Extratos Vegetais/farmacologia , Achyrocline/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética
6.
J Ethnopharmacol ; 333: 118499, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38936645

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Schinus molle L. is a medicinal species belonging to the Anacardiaceae family. It is commonly referred to as "aroeira" and its leaves and roots are utilized for treating different pathological conditions. However, despite its widespread use in traditional medicine, there is a lack of in-depth toxicological studies. AIM: To evaluate the acute toxicity and genotoxicity of S. molle aqueous extract/ethanol-soluble fraction in rats. MATERIAL AND METHODS: First, a purified aqueous extract was obtained from the leaves of S. mole through infusion (referred to as EESM) and its compounds were identified using LC-DAD-MS data. Female rats were then subjected to acute oral toxicity tests using doses of 5, 50, 300, and 2000 mg/kg of ESSM. Studies on genetic material, including the micronucleus test and comet assay, were conducted on male and female Wistar rats using the same doses as in the acute toxicity test. For both assays, ESSM was administered orally. RESULTS: The main metabolites annotated from ESSM were dimeric proanthocyanidins, phenylpropanoids acids, flavan-3-ols, simple organic acids (C6-C1), a flavonol di-O-glycosylated (rutin), and O-glycosylated megastigmane. The ESSM did not exhibit any acute toxic effects, such as changes in biochemical, hematologic, or histopathological analysis. Furthermore, no changes were observed in comet assay or micronucleus tests when rats were given doses of 5, 50, 300, or 2000 mg/kg of ESSM. CONCLUSION: The results showed that the ESSM does not induce acute toxicity or exhibit genotoxicity up to a dose of 2000 mg/kg.


Assuntos
Testes para Micronúcleos , Extratos Vegetais , Folhas de Planta , Ratos Wistar , Testes de Toxicidade Aguda , Animais , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Feminino , Masculino , Folhas de Planta/química , Ratos , Anacardiaceae/química , Etanol/química , Etanol/toxicidade , Dano ao DNA/efeitos dos fármacos , Ensaio Cometa , Relação Dose-Resposta a Droga , Mutagênicos/toxicidade , Schinus
7.
Food Chem ; 456: 139948, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38852444

RESUMO

The natural vanilla market, which generates millions annually, is predominantly dependent on Vanilla planifolia, a species characterized by low genetic variability and susceptibility to pathogens. There is an increasing demand for natural vanilla, prized for its complex, authentic, and superior quality compared to artificial counterparts. Therefore, there is a necessity for innovative production alternatives to ensure a consistent and stable supply of vanilla flavors. In this context, vanilla crop wild relatives (WRs) emerge as promising natural sources of the spice. However, these novel species must undergo toxicity assessments to evaluate potential risks and ensure safety for consumption. This study aimed to assess the non-mutagenic and non-carcinogenic properties of ethanolic extracts from V. bahiana, V. chamissonis, V. cribbiana, and V. planifolia through integrated metabolomic profiling, in vitro toxicity assays, and in silico analyses. The integrated approach of metabolomics, in vitro assays, and in silico analyses has highlighted the need for further safety assessments of Vanilla cribbiana ethanolic extract. While the extracts of V. bahiana, V. chamissonis, and V. planifolia generally demonstrated non-mutagenic properties in the Ames assay, V. cribbiana exhibited mutagenicity at high concentrations (5000 µg/plate) in the TA98 strain without metabolic activation. This finding, coupled with the dose-dependent cytotoxicity observed in WST-1 (Water Soluble Tetrazolium) assays, a colorimetric method that assesses the viability of cells exposed to a test substance, underscores the importance of concentration in the safety evaluation of these extracts. Kaempferol and pyrogallol, identified with higher intensity in V. cribbiana, are potential candidates for in vitro mutagenicity. Although the results are not conclusive, they suggest the safety of these extracts at low concentrations. This study emphasizes the value of an integrated approach in providing a nuanced understanding of the safety profiles of natural products, advocating for cautious use and further research into V. cribbiana mutagenicity.


Assuntos
Metabolômica , Extratos Vegetais , Vanilla , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Brasil , Vanilla/química , Humanos , Florestas , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Testes de Mutagenicidade , Simulação por Computador
8.
J Ethnopharmacol ; 333: 118460, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38878840

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The bark of Canarium schweinfurthii is used in ethnomedicine for the treatment of diabetes, pain, malaria, fever and diarrhoea. AIM OF THE STUDY: The chemical phytoconstituents, antidiarrheal, anti-inflammatory and antinociceptive effects and safety profile of the aqueous extract of Canarium schweinfurthii bark (AECSB) were investigated. MATERIALS AND METHODS: Gas chromatography-mass spectrometry (GC-MS) was used to analyse the phytochemical composition. In the acute toxicity test, AECSB were administered up to 2 g/kg by oral gavage. For the subacute toxicity test (28 days), rats in group 1 (control) received no AECSB, while rats in groups 2-4 were administered different doses of AECSB. Charcoal meal transit and castor oil-induced diarrhoea models were used to study the antidiarrheal effect, while egg albumin/carrageenan and acetic acid/tail immersion models were used for the anti-inflammatory and antinociceptive studies, respectively. With the exception of the acute toxicity experiment, AECSB was administered orally at doses of 200, 400 and 800 mg/kg. RESULTS: Bioactive phytoconstituents identified include p-cymene, δ-terpinene, linalool and phytol. No adverse effects or mortality were observed in acute and subacute studies. Treatment with AECSB (28 days) had no significant effect on organ weight, biochemical, hematologic and histopathologic parameters compared to the control groups (p > 0.05). Comparable antidiarrheal and antinociceptive effects were observed in both AECSB- and standard drug-treated groups, while the 400 and 800 mg/kg AECSB-treated groups showed remarkable anti-inflammatory effects compared to the standard drug-treated and control groups (p < 0.05). CONCLUSION: AECSB has antidiarrheal, antinociceptive and anti-inflammatory effects and can be safely used for therapeutic purposes.


Assuntos
Analgésicos , Anti-Inflamatórios , Antidiarreicos , Burseraceae , Diarreia , Casca de Planta , Extratos Vegetais , Animais , Analgésicos/farmacologia , Analgésicos/toxicidade , Casca de Planta/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Masculino , Antidiarreicos/farmacologia , Antidiarreicos/toxicidade , Antidiarreicos/uso terapêutico , Diarreia/tratamento farmacológico , Diarreia/induzido quimicamente , Ratos , Feminino , Burseraceae/química , Ratos Wistar , Testes de Toxicidade Aguda , Testes de Toxicidade Subaguda , Dor/tratamento farmacológico , Dor/induzido quimicamente , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/toxicidade , Camundongos
9.
Recent Pat Nanotechnol ; 18(3): 350-360, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38847137

RESUMO

BACKGROUND: Lepidium sativum (LS) seed extract has various pharmacological properties, such as antioxidant, hepatoprotective, and anticancer activities. However, the translation of L. sativum seed extract to the clinical phase is still tedious due to its bioavailability and stability issues. This problem can be solved by encapsulating it in a nanodelivery system to improve its therapeutic potency. METHODS: In this study, we have determined and compared the in vivo toxicity of ethanolic extracts of L. sativum seeds (EELS) and solid lipid nanoparticles (SLNs). To conduct toxicity (acute and subacute toxicity) assessments, EELS and SLNs were orally administered to Swiss albino mice. Animal survival, body weight, the weight of vital organs in relation to body weight, haematological profile, biochemistry profile, and histopathological alterations were examined. RESULTS: Animals administered with 2000 mg/kg and 5000 mg/kg in an acute toxicity study exhibited no toxicological symptoms regarding behaviour, gross pathology, and body weight. As per a study on acute toxicity, the LD50 (lethal dose) for SLNs and EELS was over 400 mg/kg and over 5000 mg/kg, respectively. When animals were given SLNs (50 and 100 mg/kg, orally) and EELS (250, 500, and 1000 mg/kg, orally) for 28 days, subacute toxicity study did not exhibit any clinical changes. There were no differences in weight gain, haematological parameters, or biochemical parameters compared to the control groups (p > 0.05). The organs of the treated animals showed no abnormalities in the histological analysis (liver, heart, kidney, and spleen). CONCLUSION: The result confirms ethanolic extracts of L. sativum seeds and their SLNs to not have harmful effects following acute and subacute administration to mice. For further studies, patents available on Lepidium may be referred for its preclinical and clinical applications.


Assuntos
Lepidium sativum , Nanopartículas , Extratos Vegetais , Sementes , Animais , Camundongos , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Extratos Vegetais/administração & dosagem , Sementes/química , Administração Oral , Nanopartículas/química , Nanopartículas/toxicidade , Testes de Toxicidade Aguda , Masculino , Feminino , Dose Letal Mediana , Testes de Toxicidade Subaguda
10.
Toxicol In Vitro ; 99: 105873, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851601

RESUMO

Açaí (Euterpe oleracea MART) is a fruit of great importance for the Amazon region in nutritional, cultural and socioeconomic terms. In recent years, açaí has been the subject of several studies due to its beneficial properties for health, including effects against tumor cells. Therefore, the present work aimed to evaluate in vitro the genotoxic and cytotoxic effects of the clarified extract of açaí juice in a human metastatic gastric cancer cell line (AGP01 cells). For comparison purposes, a non-transformed cell line of African green monkey renal epithelial cells (VERO cells) was used. The viability assay by resazurin reduction, the comet assay, the determination of cell death by differential fluorescent dyes and the wound healing migration assay were performed. A reduction in viability was observed only in the AGP01 line within 72 h. There was no genotoxic damage or cell death (through apoptosis or necrosis) in any of the cell lines. However, açaí extract induced motility reduction in both cell lines. The reduction in cell viability and the induction of the anti-migratory effect in the AGP01 cell line opens perspectives for exploring the potential of açaí as an adjuvant in the treatment of gastric cancer.


Assuntos
Sobrevivência Celular , Dano ao DNA , Euterpe , Extratos Vegetais , Neoplasias Gástricas , Euterpe/química , Sobrevivência Celular/efeitos dos fármacos , Animais , Humanos , Neoplasias Gástricas/tratamento farmacológico , Extratos Vegetais/toxicidade , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Chlorocebus aethiops , Movimento Celular/efeitos dos fármacos , Ensaio Cometa , Células Vero
11.
BMC Complement Med Ther ; 24(1): 243, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909225

RESUMO

BACKGROUND: Cucurbita pepo cv Dayangua (CPD) is an edible plant with diverse pharmacological properties. The current research on CPD has primarily focused on initial investigations of its chemical composition and pharmacological effects, and no comprehensive toxicity assessment has been conducted to date. METHODS: In the present study, the toxicity of CPD was evaluated through both acute and sub-chronic oral toxicity tests in mice. 16S rDNA sequencing was used to analyze the composition of the gut microbiota of mice at different time points to observe the effect of CPD on these microbial communities. RESULTS: In the acute toxicity test, CPD exhibited low toxicity, with a median lethal dose (LD50) > 2000 mg/kg. The sub-chronic toxicity test indicated that CPD administration at doses of 200, 400, and 600 mg/kg did not cause mortality or significant organ damage in mice. Furthermore, analysis of the gut microbiota after gavage administration of CPD at 400 and 600 mg/kg revealed an improved abundance of some beneficial gut bacteria. CONCLUSIONS: In summary, no acute or sub-chronic toxic effects were observed in mice following the oral administration of CPD. CPD did not affect the structure and diversity of the gut microbiota and may contribute to an increase in the number of beneficial gut bacteria.


Assuntos
Cucurbita , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Feminino , Testes de Toxicidade Aguda
12.
J Ethnopharmacol ; 332: 118403, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38821137

RESUMO

ETHNOPHARMACOLOGIC RELEVANCE: Valeriana jatamansi Jones, belongs to the Valerianaceae family, is widely used in traditional Chinese medicine (TCM) and Ayurveda, traditional Indian medicine (TIM). This traditional herb has been officially listed in the pharmacopoeia of sixteen countries. Its usage was first described in Diannan Bencao, also known as "Zhizhuxiang", is a famous folk medicine herb with a long history of medicinal usage in China, and it was used to treat indigestion, flu, and mental disorders in the Han, Achang, Bai, Blang, Dai, Jingpo, Naxi, and Wa ethnic groups. In recent years, V. jatamansi has attracted worldwide attention as an important medicinal due to its pharmacological activity especially in nervous and digestive systems, and multiple uses. AIM OF THE STUDY: The current review aims to provide a comprehensive analysis of the botany, traditional uses, phytochemistry, pharmacology, toxicity, and quality control of V. jatamansi. MATERIALS AND METHODS: The relevant information of V. jatamansi was obtained from several databases including Web of Science, PubMed, ACS Publications, Google Scholar, Baidu Scholar, CNKI, Ph.D. and MSc dissertations, using "Valeriana jatamansi Jones", "Valeriana jatamansi", and "" as keywords. After eliminating repetitive and low-quality reports, the remaining reports were analyzed and summarized to prepare this review. Plant information was retrieved by www.worldfloraonline.org and www.gbif.org using "Valeriana jatamansi Jones" as keyword. RESULTS: V. jatamansi has been historically utilized as a traditional medicine to treat various diseases, including infectious, inflammatory, neurological, and gastrointestinal disorders. More than 400 compounds have been identified in V. jatamansi including iridoids, volatile oils, lignans, flavonoids, phenolic acids, phenylpropanoids, sesquiterpenes, sesquiterpene hydrocarbons, triterpenes as well as other compounds. The plant extracts and compounds showed various pharmacological activities such as antitumor, cytotoxic, antivirus, etc. In addition, V. jatamansi has found various applications in the agricultural, food, and cosmetics industry. CONCLUSION: A review of literature shows V. jatamansi has pharmacological properties valuable in treating diseases, particularly for antianxiety and gastrointestinal disorders. Despite a wide spectrum of effects from specific compounds, research mainly focuses on in vitro and in vivo, with a lack of pharmacokinetics, clinical trials and underlying mechanisms. Consequently, it becomes important to embark on additional researchs to elucidate the pharmacokinetics, material basis and mechanisms of V. jatamansi, thereby realizing the aspiration of its comprehensive utilization and sustainable development.


Assuntos
Etnofarmacologia , Compostos Fitoquímicos , Controle de Qualidade , Valeriana , Valeriana/química , Humanos , Animais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/toxicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Fitoterapia , Medicina Tradicional
13.
Food Chem Toxicol ; 189: 114726, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759713

RESUMO

Despite its popularity along with many proposed therapeutic applications, the safety profile of Aloe vera gel beverages remains unsettled. The putative toxicology concern has focused on the hydroxyanthraquinone derivatives (HADs) found in the latex portion of the Aloe leaf. Despite harvesting and processing designed to eliminate or significantly reduce these compounds, certain HADs, such as aloin, may be present and have been associated with carcinogenicity in non-decolorized whole leaf extract containing approximately 6400 ppm aloin A and 71 ppm aloin-emodin. Sprague Dawley rats had free access to drinking water or a commercially and widely available Aloe vera gel beverage (Forever Living Products) prepared from the inner leaves of Aloe barbadensis Miller containing 3.43 ppm total aloin for 90 days. Under the conditions of the study and based on the toxicological endpoints evaluated, there were no adverse test substance-related findings, including altered thyroid hormones. No histologic differences or histopathological changes were detected in the multiple tissues and organs examined. The Ki-67 proliferation assay demonstrated no increased cell proliferation in the liver, lungs, kidneys, or urinary bladder, which might have been attributed to the dietary administration of the Aloe vera gel beverage via drinking water for 90 days. These data lend increasing confidence regarding the safety of appropriately processed Aloe vera gel beverages, such as the beverage tested in this study.


Assuntos
Aloe , Folhas de Planta , Ratos Sprague-Dawley , Animais , Folhas de Planta/química , Aloe/química , Masculino , Ratos , Feminino , Administração Oral , Extratos Vegetais/toxicidade , Bebidas , Peso Corporal/efeitos dos fármacos , Emodina/análogos & derivados , Preparações de Plantas
14.
PLoS One ; 19(5): e0302657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787908

RESUMO

Ethnopharmacological relevance of Saussurea species for anti-cancer compounds instigated us to develop chemotherapeutic herbal tablets. This study was an ongoing part of our previous research based on the scientific evaluation of Saussurea heteromalla (S. heteromalla) for anti-cancer lead compounds. In the current study, S. heteromalla herbal tablets (500 /800 mg) were designed and evaluated for anti-cancer activity. Arctigenin was found as a bioactive lead molecule with anti-cancer potential for cervical cancer. The in vitro results on the HeLa cell line supported the ethnopharmacological relevance and traditional utilization of S. heteromalla and provided the scientific basis for the management of cervical cancer as proclaimed by traditional practitioners in China. LD50 of the crude extract was established trough oral acute toxicity profiling in mice, wherein the minimum lethal dose was noticed as higher than 1000 mg/kg body weight orally. Chromatographic fingerprint analysis ensured the identity and consistency of S. heteromalla in herbal tablets in terms of standardization of the herbal drug. About 99.15% of the drug (S. heteromalla crude extract) was recovered in herbal tablets (RSD: 0.45%). In vitro drug release profile was found to be more than 87% within 1 h, which was also correlated with different mathematical kinetic models of drug release (r2 = 0.992), indicating that drug release from matrix tablets into the blood is constant throughout the delivery. The dosage form was found stable after an accelerated stability parameters study which may be used for anti-cervical cancer therapy in the future, if it qualifies successful preclinical investigation parameters.


Assuntos
Extratos Vegetais , Saussurea , Saussurea/química , Animais , Humanos , Camundongos , Células HeLa , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Extratos Vegetais/farmacologia , Lignanas/farmacologia , Lignanas/química , Feminino , Furanos/toxicidade , Furanos/química , Furanos/farmacologia , Comprimidos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Masculino , Antineoplásicos/farmacologia , Antineoplásicos/química , Dose Letal Mediana , Testes de Toxicidade Aguda , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Medicamentos de Ervas Chinesas/farmacologia
15.
J Toxicol Environ Health A ; 87(16): 662-673, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-38808737

RESUMO

Pseudobombax marginatum, popularly known as "embiratanha," is widely used by traditional communities as anti-inflammatory and analgesic agent. This study aimed to determine the phytochemical profile as well as cytotoxicity, acute oral toxicity, genotoxicity, and mutagenicity attributed to exposure to aqueous (AqEx) and ethanolic (EtEx) extracts of embiratanha bark. Phytochemical screening was conducted using thin-layer chromatography (TLC). Cell viability was analyzed using MTT assay with human mammary gland adenocarcinoma (MDA-MB-231) and macrophage (J774A.1) cell lines, exposed to concentrations of 12.5, 25, 50, or 100 µg/ml of either extract. For acute oral toxicity, comet assay and micronucleus (MN) tests, a single dose of 2,000 mg/kg of either extract was administered orally to Wistar rats. TLC analysis identified classes of metabolites in the extracts, including cinnamic acid derivatives, flavonoids, hydrolyzable tannins, condensed tannins, coumarins, and terpenes/steroids. In the cytotoxicity assay, the varying concentrations of extracts derived from embiratanha induced no significant alterations in the viability of MDA-MB-231 cells. The lowest concentration of EtEx significantly increased macrophage J774A.1 viability. However, the higher concentrations of AqEx markedly lowered macrophage J774A.1 viability. Animals exhibited no toxicity in the parameters analyzed in acute oral toxicity, comet assay, and MN tests. Further, EtEx promoted a significant reduction in DNA damage index and DNA damage frequency utilizing the comet assay, while the group treated with AqEx exhibited no marked differences. Thus, data demonstrated that AqEx or EtEx of embiratanha may be considered safe at a dose of 2,000 mg/kg orgally under our experimental conditions tested.


Assuntos
Extratos Vegetais , Ratos Wistar , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Animais , Humanos , Ratos , Linhagem Celular Tumoral , Masculino , Ensaio Cometa , Testes para Micronúcleos , Feminino , Sobrevivência Celular/efeitos dos fármacos , Compostos Fitoquímicos/toxicidade , Compostos Fitoquímicos/análise , Camundongos , Casca de Planta/química , Mutagênicos/toxicidade , Testes de Mutagenicidade , Etanol/química
16.
J Toxicol Environ Health A ; 87(14): 579-591, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38708983

RESUMO

Natural products are usually considered harmless; however, these substances need to be consumed with caution. Biological assays with plant models are a suitable alternative for prospective studies to assess natural product-initiated toxicity. The aim of this study was to examine the toxic potential of leaf and flower extracts derived from Tropaeolum majus L. a widely used plant in traditional medicine. Seeds of Lactuca sativa L. were exposed to T. majus extracts and based upon the seedling growth curve values, the 50% Inhibition Concentration (IC50) was calculated and applied for cell cycle analysis exposure. Both extracts contained organic acids, proteins, amino acids, and terpene steroids. Sesquiterpene lactones and depside were detected in leaf extracts. The higher concentration tested exhibited a marked phytotoxic effect. The extracts induced clastogenic, aneugenic cytotoxic, and potential mutagenic effects. The possible relationships between the classes of compounds found in the extracts and effects on cells and DNA were determined.


Assuntos
Ciclo Celular , Germinação , Lactuca , Extratos Vegetais , Tropaeolum , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Ciclo Celular/efeitos dos fármacos , Germinação/efeitos dos fármacos , Tropaeolum/química , Folhas de Planta/química , Flores/química , Sementes/química
17.
J Toxicol Environ Health A ; 87(14): 592-603, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38712866

RESUMO

Punica granatum, popularly known as pomegranate, is a fruit tree with wide worldwide distribution, containing numerous phytochemicals of great medicinal value. The aim of the present study was to determine the phytochemical profile and antioxidant potential of a protein fraction (PF) derived from P. granatum sarcotesta which is rich in lectin. In addition, the acute oral toxicity, genotoxicity and antigenotoxicity of this protein fraction (PF) from P. granatum sarcotesta was measured. The phytochemical profile of PF was determined using HPLC. The in vitro antioxidant effect was assessed using the methods of total antioxidant capacity (TAC) and DPPH and ABTS+ radical scavenging. Acute oral toxicity was determined in female Swiss mice administered a single dose of 2000 mg/kg. This PF was examined for genotoxicity and antigenotoxicity at doses of 500, 1000 and 2000 mg/kg, utilizing mouse peripheral blood cells. Phytochemical characterization detected a high content of ellagic acid and antioxidant capacity similar to that of ascorbic acid (positive control). PF was not toxic (LD50 >2000 mg/kg) and did not exert a genotoxic effect in mice. PF protected the DNA of peripheral blood cells against damage induced by cyclophosphamide. In conclusion, this PF fraction exhibited significant antioxidant activity without initiating toxic or genotoxic responses in mice.


Assuntos
Antioxidantes , Extratos Vegetais , Punica granatum , Animais , Camundongos , Antioxidantes/farmacologia , Feminino , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Punica granatum/química , Lectinas/toxicidade , Testes de Mutagenicidade , Dano ao DNA/efeitos dos fármacos , Testes de Toxicidade Aguda
18.
J Ethnopharmacol ; 331: 118295, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38710460

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Phlomis crinita Cav. (Lamiaceae), locally known as "El Khayata" or "Kayat El Adjarah", is traditionally used in Algeria for its wound-healing properties. AIM OF THE STUDY: Investigate, for the first time, the phytochemical profile, safety, antioxidant and wound-healing activities of the flowering tops methanolic extract of P. crinita (PCME) collected from Bouira Province in the North of Algeria. MATERIALS AND METHODS: Preliminary phytochemical assays were carried out on PCME to quantify the main classes of bioactive compounds, such as total phenols, flavonoids, and tannins. An in-depth LC-DAD-ESI-MS analysis was carried out to elucidate the phytochemical profile of this plant species. Antioxidant activity was investigated by several colorimetric and fluorimetric assays (DPPH, TEAC, FRAP, ORAC, ß-carotene bleaching and ferrozine assay). The acute oral toxicity of PCME (2000 mg/kg b.w.) was tested in vivo on Swiss albino mice, whereas the acute dermal toxicity and wound-healing properties of the PCME ointment (1-5% PCMO) were tested in vivo on Wistar albino rats. Biochemical and histological analyses were carried out on biological samples. RESULTS: The phytochemical screening highlighted a high content of phenolic compounds (175.49 ± 0.8 mg of gallic acid equivalents/g of dry extract), mainly flavonoids (82.28 ± 0.44 mg of quercetin equivalents/g of dry extract). Fifty-seven compounds were identified by LC-DAD-ESI-MS analysis, belonging mainly to the class of flavones (32.27%), with luteolin 7-(6″-acetylglucoside) as the most abundant compound and phenolic acids (32.54%), with salvianolic acid C as the most abundant compound. A conspicuous presence of phenylethanoids (15.26%) was also found, of which the major constituent is forsythoside B. PCME showed a strong antioxidant activity with half-inhibitory activity (IC50) ranging from 1.88 to 37.88 µg/mL and a moderate iron chelating activity (IC50 327.44 µg/mL). PCME appears to be safe with Lethal Dose 50 (LD50) ≥ 2000 mg/kg b.w. No mortality or toxicity signs, including any statistically significant changes in body weight gain and relative organs' weight with respect to the control group, were recorded. A significant (p < 0.001) wound contraction was observed in the 5% PCMO-treated group with respect to the untreated and petroleum jelly groups between 8 and 20 days, whereas no statistically significant results were observed at the two lower doses (1 and 2% PCMO). In addition, the 5% PCMO-treated group showed a statistically significant (p < 0.05) wound healing activity with respect to the reference drug-treated group, showing, at the end of the study, the highest wound contraction percentage (88.00 ± 0.16%). CONCLUSION: PCME was safe and showed strong antioxidant and wound-healing properties, suggesting new interesting pharmaceutical applications for P. crinita based on its traditional use.


Assuntos
Antioxidantes , Extratos Vegetais , Cicatrização , Animais , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Argélia , Cicatrização/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Camundongos , Masculino , Ratos , Ratos Wistar , Feminino , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/toxicidade , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/isolamento & purificação , Fenóis/análise , Fenóis/toxicidade , Fenóis/farmacologia , Fenóis/isolamento & purificação , Flavonoides/farmacologia , Flavonoides/análise , Flavonoides/isolamento & purificação , Flavonoides/toxicidade
19.
J Appl Toxicol ; 44(8): 1129-1138, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38567776

RESUMO

Rubus imperialis Chum. Schl. (Rosaceae) have demonstrated some pharmacological activities, including gastroprotective action. However, genotoxic effects of R. imperialis extract was also reported. Since niga-ichigoside F1 (NIF1) is a major compound of this plant species, and which has proven pharmacological properties, it is essential to investigate whether this compound is responsible for the observed toxicity. Therefore, the objective of this study was to analyze the effects of NIF1 on HepG2/C3A cells for possible cytogenotoxicity, cell cycle and apoptosis influence, and expression of genes linked to the DNA damage, cell cycle, cell death, and xenobiotic metabolism. The results showed no cytogenotoxic effects of NIF1 at concentrations between 0.1 and 20 µg/ml. Flow cytometry also showed no cell cycle or apoptosis disturbance. In the gene expression analysis, none of the seven genes investigated showed altered expression. The data indicate that NIF1 has no cytogenotoxic effects, and no interruption of the cell cycle, or induction of apoptosis, apparently not being responsible for the cytotoxic effects observed in the crude extract of R. imperialis.


Assuntos
Apoptose , Ciclo Celular , Humanos , Células Hep G2 , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Rubus/química , Dano ao DNA/efeitos dos fármacos , Extratos Vegetais/toxicidade , Extratos Vegetais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Saponinas/toxicidade , Saponinas/farmacologia
20.
J Appl Toxicol ; 44(8): 1236-1245, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38655841

RESUMO

Botanicals contain complex mixtures of chemicals most of which lack pharmacokinetic data in humans. Since physicochemical and pharmacokinetic properties dictate the in vivo exposure of botanical constituents, these parameters greatly impact the pharmacological and toxicological effects of botanicals in consumer products. This study sought to use computational (i.e., in silico) models, including quantitative structure-activity relationships (QSAR) and physiologically based pharmacokinetic (PBPK) modeling, to predict properties of botanical constituents. One hundred and three major constituents (e.g., withanolides, mitragynine, and yohimbine) in 13 botanicals (e.g., ashwagandha, kratom, and yohimbe) were investigated. The predicted properties included biopharmaceutical classification system (BCS) classes based on aqueous solubility and permeability, oral absorption, liver microsomal clearance, oral bioavailability, and others. Over half of these constituents fell into BCS classes I and II at dose levels no greater than 100 mg per day, indicating high permeability and absorption (%Fa > 75%) in the gastrointestinal tract. However, some constituents such as glycosides in ashwagandha and Asian ginseng showed low bioavailability after oral administration due to poor absorption (BCS classes III and IV, %Fa < 40%). These in silico results fill data gaps for botanical constituents and could guide future safety studies. For example, the predicted human plasma concentrations may help select concentrations for in vitro toxicity testing. Additionally, the in silico data could be used in tiered or batteries of assays to assess the safety of botanical products. For example, highly absorbed botanical constituents indicate potential high exposure in the body, which could lead to toxic effects.


Assuntos
Simulação por Computador , Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Humanos , Disponibilidade Biológica , Microssomos Hepáticos/metabolismo , Extratos Vegetais/farmacocinética , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Solubilidade , Permeabilidade , Administração Oral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA