Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.899
Filtrar
1.
Oxid Med Cell Longev ; 2022: 4564471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308167

RESUMO

The polarization of microglia is recognized as a crucial factor in reducing neuroinflammation and promoting hematoma clearance after intracerebral hemorrhage (ICH). Previous studies have revealed that redox components participate in the regulation of microglial polarization. Recently, the novel Nrf2 activator omaveloxolone (Omav) has been validated to improve neurological function in patients with neurodegenerative disorders by regulating antioxidant responses. In this study, we examined the efficacy of Omav in ICH. Omav significantly promoted Nrf2 nuclear accumulation and the expression of HO-1 and NQO1 in BV2 cells. In addition, both in vitro and in vivo experiments showed that Omav treatment inhibited M1-like activation and promoted the activation of the M2-like microglial phenotype. Omav inhibited OxyHb-induced ROS generation and preserved the function of mitochondria in BV2 cells. Intraperitoneal administration of Omav improved sensorimotor function in the ICH mouse model. Importantly, these effects were blocked by pretreatment with ML385, a selective inhibitor of Nrf2. Collectively, Omav modulated microglial polarization by activating Nrf2 and inhibiting ROS generation in ICH models, suggesting that it might be a promising drug candidate for the treatment of ICH.


Assuntos
Lesões Encefálicas , Microglia , Animais , Lesões Encefálicas/tratamento farmacológico , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Humanos , Camundongos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fenótipo , Triterpenos
2.
Cardiovasc Ther ; 2022: 3159717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909950

RESUMO

Diabetes causes lipid peroxide to accumulate within cardiomyocytes. Furthermore, lipid peroxide buildup is a risk factor for ferroptosis. This study is aimed at examining whether curcumin can ameliorate ferroptosis in the treatment of diabetic cardiomyopathy. Hematoxylin and eosin and Masson sections were used to examine the morphology, arrangement, and degree of fibrosis of the myocardium of diabetic rabbit models. The expression levels of nuclear Nrf2, Gpx4, Cox1, and Acsl4 in diabetic animal and cell models were quantitatively analyzed using immunofluorescence and western blotting. Nrf2-overexpression lentivirus vectors were transfected into cardiomyocytes, and the protective effects of curcumin and Nrf2 on cardiomyocytes under high glucose stimulation were assessed using terminal deoxynucleotidyl transferase dUTP nick-end labelling and reactive oxygen species probes. Diabetes was found to disorder myocardial cell arrangement and significantly increase the degree of myocardial fibrosis and collagen expression in myocardial cells. Curcumin treatment can increase nuclear transfer of Nrf2 and the expression of Gpx4 and HO-1, reduce glucose induced myocardial cell damage, and reverse myocardial cell damage caused by the ferroptosis inducer erastin. This study confirmed that curcumin can promote the nuclear translocation of Nrf2, increase the expression of oxidative scavenging factors, such as HO-1, reduce excessive Gpx4 loss, and inhibit glucose-induced ferroptosis in cardiomyocytes. This highlights a potentially new therapeutic route for investigation for the treatment diabetic cardiomyopathy.


Assuntos
Curcumina , Diabetes Mellitus , Cardiomiopatias Diabéticas , Ferroptose , Animais , Apoptose , Curcumina/farmacologia , Cardiomiopatias Diabéticas/prevenção & controle , Glucose/toxicidade , Peróxidos Lipídicos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Coelhos
3.
Oxid Med Cell Longev ; 2022: 8287227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910831

RESUMO

Acute liver injury (ALI) is characterized as a severe metabolic dysfunction caused by extensive damage to liver cells. Ferroptosis is a type of cell death dependent on iron and oxidative stress, which differs from classical cell death, such as apoptosis and necrosis. Ferroptosis has unique morphological features, which mainly include mitochondrial dissolution and mitochondrial outline reduction. Furthermore, the intracellular accumulation of lipid peroxides directly affects the occurrence of ferroptosis. Baicalin, the main compound isolated from Scutellaria baicalensis, has anti-inflammatory and antioxidative effects. Recently, exosomes derived from preconditioned mesenchymal stem cells (MSCs) have shown great potential in the treatment of various diseases including ALI. This study investigates the ability of exosomes derived from baicalin-pretreated MSCs (Ba-Exo) to promote liver function recovery in mice with ALI compared with those without pretreatment. Through in vivo and in vitro experiments, this study demonstrates for the first time that Ba-Exo greatly attenuates D-galactosamine and lipopolysaccharide (D-GaIN/LPS)-induced liver damage and inhibits reactive oxygen species (ROS) production and lipid peroxide-induced ferroptosis. Moreover, P62 was significantly upregulated in Ba-Exo, whereas its downregulation in Ba-Exo counteracted the beneficial effect of Ba-Exo. P62 regulates hepatocyte ferroptosis by activating the Keap1-NRF2 pathway. The beneficial effect of Ba-Exo in inhibiting ferroptosis was also attenuated after the NRF2 pathway was inhibited. Therefore, baicalin pretreatment is an effective and promising approach to optimize the therapeutic efficacy of MSC-derived exosomes in ALI.


Assuntos
Exossomos , Ferroptose , Células-Tronco Mesenquimais , Animais , Exossomos/metabolismo , Flavonoides , Hepatócitos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo
4.
Oxid Med Cell Longev ; 2022: 2405943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910848

RESUMO

Background: Ferroptosis is a nonapoptotic form of programmed cell death, which may be related to the occurrence and development of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). Mucin 1 (MUC1) is a kind of macromolecule transmembrane glycoprotein. Previous studies have shown that MUC1 could relieve ALI in sepsis and predict whether sepsis patients would develop into ARDS. However, the role of MUC1 in the ferroptosis of sepsis-induced ALI/ARDS remains unclear. Materials and Methods: Sera samples from 50 patients with sepsis/septic shock were used to detect iron metabolism-related markers. Western blot and qRT-PCR were conducted to detect the expression levels of ferroptosis-related genes. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate inflammatory factors. Transmission electron microscopy (TEM) was used to assess morphological changes of cells. Results: The results showed that the iron metabolism-related indicators in sepsis-induced ARDS patients changed significantly, suggesting the iron metabolism disorder. The expression levels of ferroptosis-related genes in lung tissues of sepsis had marked changes, and the lipid peroxidation levels increased, while Ferrostatin-1 (Fer-1) could reverse the above results, which confirmed the occurrence of ferroptosis. In terms of mechanism studies, inhibition of MUC1 dimerization could increase the expression level of Keap1, reduce the phosphorylation level of GSK3ß, inhibit the entry of Nrf2 into the nucleus, further inhibit the expression level of GPX4, enhance the lipid peroxidation level of lung tissues, trigger ferroptosis, and aggravate lung injury. Besides, inhibiting MUC1 reversed the alleviating effect of vitamin E on ALI caused by sepsis, increased the aggregation of inflammatory cells in lung tissues, and aggravated alveolar injury and edema. Conclusions: Our study was the first to explore the changes of iron metabolism indicators in ALI/ARDS of sepsis, clarify the important role of ferroptosis in ALI/ARDS induced by sepsis, and reveal the effects and specific mechanisms of MUC1 in regulating ferroptosis, as well as the sensitization on vitamin E.


Assuntos
Lesão Pulmonar Aguda , Ferroptose , Síndrome do Desconforto Respiratório , Sepse , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Ferro/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Mucina-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Vitamina E
5.
Oxid Med Cell Longev ; 2022: 5628946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910837

RESUMO

Age-related cataract (ARC) is the common cause of blindness globally. Reactive oxygen species (ROS), one of the greatest contributors to aging process, leads to oxidative damage and senescence of lens epithelial cells (LECs), which are involved in the pathogenesis of ARC. Biliverdin reductase A (BVRA) has ROS-scavenging ability by converting biliverdin (BV) into bilirubin (BR). However, little is known about the protective effect of BVRA against ARC. In the present study, we measured the expression level of BVRA and BR generation in human samples. Then, the antioxidative property of BVRA was compared between the young and senescent LECs upon stress condition. In addition, we evaluated the effect of BVRA on attenuating H2O2-induced premature senescence in LECs. The results showed that the mRNA expression level of BVRA and BR concentration were decreased in both LECs and lens cortex of age-related nuclear cataract. Using the RNA interference technique, we found that BVRA defends LECs against oxidative stress via (i) restoring mitochondrial dysfunction in a BR-dependent manner, (ii) inducing heme oxygenase-1 (HO-1) expression directly, and (iii) promoting phosphorylation of ERK1/2 and nuclear delivery of nuclear factor erythroid 2-related factor 2 (Nrf2). Intriguingly, the antioxidative effect of BVRA was diminished along with the reduced BR concentration and repressed nuclear translocation of BVRA and Nrf2 in senescent LECs, which would be resulted from the decreased BVRA activity and impaired nucleocytoplasmic trafficking. Eventually, we confirmed that BVRA accelerates the G1 phase transition and prevents against H2O2-induced premature senescence in LECs. In summary, BVRA protects LECs against oxidative stress and cellular senescence in ARC by converting BV into BR, inducing HO-1 expression, and activating the ERK/Nrf2 pathway. This trial is registered with ChiCTR2000036059.


Assuntos
Catarata , Fator 2 Relacionado a NF-E2 , Antioxidantes/farmacologia , Bilirrubina/metabolismo , Catarata/patologia , Senescência Celular , Células Epiteliais/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Espécies Reativas de Oxigênio/metabolismo
6.
Clin Transl Med ; 12(8): e1003, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35917404

RESUMO

BACKGROUND: Human Tau (hTau) accumulation and synapse loss are two pathological hallmarks of tauopathies. However, whether and how hTau exerts toxic effects on synapses remain elusive. METHODS: Mutated hTau (P301S) was overexpressed in the N2a cell line, primary hippocampal neurons and hippocampal CA3. Western blotting and quantitative polymerase chain reaction were applied to examine the protein and mRNA levels of synaptic proteins. The protein interaction was tested by co-immunoprecipitation and proximity ligation assays. Memory and emotion status were evaluated by a series of behavioural tests. The transcriptional activity of nuclear factor-erythroid 2-related factor 2 (NRF2) was detected by dual luciferase reporter assay. Electrophoresis mobility shift assay and chromosome immunoprecipitation were conducted to examine the combination of NRF2 to specific anti-oxidative response element (ARE) sequences. Neuronal morphology was analysed after Golgi staining. RESULTS: Overexpressing P301S decreased the protein levels of post-synaptic density protein 93 (PSD93), PSD95 and synapsin 1 (SYN1). Simultaneously, NRF2 was decreased, whereas Kelch-like ECH-associated protein 1 (KEAP1) was elevated. Further, we found that NRF2 could bind to the specific AREs of DLG2, DLG4 and SYN1 genes, which encode PSD93, PSD95 and SYN1, respectively, to promote their expression. Overexpressing NRF2 ameliorated P301S-reduced synaptic proteins and synapse. By means of acetylation at K312, P301S increased the protein level of KEAP1 via inhibiting KEAP1 degradation from ubiquitin-proteasome pathway, thereby decreasing NRF2 and reducing synapse. Blocking the P301S-KEAP1 interaction at K312 rescued the P301S-suppressed expression of synaptic proteins and memory deficits with anxiety efficiently. CONCLUSIONS: P301S-hTau could acetylate KEAP1 to trigger synaptic toxicity via inhibiting the NRF2/ARE pathway. These findings provide a novel and potential target for the therapeutic intervention of tauopathies.


Assuntos
Fator 2 Relacionado a NF-E2 , Tauopatias , Genes Reguladores , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Elementos de Resposta , Tauopatias/genética
7.
Contrast Media Mol Imaging ; 2022: 8639139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919501

RESUMO

Objective: To explore the effect and mechanism of epigallocatechin gallate (EGCG) in mice with coronary heart disease (CHD). Methods: Firstly, a CHD model of mouse was established by feeding mice high-fat diet and randomly divided into four groups, including Model group (0.5% sodium cholate) and 10 mg/kg EGCG, 20 mg/kg EGCG, and 40 mg/kg EGCG groups. After oral administration of sodium cholate or EGCG, HE staining was conducted to assess the pathological changes of mouse cardiac tissues in each group of mice, biochemical kits to measure the levels of blood lipid and oxidative stress substance activity, and western blot to detect matrix metalloproteinase 2 (MMP-2), vascular endothelial growth factor (VEGFA), as well as expression levels of protein related to Nrf2/HO-1/NQO1 pathway in cardiac tissues. Results: The mice in the CHD model appeared to have myocardial pathological damage with elevated serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and decreased high-density lipoprotein cholesterol (HDL-C). Of note, administration of EGCG significantly attenuated myocardial injuries and improved blood lipid levels in mice in a concentration-dependent manner. The advent of EGCG significantly decreased the expression of VEGFA and MMP-2 and increased the activity of superoxide dismutase (SOD), when reducing the content of reactive oxygen species (ROS) in the myocardial tissue and upregulating the expression of HO-1, NQO1, and Nrf2. Conclusion: EGCG may reduce atherosclerotic plaque and alleviate pathological damage in the cardiac tissue of CHD mice as well as improve blood lipid levels with antioxidative effect. The mechanism of its effect may be related to the activation of the Nrf2/HO-1/NQO1 antioxidant pathway in vivo of the CHD mice.


Assuntos
Doença das Coronárias , Fator 2 Relacionado a NF-E2 , Animais , Antioxidantes/farmacologia , Catequina/análogos & derivados , Colesterol , Doença das Coronárias/tratamento farmacológico , Lipídeos , Metaloproteinase 2 da Matriz , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Colato de Sódio , Fator A de Crescimento do Endotélio Vascular
8.
Front Immunol ; 13: 911381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911670

RESUMO

Oxidative stress (OS) is a key factor regulating the systemic pathophysiological effects and one of the fundamental mechanisms associated with aging and fertility deterioration. Previous studies revealed that resveratrol (RV) exhibits a preventive effect against oxidative stress in the ovary. However, it remains unknown whether gut microbiota respond to resveratrol during an OS challenge. In Exp. 1, layers received intraperitoneal injection of tert-butyl hydroperoxide (tBHP) (0 or 800 µmol/kg BW) or received resveratrol diets (0 or 600 mg/kg) for 28 days. In Exp. 2, the role of intestinal microbiota on the effects of resveratrol on tBHP-induced oxidative stress was assessed through fecal microbiota transplantation (FMT). The OS challenge reduced the egg-laying rate and exhibited lower pre-hierarchical follicles and higher atretic follicles. Oral RV supplementation ameliorated the egg-laying rate reduction and gut microbiota dysbiosis. RV also reversed the tryptphan-kynurenine pathway, upregulated nuclear factor E2-related factor 2 (Nrf2) and silent information regulator 1(SIRT1) levels, and decreased the expression of forkhead box O1 (FoxO1) and P53. These findings indicated that the intestinal microbiota-related tryptophan-kynurenine pathway is involved in the resveratrol-induced amelioration of ovary oxidative stress induced by tBHP in the layer model, while SIRT1-P53/FoxO1 and Nrf2-ARE signaling pathway were involved in this process.


Assuntos
Microbiota , Sirtuína 1 , Animais , Feminino , Cinurenina/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Triptofano/metabolismo , Triptofano/farmacologia , Proteína Supressora de Tumor p53/metabolismo
9.
Arthritis Res Ther ; 24(1): 181, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922862

RESUMO

BACKGROUND: Intervertebral disc (IVD) is a highly rhythmic tissue, which experiences a diurnal cycle of high/low mechanical loading via the changes of activity/rest phase. There are signs that disruption of the peripheral IVD clock is related to the process of intervertebral disc degeneration (IDD). However, it is still unclear whether inflammation could disturb the IVD clock and thus induce the process of IDD. METHODS AND RESULTS: In this study, we used IL-1ß, a commonly used inflammatory factor, to induce IDD and found that the IVD clock was dampened in degenerated human nucleus pulposus specimens, rat nucleus pulposus (NP) tissues, and cells. In this study, we found that the circadian clock of NP cells was totally disrupted by knockdown of the core clock gene brain and muscle arnt-like protein-1 (Bmal1), which thus induced the dysfunction of NP cells. Next, we explored the mechanism of dampened clock-induced IDD and found that knockdown of Bmal1 decreased the expression of nuclear factor erythroid2-related factor 2 (NRF2), a downstream target gene of Bmal1, and increased inflammatory response, oxidative stress reaction, and apoptosis of NP cells. In addition, NRF2 activation attenuated the dysfunction of NP cells induced by the dampened IVD clock and the degenerative process of NP tissues in an organotypic tissue-explant model. CONCLUSIONS: Taken together, our study extends the relationship between peripheral clock and IVD homeostasis and provides a potential therapeutic method for the prevention and recovery of IDD by targeting the clock-controlled gene Nrf2.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Fatores de Transcrição ARNTL , Animais , Humanos , Inflamação/genética , Inflamação/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Núcleo Pulposo/metabolismo , Ratos
10.
J Toxicol Sci ; 47(8): 337-348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35922923

RESUMO

Drug-induced liver injury (DILI) is the main cause of failure in drug development and postapproval withdrawal. Although toxicogenomic techniques provide an unprecedented opportunity for mechanistic assessment and biomarker discovery, they are not suitable for the screening of large numbers of exploratory compounds in early drug discovery. Using a comprehensive analysis of toxicogenomics (TGx) data, we aimed to find DILI-relevant transcription factors (TFs) that could be incorporated into a reporter gene assay system. Gene set enrichment analysis (GSEA) of the Open TG-GATEs dataset highlighted 4 DILI-relevant TFs, including CREB, NRF2, ELK-1, and E2F. Using ten drugs with already assigned idiosyncratic toxicity (IDT) risks, reporter gene assays were conducted in HepG2 cells in the presence of the S9 mix. There were weak correlations between NRF2 activity and IDT risk, whereas strong correlations were observed between CREB activity and IDT risk. In addition, CREB activation associated with 3 Withdrawn/Black box Warning drugs was reversed by pretreatment with a PKA inhibitor. Collectively, we suggest that CREB might be a sensitive biomarker for DILI prediction, and its response to stress induced by high-risk drugs might be primarily regulated by the PKA/CREB signaling pathway.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Perfilação da Expressão Gênica/métodos , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transcriptoma
11.
Front Endocrinol (Lausanne) ; 13: 915603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928887

RESUMO

Diabetic peripheral neuropathy (DPN) is considered as one of the most important complications of diabetes mellitus. At present, effective treatments that might improve the damaged neurological function in DPN are sorely needed. As myricetin has been proved to possess excellent neuroprotective and antioxidant effects, it might have therapeutic potential for DPN. Therefore, the purpose of our study was to detect the potential beneficial effect of myricetin on DPN. A single dose of 50 mg/kg of streptozotocin was applied in rats for the establishment of diabetic models. Different doses of myricetin (0.5 mg/kg/day, 1.0 mg/kg/day, and 2.0 mg/kg/day) were intraperitoneally injected for 2 weeks from the 21st day after streptozotocin injection. After the final myricetin injection, behavioral, electrophysiological, biochemical, and protein analyses were performed. In the present study, myricetin significantly ameliorated diabetes-induced impairment in sensation, nerve conduction velocities, and nerve blood flow. In addition, myricetin significantly reduced the generation of advanced glycation end-products (AGEs) and reactive oxygen species (ROS), and elevated Na+, K+-ATPase activity and antioxidant activities in nerves in diabetic animals. Additional studies revealed that myricetin significantly raised the hydrogen sulfide (H2S) levels, and elevated the expression level of heme oxygenase-1 (HO-1) as well as nuclear factor-E2-related factor-2 (Nrf2) in diabetic rats. In addition, myricetin has the capability of decreasing plasma glucose under diabetic conditions. The findings in our present study collectively indicated that myricetin could restore the impaired motor and sensory functions under diabetic conditions. The Nrf2-dependent antioxidant action and the capability of decreasing plasma glucose might be the underlying mechanisms for the beneficial effect of myricetin on impaired neural functions. Our study showed the therapeutic potential of myricetin in the management of DPN.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Glicemia/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/etiologia , Flavonoides , NAD/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina
12.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(6): 937-943, 2022 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-35790446

RESUMO

OBJECTIVE: To explore the mechanism by which berberine inhibits ferroptosis of mouse hippocampal neuronal cells (HT22). METHODS: Cultured HT22 cells were pretreated with 30 or 60 µmol/L berberine for 2 h before exposure to 0.5 µmol/L erastin for 8 h, and the cell proliferation, intracellular ferric iron level, changes in intracellular reactive oxygen species (ROS) and cell apoptosis were detected using CCK-8, Fe2+ fluorescent probe, fluorescent dye (DAPI) and fluorescent probe (H2DCFH-DA). RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of Nrf2, HO-1 and GPX4 in the cells. We further tested the effects of treatments with 2 µmol/L ML385 (a Nrf2 inhibitor), 60 µmol/L berberine and erastin in the cells to explore the protective mechanism of berberine against erastin-induced ferroptosis in the neuronal cells. RESULTS: Treatment with 0.5 µmol/L erastin significantly lowered the viability of HT22 cells (P < 0.05) and increased the production of ROS, cell apoptosis rate and ferric iron level (P < 0.05). Pretreatment with 30 and 60 µmol/L berberine both significantly increased the vitality of erastin-exposed cells (P < 0.05) and lowered the levels of intracellular ROS and ferric iron content (P < 0.05). RT-qPCR and Western blotting showed that berberine obviously promoted the expressions of Nrf2, HO-1 and GPX4 in the cells (P < 0.05), and treatment with ML385 significantly inhibited the Nrf2-HO-1/GPX4 pathway, increased intracellular ROS and ferric iron contents and mitigated the protective effect of berberine against erastin-induced ferroptosis (P < 0.05). CONCLUSION: Berberine can inhibit erastin-induced ferroptosis in HT22 cells possibly by activating the Nrf2-HO-1/ GPX4 pathway.


Assuntos
Berberina , Ferroptose , Animais , Berberina/farmacologia , Corantes Fluorescentes , Hipocampo/metabolismo , Ferro/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Piperazinas , Espécies Reativas de Oxigênio/metabolismo
13.
BMC Complement Med Ther ; 22(1): 180, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799227

RESUMO

BACKGROUND: Atherosclerosis (AS) is the primary cause of cardiovascular disease and the incidence is extremely common; however, there are currently few drugs that can effectively treat AS. Although oridonin has been widely used to treat inflammation and cancer for numerous years, to the best of our knowledge, its protective effect against AS has not been reported. Therefore, the present study aimed to investigate whether oridonin attenuated AS. METHODS: By using text mining, chemometric and chemogenomic methods, oridonin was predicted to be a beneficial agent for the treatment of AS. A parallel flow chamber was used to establish a low shear stress (LSS)-induced endothelial cell (EC) dysfunction model. Briefly, ECs were exposed to 3 dyn/cm2 LSS for 30 min and subsequently treated with oridonin or transfected with a small interfering RNA (siRNA) targeting nuclear factor erythroid 2-related factor 2 (NRF2). Reactive oxygen species (ROS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH) and glutathione disulfide (GSSG) in EA.hy926 cells were analyzed to determine the level of oxidative stress. The nitric oxide (NO) levels and mRNA expression levels of endothelial NO synthase (eNOS), endothelin-1 (ET-1) and prostaglandin synthase (PGIS) in EA.hy926 cells were analyzed to determine EC dysfunction. Furthermore, the mRNA and protein expression levels of NRF2 were analyzed using reverse transcription-quantitative PCR and western blot. In addition, zebrafish were fed with a high-cholesterol diet to establish a zebrafish AS model, which was used to observe lipid accumulation and inflammation under a fluorescence microscope. RESULTS: We found LSS led to oxidative stress and EC dysfunction; this was primarily indicated through the significantly decreased SOD and GSH content, the significantly increased MDA, GSSG and ROS content, the upregulated mRNA expression levels of ET-1, and the downregulated NO levels and mRNA expression levels of eNOS and PGIS in ECs. Notably, oridonin could improve LSS-induced oxidative stress and EC dysfunction, and the effects of oridonin were reversed by the transfection with NRF2 siRNA. Oridonin also attenuated lipid accumulation and neutrophil recruitment at the LSS regions in the zebrafish AS model. CONCLUSIONS: In conclusion, the results of the present study suggested that oridonin may ameliorate LSS-induced EC dysfunction and oxidative stress by activating NRF2, thereby attenuating AS.


Assuntos
Aterosclerose , Fator 2 Relacionado a NF-E2 , Animais , Aterosclerose/tratamento farmacológico , Diterpenos do Tipo Caurano , Células Endoteliais/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Inflamação , Lipídeos , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(6): 717-729, 2022 Jun 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-35837771

RESUMO

OBJECTIVES: Because intracerebral hemorrhage (ICH) has high morbidity, disability and mortality, it is significant to find new and effective treatments for ICH. This study aims to explore the effect of butyphthalide (NBP) on neuroinflammation secondary to ICH and microglia polarization. METHODS: A total of 48 healthy male SD rats were randomly divided into 6 groups: a sham 24 h group, a sham 72 h group, an ICH 24 h group, an ICH 72 h group, an ICH+NBP 24 h group, and an ICH+NBP 72 h group (8 rats per group). After operation, the neurological deficiencies were assessed based on improved Garcia scores and corner test. The expressions of Toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), aquaporin-4 (AQP4), zonula occludens-1 (ZO-1), occludin, CD68, CD86, and CD206 were observed by Western blotting. Inflammatory cytokines were detected by ELISA. The immunofluorescence was to detect the polarization of microglia. RESULTS: 1) Compared with the sham groups, the expression of TLR4 (24 h: P<0.05; 72 h: P<0.01), NF-κB (both P<0.01) and Nrf2 (both P<0.01) in the perihematoma of the ICH group was increased, leading to microglia activation (P<0.01). The expressions of IL-6 (24 h: P<0.05; 72 h: P<0.01) and TNF-α (both P<0.01), the pro-inflammatory cytokines were up-regulated, and the expression of anti-inflammatory cytokine IL-4 was down-regulated (both P<0.01). Besides, the expression of AQP4 was enhanced (both P<0.01). The protein level of tightly connected proteins (including ZO-1, occludin) was decreased (all P<0.01). The neurological function of the rats in the ICH group was impaired in the 2 time points (both P<0.01). 2) Compared with the sham group at 24 h and 72 h after the intervention of NBP, the expressions of TLR4 (both P<0.05) and NF-κB (both P<0.01) were significantly declined, and the expression of Nrf2 was further enhanced (both P<0.05) in the perihematoma of the ICH+NBP group. Furthermore, the expression of M1 microglia marker was inhibited (P<0.05), and the polarization of microglia to the M2 phenotype was promoted (P<0.01). 3) In terms of inflammation after ICH, the IL-4 expression in the ICH+NBP group was increased compared with the ICH group (24 h: P<0.05; 72 h: P<0.01); the expression of IL-6 was decreased significantly in the ICH+NBP 72 h group (P<0.01); the level of AQP4 was declined significantly in the ICH+NBP 24 h group (P<0.05), there was a downward trend in the 72-hour intervention group but without significant statistical difference. 4) Compared with the ICH group, the ZO-1 protein levels were increased (24 h: P<0.05; 72 h: P<0.01), and the symptoms of nerve defect were improved eventually (both P<0.05) in the ICH+NBP groups. CONCLUSIONS: After ICH, the TLR4/NF-κB pathway is activated. The M1 microglia is up-regulated along with the release of detrimental cytokines, while the anti-inflammatory cytokines are down-regulated. The expression of AQP4 is increased, the tight junction proteins from the blood-brain barrier (BBB) is damaged, and the neurological function of rats is impaired. On the contrary, NBP may regulate microglia polarization to M2 phenotype and play a role in the neuroprotective effect mediated via inhibiting TLR4/NF-κB and enhancing Nrf2 pathways, which relieves the neuroinflammation, inhibits the expression of AQP4, repairs BBB, and improves neurological functional defects.


Assuntos
Microglia , Receptor 4 Toll-Like , Animais , Anti-Inflamatórios/uso terapêutico , Hemorragia Cerebral , Citocinas/metabolismo , Interleucina-4/metabolismo , Interleucina-4/farmacologia , Interleucina-4/uso terapêutico , Interleucina-6/metabolismo , Masculino , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ocludina/metabolismo , Ocludina/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptor 4 Toll-Like/genética
15.
Acta Neurobiol Exp (Wars) ; 82(2): 197-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833819

RESUMO

Pachymic acid (PA) plays a neuroprotective role during cerebral ischemia/reperfusion. However, the protective mechanisms of PA in cerebral ischemia/reperfusion have been not fully determined. This investigation aims to explore the neuroprotective role of PA in ischemia/reperfusion via miR­155/NRF2/HO­1 axis. The N2a cell line was induced by hypoxia/reoxygenation (H/R) to simulate the neuronal damage that occurs during cerebral ischemia/reperfusion. PA was used to treat H/R­induced N2a cells. An MTT assay was used to determine cell viability. The protein levels of Bcl­2, Bax, heme oxygenase­1 (HO­1) and nuclear factor E2­related factor 2 (NRF2) were measured via Western blot analysis. The level of apoptosis of N2a cells was determined by flow cytometry. The expression levels of miR­155 and NRF2 were quantified by real­time PCR. PA treatment inhibits the increase in apoptosis induced by H/R and also enhances the viability of cells exposed to H/R. PA reverses the increased expression of miR­155 caused by H/R. Furthermore, H/R does not change the expression of HO­1 and NRF2, but PA upregulates the expressions of HO­1 and NRF2. Additionally, NRF2 is the target of miR­155. Inhibiting miR­155 contributes to increased cell viability and decreased apoptosis via targeting the NRF2/HO­1 pathway. Overall, PA prevents neuronal cell damage induced by hypoxia/reoxygenation via miR­155/NRF2/HO­1 axis.


Assuntos
Isquemia Encefálica , MicroRNAs , Apoptose , Heme Oxigenase-1/metabolismo , Humanos , Hipóxia , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais/fisiologia , Triterpenos
16.
Cell Death Dis ; 13(7): 591, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35803910

RESUMO

Glioblastoma patients have a poor prognosis mainly due to temozolomide (TMZ) resistance. NRF2 is an important transcript factor involved in chemotherapy resistance due to its protective role in the transcription of genes involved in cellular detoxification and prevention of cell death processes, such as ferroptosis. However, the relation between NRF2 and iron-dependent cell death in glioma is still poorly understood. Therefore, in this study, we analyzed the role of NRF2 in ferroptosis modulation in glioblastoma cells. Two human glioblastoma cell lines (U251MG and T98G) were examined after treatment with TMZ, ferroptosis inducers (Erastin, RSL3), and ferroptosis inhibitor (Ferrostatin-1). Our results demonstrated that T98G was more resistant to chemotherapy compared to U251MG and showed elevated levels of NRF2 expression. Interestingly, T98G revealed higher sensitivity to ferroptosis, and significant GSH depletion upon system xc- blockage. NRF2 silencing in T98G cells (T98G-shNRF2) significantly reduced the viability upon TMZ treatment. On the other hand, T98G-shNRF2 was resistant to ferroptosis and reverted intracellular GSH levels, indicating that NRF2 plays a key role in ferroptosis induction through GSH modulation. Moreover, silencing of ABCC1, a well-known NRF2 target that diminishes GSH levels, has demonstrated a similar collateral sensitivity. T98G-siABCC1 cells were more sensitive to TMZ and resistant to Erastin. Furthermore, we found that NRF2 positively correlates with ABCC1 expression in tumor tissues of glioma patients, which can be associated with tumor aggressiveness, drug resistance, and poor overall survival. Altogether, our data indicate that high levels of NRF2 result in collateral sensitivity on glioblastoma via the expression of its pro-ferroptotic target ABCC1, which contributes to GSH depletion when the system xc- is blocked by Erastin. Thus, ferroptosis induction could be an important therapeutic strategy to reverse drug resistance in gliomas with high NRF2 and ABCC1 expression.


Assuntos
Ferroptose , Glioblastoma , Glioma , Fator 2 Relacionado a NF-E2/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/metabolismo , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Fator 2 Relacionado a NF-E2/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Regulação para Cima
17.
Artigo em Inglês | MEDLINE | ID: mdl-35805773

RESUMO

Arsenic is widely present in nature and is a common environmental poison that seriously damages human health. Chronic exposure to arsenic is a major environmental poisoning factor that promotes cell proliferation and leads to malignant transformation. However, its molecular mechanism remains unclear. In this study, we found that arsenite can promote the transformation of immortalized human keratinocyte cells (HaCaT) from the G0/G1 phase to S phase and demonstrated malignant phenotypes. This phenomenon is accompanied by obviously elevated levels of NRF2, NQO1, Cyclin E, and Cyclin-dependent kinase 2 (CDK2). Silencing the NRF2 expression with small interfering RNA (siRNA) in arsenite-transformed (T-HaCaT) cells was shown to reverse the malignant phenotype. Furthermore, the siRNA silencing of NQO1 significantly decreased the levels of the cyclin E-CDK2 complex, inhibiting the G0/G1 to S phase cell cycle progression and transformation to the T-HaCaT phenotypes. Thus, we hypothesized that the NRF2/NQO1 pathway played a key role in the arsenite-induced malignancy of HaCaT cells. By increasing the expression of Cyclin E-CDK2, the NRF2/NQO1 pathway can affect cell cycle progression and cell proliferation. A new common health effect mechanism of arsenic carcinogenesis has been identified; thus, it would contribute to the development of novel treatments to prevent and treat skin cancer caused by arsenic.


Assuntos
Arsênio , Arsenitos , Arsênio/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Ciclina E/farmacologia , Humanos , Queratinócitos , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , RNA Interferente Pequeno/metabolismo
18.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35805959

RESUMO

Low levels of n-3 poly-unsaturated fatty acids (n-3 PUFAs) and high levels of n-6 PUFAs in the blood circulation are associated with an increased risk for suicide. Clinical studies indicate that docosahexaenoic acid (DHA, a n-3 PUFA found in fish-oil) displays protective effects against suicide. It has recently been proposed that the activation of the transcription factor NRF2 might be the pharmacological activity that is common to current anti-suicidal medications. Oxidation products from fish oil, including those from DHA, are electrophiles that reversibly bind to a protein 'KEAP1', which acts as the molecular inhibitor of NRF2 and so indirectly promotes NRF2-transcriptional activity. In the majority of publications, the NRF2-stimulant effect of DHA is ascribed to the metabolite 4-hydroxyhexenal (4HHE). It is suggested to investigate whether 4HHE will display a therapeutically useful anti-suicidal efficacy.


Assuntos
Ácidos Graxos Ômega-3 , Suicídio , Aldeídos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico , Ácidos Graxos Ômega-3/metabolismo , Óleos de Peixe/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo
19.
Int J Mol Sci ; 23(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35806120

RESUMO

Deoxyshikonin (DSK), a phytochemical constituent, has been documented to elicit various oncostatic properties alone or in combination with established therapeutics. However, its role in restraining oral squamous cell carcinoma (OSCC) is mostly unclear. Here, we examined the tumor-suppressive effect of DSK and explored the molecular mechanisms underlying DSK's activities on controlling oral cancer. Our results showed that DSK dose-dependently lessened the cell viability of tongue cancer cell lines, involving induction of cell cycle arrest at the sub-G1 phase and apoptotic cell death. Moreover, a unique signature of apoptosis-related proteins, including augmented nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) expression and caspase activation, was observed in DSK-treated tongue cancer cell lines. Furthermore, DSK-mediated upregulation of HO-1 and cleavage of caspase-9 and -3 were significantly inhibited by pharmacological blockage of p38 kinase. Collectively, these data revealed that DSK halted cell cycle progression and elicited cell apoptosis in tongue cancer cell lines, reshaping a p38-dependent profile of apoptotic proteome. Our findings provided novel insights into the therapeutic implications of a natural compound on the management of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Neoplasias da Língua , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Heme Oxigenase-1/metabolismo , Humanos , Neoplasias Bucais/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Naftoquinonas , Neoplasias da Língua/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Int J Mol Sci ; 23(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35806399

RESUMO

Bisdemethoxycurcumin (BDMC), a principal and active component of edible turmeric, was previously found to have beneficial effects on metabolic diseases. Chronic kidney disease (CKD) may benefit from its potential therapeutic use. Using a high-fat diet (HFD)-fed mouse model, we examined the effects of BDMC on renal injury and tried to determine how its associated mechanism works. A number of metabolic disorders are significantly improved by BDMC, including obesity, hyperglycemia, hyperinsulinemia, hyperlipidemia and inflammation. Further research on renal histopathology and function showed that BDMC could repair renal pathological changes and enhance renal function. Moreover, decreased serum malondialdehyde (MDA), elevated superoxide dismutase (SOD) activity, and the inhibition of renal reactive oxygen species (ROS) overproduction revealed the alleviation of oxidative stress after BDMC administration. In addition, renal Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2 (Keap1/Nrf2) pathway was activated in BDMC-treated mice. In conclusion, these findings demonstrated BDMC as a potential therapy for HFD-induced CKD via the activation of the Keap1/Nrf2 pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Insuficiência Renal Crônica , Animais , Diarileptanoides , Dieta Hiperlipídica/efeitos adversos , Fator de Transcrição de Proteínas de Ligação GA , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...