Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.839
Filtrar
1.
Biol Res ; 52(1): 49, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492195

RESUMO

BACKGROUND: Psoriasis is a common and intractable skin disease affecting the physical and mental health of patients. The accumulation of ROS is involved in the pathogenesis of psoriasis and antioxidants are believed to be therapeutic. This study aimed to investigate the therapeutic efficacy of astilbin on ROS accumulation in psoriasis. RESULTS: The study showed that 50 µg/ml astilbin could inhibit the growth and reduce the accumulation of ROS in HaCaT cells stimulated by IL-17 and TNF-α. Astilbin could elevate the Nrf2 accumulation in the nuclei, eventually leading to the transcriptional activation of various antioxidant proteins and reducing the expression of VEGF. CONCLUSIONS: Our results collectively suggest that astilbin could induce Nrf2 nucleus translocation, which is contribute to reduce the ROS accumulation and VEGF expression, and inhibit the proliferation of HaCaT cells.


Assuntos
Flavonóis/administração & dosagem , Queratinócitos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Psoríase/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Interleucina-17/metabolismo , Queratinócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/metabolismo , Psoríase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 41(4): 529-535, 2019 Aug 30.
Artigo em Chinês | MEDLINE | ID: mdl-31484617

RESUMO

To investigate the effect of N-acetylcysteine(NAC)on cognitive function and nuclear factor erythroid 2 related factor 2/ heme oxygenase-1(Nrf2/HO-1)pathway in mouse models of postoperative cognitive dysfunction. Methods Fifty-four male C57BL/6J mice(3-4 months old)were randomly divided into control group,surgery group,and surgery+NAC group by block randomization.The intramedullary fixation for left tibial fracture surgery was performed to establish postoperative cognitive dysfunction models.NAC(150 mg/kg)was administered intraperitoneally in group surgery+NAC 30 minutes before and 3 hours,6 hours after surgery,while saline was given in control group and surgery group.Six mice in each group were selected randomly underwent Morris water maze test on the third day after surgery.Animals were sacrificed at the first and third postoperative days,and the hippocampus was harvested.Enzyme-linked immunosorbent assay was used to quantify the levels of interleukin-6(IL-6)and malondialdehyde(MDA)in hippocampus.Western blot and real-time polymerase chain reaction were used to measure the expressions of Nrf2 and HO-1 in hippocampus. Results There was no significant difference in swimming speed among three groups(F=2.135,P=0.114).Compared with control group and surgery+NAC group,the surgery group had prolonged escape latency(P<0.01),reduced platform crossing times(P<0.01),and shortened time spent in the target quadrant(P<0.01).Compared with the control group,the surgery group and the surgery+NAC group had significantly increased levels of IL-6 and MDA in hippocampus at the first postoperative day(all P=0.000).On the third postoperative day,there was no significant difference in the levels of IL-6(P=0.251)and MDA(P=0.103)between control group and surgery+NAC group.The protein expressions of Nrf2 and HO-1 in hippocampus were significantly higher in surgery group and surgery+NAC group than in control group and significantly higher in surgery+NAC group than in surgery group(all P=0.000).The mRNA expressions of Nrf2 and HO-1 in hippocampus were significantly higher in surgery group and surgery+NAC group than in control group and significantly higher in surgery+NAC group than in surgery group (all P=0.000). Conclusions NAC pretreatment may reduce oxidative stress and inflammatory response in hippocampus and improve cognitive function.Such effect may be relate to the activation of Nrf2/HO-1 pathway.


Assuntos
Acetilcisteína/farmacologia , Cognição/efeitos dos fármacos , Disfunção Cognitiva/tratamento farmacológico , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Disfunção Cognitiva/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Complicações Pós-Operatórias , Distribuição Aleatória
3.
J Agric Food Chem ; 67(37): 10342-10351, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31461273

RESUMO

Maltol, a maillard reaction product from ginseng (Panax ginseng C. A. Meyer), has been confirmed to inhibit oxidative stress in several animal models. Its beneficial effect on oxidative stress related brain aging is still unclear. In this study, the mouse model of d-galactose (d-Gal)-induced brain aging was employed to investigate the therapeutic effects and potential mechanisms of maltol. Maltol treatment significantly restored memory impairment in mice as determined by the Morris water maze tests. Long-term d-Gal treatment reduced expression of cholinergic regulators, i.e., the cholineacetyltransferase (ChAT) (0.456 ± 0.10 vs 0.211 ± 0.03 U/mg prot), the acetylcholinesterase (AChE) (36.4 ± 5.21 vs 66.5 ± 9.96 U/g). Maltol treatment prevented the reduction of ChAT and AChE in the hippocampus. Maltol decreased oxidative stress levels by reducing levels of reactive oxygen species (ROS) and malondialdehyde (MDA) production in the brain and by elevating antioxidative enzymes. Furthermore, maltol treatment minimized oxidative stress by increasing the phosphorylation levels of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1). The above results clearly indicate that supplementation of maltol diminishes d-Gal-induced behavioral dysfunction and neurological deficits via activation of the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in brain. Maltol might become a potential drug to slow the brain aging process and stimulate endogenous antioxidant defense capacity. This study provides the novel evidence that maltol may slow age-associated brain aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Galactose/efeitos adversos , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/administração & dosagem , Pironas/administração & dosagem , Envelhecimento/metabolismo , Animais , Heme Oxigenase-1/genética , Humanos , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo/efeitos dos fármacos , Panax/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
J Agric Food Chem ; 67(35): 9782-9788, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31390859

RESUMO

Sulforaphane, a potent antioxidant compound, is unstable at ambient temperature, whereas its precursor glucoraphanin is stable and metabolized to sulforaphane. Thus, we hypothesized that glucoraphanin-rich diet could effectively induce antioxidant enzyme activities and investigated the protective effects of long-term intake of a glucoraphanin-enriched kale (GEK) diet on skin aging in senescence-accelerated mouse prone 1 (SAMP1) mice. The senescence grading score was significantly lower after treatment with GEK for 39 weeks than that of the control mice. GEK also suppressed the thinning of the dorsal skin layer. Moreover, the GEK treatment enhanced the collagen production and increased the nuclear translocation of Nrf2 and HO-1 expression level in the skin tissue. TßRII and Smad3 expressions were clearly higher in the GEK-treated group than in the control group. Thus, GEK suppressed senescence in SAMP1 mice by enhancing the antioxidant activity and collagen production via the TßRII/Smad3 pathway, suggesting its practical applications for protection against skin aging.


Assuntos
Brassica/metabolismo , Glucosinolatos/metabolismo , Imidoésteres/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Extratos Vegetais/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Envelhecimento da Pele/fisiologia , Proteína Smad3/metabolismo , Animais , Antioxidantes/metabolismo , Brassica/química , Colágeno/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Transdução de Sinais , Envelhecimento da Pele/genética , Proteína Smad3/genética , Fatores de Tempo
5.
Adv Exp Med Biol ; 1155: 567-581, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468432

RESUMO

Here, we investigated the hepatoprotective effect of a hot water extract from Loliolus beka gray meat (LBMH) containing plentiful taurine in H2O2-induced oxidative stress in hepatocytes. LBMH potently scavenged the 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals and exhibited the good reducing power and the oxygen radical absorbance capacity (ORAC) value. Also, LBMH improved the cell viability against H2O2-induced hepatic damage in cultured hepatocytes by reducing intracellular reactive oxygen species (ROS) production. In addition, LBMH inhibited apoptosis via a reduction in sub-G1 cell population, as well as inhibition of apoptotic body formation from H2O2-induced oxidative damage in hepatocytes. Moreover, LBMH regulated the expression levels of Bax, a pro-apoptotic molecule and Bcl-2, an anti-apoptotic molecule in H2O2-treated hepatocytes. Additionally, pre-treatment with LBMH increased the expression of heme oxygenase 1 (HO-1), which is a hepatoprotective enzyme, by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) in H2O2-treated hepatocytes. Taken together, LBMH may be useful as a food ingredient for treatment of liver disease by regulating the Nrf2/HO-1 signal pathway.


Assuntos
Antioxidantes , Extratos Celulares/farmacologia , Decapodiformes/química , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo , Taurina/farmacologia , Animais , Células Cultivadas , Heme Oxigenase-1/metabolismo , Hepatócitos/citologia , Humanos , Peróxido de Hidrogênio , Carne , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Adv Exp Med Biol ; 1155: 583-596, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468433

RESUMO

In this study, we evaluated the protective effects of an aqueous extract from Batillus cornutus meat (BM) against cellular oxidative damage caused by hydrogen peroxide (H2O2) in human hepatocyte, Chang cells. First, we prepared an aqueous extract of BM meat (BMW) showing the highest taurine content among free amino acid contents. BMW led to high antioxidant activity showing 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, good reducing power and an oxygen radical absorbance capacity (ORAC) value. Also, BMW improved cell viability that was diminished by H2O2 exposure, as it reduced the generation of intracellular reactive oxygen species (ROS) in Chang cells. In addition, BMW up-regulated the production of antioxidant enzymes, such as catalase and superoxide dismutase (SOD), compared to H2O2-treated Chang cells lacking BMW. Moreover, BMW induced the expressions of nuclear Nrf2 and cytosolic HO-1 in H2O2-treated Chang cells. Interestingly, the treatment of ZnPP, HO-1 inhibitor, abolished the improvement in cell viability and intracellular ROS generation mediated by BMW treatment. In conclusion, this study suggests that BMW protects hepatocytes against H2O2-mediated cellular oxidative damage via up-regulation of the Nrf2/HO-1 signal pathway.


Assuntos
Extratos Celulares/farmacologia , Gastrópodes/química , Heme Oxigenase-1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transdução de Sinais , Taurina/farmacologia , Animais , Células Cultivadas , Humanos , Peróxido de Hidrogênio , Carne , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
7.
Adv Exp Med Biol ; 1155: 661-674, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31468438

RESUMO

In the present study, we investigated the antioxidant activity of an aqueous extract from Atrina pectinate meat (APW) against H2O2-induced oxidative stress in a human hepatocyte. The extraction yield of APW was 30.01 ± 0.83% and which contained the highest taurine content among free amino acid contents. APW led to the high antioxidant activity showing 2,2-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activity, good reducing power and oxygen radical absorbance capacity (ORAC) value. Also, the results showed that APW improved the cell viability decreased by H2O2 stimulation as well as the reduction of intracellular reactive oxygen species (ROS) generation in hepatocytes. Additionally, APW up-regulated the production of antioxidant mechanisms related enzymes such as catalase and superoxide dismutase (SOD), compared to the only H2O2-treated hepatocytes. Moreover, APW increased the expressions of nuclear Nrf2 and cytosolic HO-1 in H2O2-treated hepatocytes. Interestingly, the treatment of ZnPP, a HO-1 inhibitor abolished the cell viability and intracellular ROS generation induced by APW treatment. In conclusion, this study suggests that APW protects H2O2 induced oxidative stress via up-regulating of Nrf2/HO-1 signal pathway in hepatocytes.


Assuntos
Antioxidantes/farmacologia , Bivalves/química , Extratos Celulares/farmacologia , Hepatócitos/efeitos dos fármacos , Estresse Oxidativo , Animais , Heme Oxigenase-1/metabolismo , Humanos , Peróxido de Hidrogênio , Carne , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Chem Biol Interact ; 311: 108777, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31376360

RESUMO

Nicorandil ameliorated doxorubicin-induced nephrotoxicity; this study aimed to show and explain the mechanism of this protection. A precise method was elucidated to study the effect of nicorandil on doxorubicin-induced nephrotoxicity in rats depending on the critical inflammation pathway TLR4/MAPK P38/NFκ-B. Adult male rats were subdivided into four groups. The 1st group was normal control, the 2nd group received nicorandil (3 mg/kg; p.o., for 4 weeks), the 3rd group received doxorubicin (2.6 mg/kg, i.p., twice per week for 4 weeks), and the fourth group was combination of doxorubicin and nicorandil for 4 weeks. Nephrotoxicity was assessed by biochemical tests through measuring Kidney function biomarkers such as [serum levels of urea, creatinine, albumin and total protein] besides renal kidney injury molecule-1 (KIM-1) and cystatin C], oxidative stress parameters such as [renal tissue malondialdehyde (MDA), reduced glutathione (GSH), SOD, catalase and nrf-2], mediators of inflammation such as [Toll like receptor 4 (TLR-4), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), p38 MAPK, Interleukin 1 beta (IL-1 ß), and Tumor necrosis factor alpha (TNF-α)] and markers of apoptosis [BAX and Bcl-2 in renal tissue]. Finally, our data were supported by histopathology examination. Nicorandil pretreatment resulted in a significant decrease in nephrotoxicity biomarkers, oxidative stress markers, inflammatory mediators and prevented apoptosis through decreasing BAX and increasing Bcl-2 in renal tissues. Nicorandil prevented all the histological alterations caused by doxorubicin. Nicorandil is a promising antidote against doxorubicin-induced nephrotoxicity by neutralizing all toxicity mechanisms caused by doxorubicin through normalizing inflammatory cascade of TLR4/MAPK P38/NFκ-B.


Assuntos
Doxorrubicina/toxicidade , Rim/efeitos dos fármacos , Nicorandil/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Nitrogênio da Ureia Sanguínea , Moléculas de Adesão Celular/sangue , Creatinina/sangue , Glutationa/metabolismo , Interleucina-1beta/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Biomed Khim ; 65(3): 165-179, 2019 Apr.
Artigo em Russo | MEDLINE | ID: mdl-31258141

RESUMO

Monocytes and macrophages play a key role in the development of inflammation: under the action of lipopolysaccharides (LPS), absorbed from the intestine, monocytes and macrophages form reactive oxygen species (ROS) and cytokines, this leads to the development of oxidative stress, inflammation and/or apoptosis in all types of tissues. In the cells LPS induce an "internal" TLR4-mediated MAP-kinase inflammatory signaling pathway and cytokines through the superfamily of tumor necrosis factor receptor (TNFR) and the "death domain" (DD) initiate an "external" caspase apoptosis cascade or necrosis activation that causes necroptosis. Many of the proteins involved in intracellular signaling cascades (MYD88, ASK1, IKKa/b, NF-kB, AP-1) are redox-sensitive and their activity is regulated by antioxidants thioredoxin, glutaredoxin, nitroredoxin, and glutathione. Oxidation of these signaling proteins induced by ROS enhances the development of inflammation and apoptosis, and their reduction with antioxidants, on the contrary, stabilizes the signaling cascades speed, preventing the vicious circle of oxidative stress, inflammation and apoptosis that follows it. Antioxidant (AO) enzymes thioredoxin reductase (TRXR), glutaredoxin reductase (GLRXR), glutathione reductase (GR) are required for reduction of non-enzymatic antioxidants (thioredoxin, glutaredoxin, nitroredoxin, glutathione), and AO enzymes (SOD, catalase, GPX) are required for ROS deactivation. The key AO enzymes (TRXR and GPX) are selenium-dependent; therefore selenium deficiency leads to a decrease in the body's antioxidant defense, the development of oxidative stress, inflammation, and/or apoptosis in various cell types. Nrf2-Keap1 signaling pathway activated by selenium deficiency and/or oxidative stress is necessary to restore redox homeostasis in the cell. In addition, expression of some genes is changed with selenium deficiency. Consequently, growth and proliferation of cells, their movement, development, death, and survival, as well as the interaction between cells, the redox regulation of intracellular signaling cascades of inflammation and apoptosis, depend on the selenium status of the body. Prophylactic administration of selenium-containing preparations (natural and synthetic (organic and inorganic)) is able to normalize the activity of AO enzymes and the general status of the body. Organic selenium compounds have a high bioavailability and, depending on their concentration, can act both as selenium donors to prevent selenium deficiency and as antitumor drugs due to their toxicity and participation in the regulation of signaling pathways of apoptosis. Known selenorganic compounds diphenyldiselenide and ethaselen share similarity with the Russian organo selenium compound, diacetophenonylselenide (DAPS-25), which serves as a source of bioavailable selenium, exhibits a wide range of biological activity, including antioxidant activity, that governs cell redox balance, inflammation and apoptosis regulation.


Assuntos
Apoptose , Inflamação/metabolismo , Estresse Oxidativo , Compostos de Selênio/metabolismo , Antioxidantes/metabolismo , Glutationa Redutase/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Selênio , Transdução de Sinais , Tiorredoxina Dissulfeto Redutase/metabolismo
10.
J Agric Food Chem ; 67(32): 8794-8809, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31345023

RESUMO

Oxidative stress may play a critical role in the progression of liver disorders. Increasing interest has been given to the associations among diet, oxidative stress, gut-liver axis, and nonalcoholic fatty liver disease. Here, we investigated the effects of processed meat proteins on biomarkers of lipid homeostasis, hepatic metabolism, antioxidant functions, and gut microbiota composition in glutaredoxin1 deficient (Glrx1-/-) mice. The wild-type (WT) and Glrx1-/- mice were fed a soy protein diet (SPD), a dry-cured pork protein diet (DPD), a braised pork protein diet (BPD), and a cooked pork protein diet (CPD) at a dose of 20% of protein for 3 months. Serum and hepatic total cholesterol, serum endotoxin, hepatic liver droplet %, and antioxidant capacity were significantly increased in the CPD fed WT mice. In addition, CPD fed Glrx1-/- mice significantly increased total cholesterol, triacylglycerol, and pro-inflammatory cytokines which are accompanied by higher steatosis scores, intrahepatic lipid accumulation, and altered gene expression associated with lipid metabolism. Furthermore, hepatic gene expression of Nrf2/keap1 signaling pathway and its downstream signaling targets were determined using RT-qPCR. Glrx1 deficiency increased Nrf2 activity and expression of its target genes (GPx, catalase, SOD1, G6pd, and Bbc3), which was exacerbated by intake of CPD. Metagenomic analyses revealed that Glrx1-/- mice fed meat protein diets had higher abundances of Mucispirillum, Oscillibacter, and Mollicutes but lower abundances of Bacteroidales S24-7 group_norank, Blautia, and Anaerotruncus than their wild-type counterparts. In summary, Glrx1 deficiency induced an increase in serum biomarkers for lipid homeostasis, gut microbiota imbalance, and upregulation of Nrf2/Keap1 and antioxidant defense genes, which was aggravated by cooked meat protein diet.


Assuntos
Glutarredoxinas/genética , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Lipogênese , Fígado/metabolismo , Produtos da Carne/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Colesterol/sangue , Citocinas/metabolismo , Feminino , Microbioma Gastrointestinal , Glutarredoxinas/deficiência , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Carne Vermelha , Transdução de Sinais , Triglicerídeos/sangue
11.
Chem Biol Interact ; 310: 108754, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31323227

RESUMO

Diabetic cardiomyopathy (DCM) is one of the leading causes of morbidity and mortality in diabetic patients. Piceatannol (PIC) has protective effects against cardiovascular disease; however, it remains unknown whether it also protects against DCM. A Cell Counting Kit-8 (CCK-8) assay was used to evaluate the effects of PIC on the viability of high glucose (HG)-induced H9C2 cells. Protein expression and mRNA levels were detected by western blotting and real-time polymerase chain reaction (RT-PCR), respectively. In vivo, physical and biochemical analyses, together with transthoracic echocardiography and hemodynamic measurements, were used to detect the effects of PIC treatment on cardiac function in DCM rats. Reactive oxygen species production was determined using an ELISA kit, and inflammatory cytokines were detected by RT-PCR. Pathological changes were assessed by hematoxylin-eosin staining, immunohistochemical staining, and TUNEL staining. According to the results, PIC treatment improved cell viability and inhibited cell apoptosis in HG-induced H9C2 cardiac myoblasts. In addition, PIC not only attenuated the over-production of interleukin-6 (IL-6) (P < 0.05) and tumor necrosis factor alpha (TNF-α) (P < 0.05), but also improved the expression of nuclear factor E2-related factor 2 (Nrf2) (P < 0.05) and heme oxygenase-1 (HO-1) (P < 0.01). Importantly, knockdown of Nrf2 suppressed PIC-mediated activation of the Nrf2/HO-1 pathway and abolished its anti-inflammatory effects. In vivo, oral administration of PIC suppressed STZ-induced inflammation, oxidative stress hypertrophy, fibrosis(myocardial collagen volume fraction in 5 mg/kg and 10 mg/kg PIC group was decreased 25.83% and 55.61% compared with the DM group), and apoptosis(Caspase-3 level in 5 mg/kg and 10 mg/kg PIC group was decreased 13.21% and 33.91% compared with the DM group), thereby relieving cardiac dysfunction and improving both fibrosis and pathological changes in cardiac tissues of diabetic rats. These findings define for the first time that the effects of PIC against DCM can be attributed to its role in inflammation and oxidative stress inhibition.


Assuntos
Cardiomiopatias Diabéticas/tratamento farmacológico , Inflamação/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais , Estilbenos/farmacologia , Animais , Linhagem Celular , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Ratos , Estilbenos/uso terapêutico
12.
Zhongguo Zhong Yao Za Zhi ; 44(11): 2331-2337, 2019 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-31359660

RESUMO

Astragaloside Ⅳ(AS-Ⅳ) has protective effects against ischemia-reperfusion injury(IRI), but its mechanism of action has not yet been determined. This study aims to investigate the protective effects and mechanism of AS-Ⅳ on H9c2 cardiomyocyte injury induced by hypoxia-reoxygenation(H/R). The H/R model of myocardial cells was established by hypoxic culture for 12 hours and then reoxygenation culture for 8 hours. After AS-Ⅳ treatment, cell viability, the reactive oxygen species(ROS) levels, as well as the content or activity of superoxide dismutase(SOD), malondialdehyde(MDA), interleukin 6(IL-6), and tumor necrosis factor alpha(TNF-α), were measured to evaluate the effect of AS-Ⅳ treatment. The effect of AS-Ⅳ on HO-1 protein expression and nuclear Nrf2 and Bach1 protein expression was determined by Western blot. Finally, siRNA was used to knock down HO-1 gene expression to observe its reversal effect on AS-Ⅳ intervention. The results showed that as compared with the H/R model group, the cell viability was significantly increased(P<0.01), ROS level in the cells, MDA, hs-CRP and TNF-α in cell supernatant and nuclear protein Bach1 expression in the cells were significantly decreased(P<0.01), while SOD content, HO-1 protein expression in cells and expression of nuclear protein Nrf2 were significantly increased(P<0.01) in H/R+AS-Ⅳ group. However, pre-transfection of HO-1 siRNA into H9c2 cells by liposome could partly reverse the above effects of AS-Ⅳ after knocking down the expression of HO-1. This study suggests that AS-Ⅳ has significant protective effect on H/R injury of H9c2 cardiomyocytes, and Nrf2/Bach1/HO-1 signaling pathway may be a key signaling pathway for the effect.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Saponinas/farmacologia , Transdução de Sinais , Triterpenos/farmacologia , Apoptose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Hipóxia Celular , Células Cultivadas , Heme Oxigenase-1/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo
13.
Chem Biol Interact ; 310: 108741, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31299238

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in redox homeostasis. Activation of Nrf2 pathway by natural molecules effectively inhibits oxidants and toxicants-induced redox imbalance, and thus is able to intervene the onset and progression of many human diseases. In our previous study, a chalcone named as artocarmitin B (ACB), formed by artocarmitin A (ACA) and a trans-feruloyl substituent, was found to be a potential Nrf2 activator. In the present research, we found that ACB up-regulated the expressions of Nrf2, NAD(P)H: quinone oxidoreductase 1 (NQO1) and glutamate-cysteine ligase, modifier subunit (GCLM), inhibited Nrf2 degradation and promoted Nrf2 translocation to the nucleus under non-toxic doses. Moreover, ACB enhanced intracellular antioxidant capability in human lung epithelial cells through up-regulating reduced glutathione (GSH) level. Furthermore, ACB-induced activation of Nrf2 was related to the kinase pathways, including mitogen-activated protein kinase (MAPK), protein kinase C (PKC), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and protein kinase R-like endoplasmic reticulum kinase (PERK). In terms of activation of Nrf2 pathway, ACB was more potent than ACA and ferulic acid (FA) individually or in combination. Collectively, our results indicate that ACB is an novel Nrf2 activator and enhances intracellular antioxidant capacity in human lung epithelial cells.


Assuntos
Antioxidantes/farmacologia , Chalcona/farmacologia , Células Epiteliais/metabolismo , Pulmão/citologia , Fator 2 Relacionado a NF-E2/metabolismo , Chalcona/uso terapêutico , Glutationa/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Transdução de Sinais
14.
J Agric Food Chem ; 67(29): 8227-8234, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31299148

RESUMO

The mechanisms underlying neurodegenerative diseases are not fully understood yet. However, an increasing amount of evidence has suggested that these disorders are related to oxidative stress. We reported herein that lipoamide (LM), a neutral amide derivative of lipoic acid (LA), could resist oxidative stress-mediated neuronal cell damage. LM is more potent than LA in alleviating hydrogen peroxide- or 6-hydroxydopamine-induced PC12 cell injury. Our results reveal that LM promotes the nuclear accumulation of NFE2-related factor 2 (Nrf2), following with the activation of expression of Nrf2-governed antioxidant and detoxifying enzymes. Notably, silencing Nrf2 gene annuls the protection of LM, which demonstrates that Nrf2 is engaged in this cytoprotection. Our findings suggest that LM might be used as a potential therapeutic candidate for oxidative stress-related neurological disorders.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Tióctico/análogos & derivados , Animais , Elementos de Resposta Antioxidante/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Ratos , Transdução de Sinais/efeitos dos fármacos , Ácido Tióctico/farmacologia
15.
Chem Biol Interact ; 309: 108701, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31181187

RESUMO

Pelargonidin, a well-known natural anthocyanidin found in berries strawberries, blueberries, red radishes and other natural foods, has been found to possess health beneficial effects including anti-cancer effect. Herein, we investigated the effect of pelargonidin on cellular transformation in mouse skin epidermal JB6 (JB6 P+) cells induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Pelargonidin treatment significantly decreased colony formation and suppressed cell viability of JB6 P+ cells. Pelargonidin also induced the anti-oxidant response element (ARE)-luciferase activation in HepG2-C8 cells overexpressing the ARE-luciferase reporter. Knockdown of nuclear factor E2-related factor 2 (Nrf2) in shNrf2 JB6 P+ cells enhanced TPA-induced colony formation and attenuated pelargonidin's blocking effect. Pelargonidin reduced the protein levels of genes encoding methyltransferases (DNMTs) and histone deacetylases (HDACs). Importantly, pelargonidin decreased the DNA methylation in the Nrf2 promoter region of JB6 P+ cells and increased Nrf2 downstream target genes expression, such as NAD(P)H/quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1), involved in cellular protection. In summary, our results showed that pelargonidin blocks TPA-induced cell transformation. The possible molecular mechanisms of its potential anti-cancer effects against neoplastic transformation may be attributed to its activation of Nrf2-ARE signaling pathway and its cytoprotective effect.


Assuntos
Antocianinas/farmacologia , Desmetilação do DNA/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antocianinas/química , Elementos de Resposta Antioxidante/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA-Citosina Metilases/metabolismo , Células Epidérmicas/citologia , Células Epidérmicas/efeitos dos fármacos , Células Epidérmicas/metabolismo , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Histona Desacetilases/metabolismo , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
16.
Aquat Toxicol ; 213: 105219, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31195325

RESUMO

Nrf2 is a crucial transcription factor that regulates the expression of cytoprotective enzymes and controls cellular redox homeostasis. Both arsenic and fluoride are potent toxicants that are known to induce Nrf2. They are reported to coexist in many areas of the world leading to complex mixture effects in exposed organisms. The present study investigated the expression of Nrf2 and related xenobiotic metabolizing enzymes along with other stress markers such as histopathological alterations, catalase activity, reduced glutathione content and lipid peroxidation in zebrafish liver as a function of combined exposure to environmentally relevant concentrations of arsenic (37.87 µgL-1 or 5.05 × 10-7 M) and fluoride (6.8 mg L-1 or 3.57 × 10-4 M) for 60 days. The decrease in the total reduced glutathione level was evident in all treatment conditions. Hyperactivity of catalase along with conspicuous elevation in reactive oxygen species, malondialdehyde content and histo-architectural anomalies signified the presence of oxidative stress in the treatment groups. Nrf2 was seen to be induced at both transcriptional and translational levels in case of both individual and co-exposure. The same pattern was observed in case of its nuclear translocation also. From the results of qRT-PCR it was evident that at each time point co-exposure to arsenic and fluoride seemed to alter the gene expression of Cu/Zn Sod, Mn Sod, Gpx and Nqo1 just like their individual exposure but at a very low magnitude. In conclusion, this study demonstrates for the first time the differential expression and activity of Nrf2 and other stress response genes in the zebrafish liver following individual and combined exposure to arsenic and fluoride.


Assuntos
Arsênico/toxicidade , Fluoretos/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/genética , Xenobióticos/metabolismo , Peixe-Zebra/metabolismo , Animais , Catalase/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
J Sci Food Agric ; 99(13): 6097-6107, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31250448

RESUMO

BACKGROUND: Reactive oxygen species (ROS) can cause DNA damage. Rice protein (RP) inhibits ROS accumulation. However, a link between the reduction of ROS-derived DNA damage and the intake of RP is far from clear. The main objective of this study is to elucidate the effects of RPs on the reduction of DNA damage in growing and adult rats. RESULTS: An intake of RP for 2 weeks significantly reduced the hepatic accumulation of ROS and 8-hydroxydeoxyguanosine (8-OHdG) in growing and adult rats, whereas the hepatic p53 content was markedly increased by RPs. After 2 weeks' feeding, the mRNA levels and protein expressions of p53, ataxia-telangiectasia mutated (ATM), and Checkpoint kinase 2 (Chk2) were up-regulated by RPs, whereas Murine Double Minute 2 (MDM2) expressions were markedly inhibited by RPs, resulting in more p53 being translocated into the nucleus. Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) was activated by RP by reducing Kelch-like ECH-associated protein 1 (Keap1), resulting in the up-regulation of antioxidant expressions of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) in RP groups. CONCLUSION: Rice protein can exert an endogenous antioxidant activity to reduce ROS-derived DNA damage by activating the Nrf2-Keap1 pathway. This study suggests that the activation of the ATM-Chk2-p53 pathway might be one of the mechanisms exerted by RP for reducing DNA damage in growing and adult rats. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/metabolismo , Dano ao DNA , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Catalase/genética , Catalase/metabolismo , Quinase do Ponto de Checagem 2/genética , Quinase do Ponto de Checagem 2/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Masculino , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Proteína Supressora de Tumor p53/genética
18.
BMC Complement Altern Med ; 19(1): 139, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221142

RESUMO

BACKGROUND: Several studies have found that caffeic acid (CA), a well-known phytochemical, displays important antioxidant and anti-cancer activities. However, no evidence exists on the protective effect and its mechanisms that CA treatment alone has against oxidative stress induced by tert-butyl hydroperoxide (t-BHP) in HepG2 cells. METHODS: Hepatoprotective activities such as cell viability, mRNA expression, and report gene assay were measured using HepG2 cell. Three types of genes and proteins related with detoxification in liver were used for measuring the hepatoprotective effects. Statistical analysis was performed using one-way ANOVA test and differences among groups were evaluated by Tukey's studentized range tests. RESULTS: The present study indicate that treatment with CA up-regulates heme oxygenase-1 (HO-1) and glutamate-cysteine ligase (GCL) mRNA and protein expressions in a CA-dose-dependent manner. In addition, translocation of nuclear factor-E2 p45-related factor (Nrf2) from the cytoplasm to the nucleus and phosphorylation of extracellular signal-regulated kinase, ERK and c-Jun N-terminal kinase, JNK which have been shown to be involved in mitogen-activated protein kinases, MAPKs are significantly enhanced by CA treatment. Furthermore, in cell nuclei, CA enhances the 5'-flanking regulatory region of human antioxidant response element (ARE) and activates the ARE binding site. CONCLUSION: Therefore, CA proved to be a stimulant of the expression of detoxification enzymes such as HO-1, GCLC, and GCLM through the ERK/Nrf2 pathway, and it may be an effective chemoprotective agent for protecting liver damage against oxidative damage.


Assuntos
Ácidos Cafeicos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , terc-Butil Hidroperóxido/toxicidade , Elementos de Resposta Antioxidante/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/genética , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Células Hep G2 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Neoplasias Hepáticas/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
19.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 35(2): 145-149, 2019 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-31250606

RESUMO

OBJECTIVE: To investigate the intervention of curcumin and its analogue J7 on oxidative stress injury in testis of type 2 diabetic rats. METHODS: Sixty male SD rats, 10 rats were chosen as normal control group (NC), the other 50 rats were assigned to experiment group. Experiment diabetic rats were induced by high-fat food and intraperitoneal injection of steptozotocin (STZ). After the model was established successfully, diabetic rats were divided into four groups randomly: diabetes mellitus group (DM, n=12), curcumin treatment group (CUR, n=10), high dose treatment group of J7 (J+, n=10), low dose treatment group of J7 (J-, n=10). The CUR group were intragastrically administered with curcumin 20 mg/kg daily, in addition, the J+ group and the J- group were intragastrically administered with J7 20 mg/kg and 10 mg/kg daily respectively. After 8 weeks, the fast blood glucose was detected biochemically. The activity of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) were detected by hydroxylamine method and thiobarbituric acid method respectively. The protein expressions of the nuclear factor-erythroid 2-related factor 2 (tNrf2), phosphorylation of Nrf2 (pNrf2), catalase (CAT), NAD(P)H quinine oxidoreductase 1 (NQO1) were measured by Western blot. The mRNA expressions of CAT, NQO1, hemeoxygenase-1 (HO1) were measured by quantitative real-time PCR (qRT-PCR). Morphological structure of testis was observed by hematoxylin-eosin (HE) staining. The expressions of Nrf2 and CAT were also detected by immunohistochemical method. RESULTS: The levels of fast blood glucose and MDA in DM group were increased significantly(P<0.05), while the body weight, the activity of SOD, the protein expressions of pNrf2/tNrf2, CAT, NQO1 and the mRNA expressions of CAT, NQO1, HO1 were decreased (P<0.05). Under light microscope, the DM group showed disrupted histological appearance. Immunohistochemistry showed that the protein expressions of Nrf2 around the nucleus and CAT were decreased. With the treatment of curcumin and J7, the MDA levels in the three treatment groups were decreased (P<0.05). The activity of SOD, the protein expressions of pNrf2/tNrf2, CAT, NQO1 and the mRNA expressions of NQO1, HO1 were increased (P<0.05). the levels of fast blood glucose were decreased in the J+ and J- group (P<0.05), and the mRNA expression of CAT was increased in the J+ group (P<0.05). The ratio of pNrf2/tNrf2 in the J+ group was significantly higher than that in CUR and J- group (P<0.05). The protein level of CAT in the J+ group was also significantly higher than that in J- group (P<0.05). There were no significant differences in other indexes among the three treatment groups. Under light microscope, the morphology was obviously improved in the three treatment groups. Immunohistochemistry showed that the protein expressions of Nrf2 around the nucleus and CAT were increased in the three treatment groups. It was suggested that high dose J7 had better antioxidant stress ability in testis of diabetic rats. CONCLUSION: Curcumin and J7 could inhibit the oxidative stress damage of testicular tissue in diabetic rats, which might be related with the activation of the Nrf2-ARE signaling pathway.


Assuntos
Curcumina/farmacologia , Diabetes Mellitus Tipo 2 , Estresse Oxidativo , Testículo/efeitos dos fármacos , Animais , Glicemia/análise , Curcumina/análogos & derivados , Diabetes Mellitus Experimental , Masculino , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Superóxido Dismutase/metabolismo , Testículo/patologia
20.
Chem Biol Interact ; 309: 108689, 2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31173751

RESUMO

Diabetes mellitus is an independent risk factor for renal impairment in patients exposed to contrast media. It doubles the risk and decreases survival rate of contrast induced nephropathy (CIN). Sulforaphane has antioxidant properties via Nrf2 activation. The interaction of diabetes and/or sulforaphane with contrast media on Nrf2 regulation is not yet understood. Herein, diabetes was induced by a single intra-peritoneal injection of streptozotocin. Animals were then divided into five groups; control non-diabetic group; diabetic group; diabetic/sulforaphane group; diabetic/CIN group; diabetic/CIN/sulforaphane group. Animals were assessed 24 h after CIN induction. Sulforaphane improved the impaired nephrotoxicity parameters, histopathological features, and oxidative stress markers induced by contrast media (meglumine diatrizoate) in diabetic rats. Immunofluorescence detection revealed increased Nrf2 expression in kidney sections after sulforaphane pretreatment. Moreover, gene expression of Nrf2 and HO-1 were up-regulated, while IL-6 and caspase3 were down-regulated in kidney tissues of animals pretreated with sulforaphane. In NRK-52E cells, sulforaphane pretreatment significantly ameliorated the cytotoxicity of meglumine diatrizoate. However, silencing Nrf2 using small interfering RNA (siRNA) abolished the cytoprotective effects of sulforaphane. Collectively, the results of this study suggest that Nrf2/HO-1 pathway has a protective role against CIN and support the clinical implication of Nrf2 activators, such as sulforaphane, in CIN particularly in diabetic patients.


Assuntos
Apoptose/efeitos dos fármacos , Meios de Contraste/toxicidade , Dano ao DNA/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Diatrizoato de Meglumina/toxicidade , Isotiocianatos/química , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes/química , Linhagem Celular , Meios de Contraste/química , Diabetes Mellitus Experimental/induzido quimicamente , Diatrizoato de Meglumina/química , Regulação da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Masculino , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Nefrite/induzido quimicamente , Nefrite/metabolismo , Nefrite/patologia , Interferência de RNA , RNA Interferente Pequeno , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA