Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.987
Filtrar
1.
Curr Protoc ; 1(9): e242, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34491622

RESUMO

Whole-genome sequencing of prokaryotes is now readily available and affordable on next-generation sequencing platforms. However, the process of de novo assembly can be complicated and tedious for those without a background in computational biology, bioinformatics, or UNIX. Licenses for commercial bioinformatics software may be costly and limited in flexibility. GALAXY is a powerful graphical open-source code-free bioinformatics platform that is freely available on multiple public and private servers. Here, we describe a bacterial de novo assembly workflow using GALAXY. It performs de novo genome assembly using short reads, long reads, or a hybrid method using both short and long reads. Genome annotation, prediction of antimicrobial resistance genes, and multi-locus sequence typing are subsequently performed to characterize the draft genome. Performing genome assembly and annotation on this pipeline allows documentation, parameterization, and sharing, facilitating replication, reuse, and reproducibility of both data and methods. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Quality check of NGS reads Basic Protocol 2: De novo assembly using Unicycler Basic Protocol 3: Assembly quality check using QUAST and Bandage Basic Protocol 4: Genome annotation using Prokka Basic Protocol 5: Prediction of antimicrobial resistance genes (ARGs) Basic Protocol 6: Multi-locus sequence typing (MLST).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Tipagem de Sequências Multilocus , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Fluxo de Trabalho
2.
Rev Bras Enferm ; 74(suppl 6): e20200145, 2021.
Artigo em Inglês, Português | MEDLINE | ID: mdl-34495212

RESUMO

OBJECTIVES: to report the construction of a process model to support the decision making of operating room nurses to control the risk for perioperative positioning injury. METHODS: experience report on a process model that helps nurses with decision making regarding clients at risk for perioperative positioning injury. By following the steps, it was possible to identify intrinsic and extrinsic variables of the literature and of the workflows of teams involved in the positioning of the client for surgery. The Business Process Model and Notation, the Bizagi Modeler software and terms from the International Classification for Nursing Practice were used in the model. RESULTS: the experience allowed the observation of the knowledge integration between different areas, which enabled the process modeling and its validation. CONCLUSIONS: process modeling is an innovative option for the development of support systems for clinical nursing decisions.


Assuntos
Invenções , Humanos , Fluxo de Trabalho
3.
F1000Res ; 10: 103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484688

RESUMO

The Human Microbiome Project (HMP) aided in understanding the role of microbial communities and the influence of collective genetic material (the 'microbiome') in human health and disease. With the evolution of new sequencing technologies, researchers can now investigate the microbiome and map its influence on human health. Advances in bioinformatics methods for next-generation sequencing (NGS) data analysis have helped researchers to gain an in-depth knowledge about the taxonomic and genetic composition of microbial communities. Metagenomic-based methods have been the most commonly used approaches for microbiome analysis; however, it primarily extracts information about taxonomic composition and genetic potential of the microbiome under study, lacking quantification of the gene products (RNA and proteins). Conversely, metatranscriptomics, the study of a microbial community's RNA expression, can reveal the dynamic gene expression of individual microbial populations and the community as a whole, ultimately providing information about the active pathways in the microbiome.  In order to address the analysis of NGS data, the ASaiM analysis framework was previously developed and made available via the Galaxy platform. Although developed for both metagenomics and metatranscriptomics, the original publication demonstrated the use of ASaiM only for metagenomics, while thorough testing for metatranscriptomics data was lacking.  In the current study, we have focused on validating and optimizing the tools within ASaiM for metatranscriptomics data. As a result, we deliver a robust workflow that will enable researchers to understand dynamic functional response of the microbiome in a wide variety of metatranscriptomics studies. This improved and optimized ASaiM-metatranscriptomics (ASaiM-MT) workflow is publicly available via the ASaiM framework, documented and supported with training material so that users can interrogate and characterize metatranscriptomic data, as part of larger meta-omic studies of microbiomes.


Assuntos
Metagenômica , Microbiota , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenoma , Microbiota/genética , Fluxo de Trabalho
4.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34502743

RESUMO

Document imaging/scanning approaches are essential techniques for digitalizing documents in various real-world contexts, e.g.,  libraries, office communication, managementof workflows, and electronic archiving [...].


Assuntos
Aprendizado de Máquina , Fluxo de Trabalho
5.
Elife ; 102021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34340747

RESUMO

The discovery of a drug requires over a decade of intensive research and financial investments - and still has a high risk of failure. To reduce this burden, we developed the NICEdrug.ch resource, which incorporates 250,000 bioactive molecules, and studied their enzymatic metabolic targets, fate, and toxicity. NICEdrug.ch includes a unique fingerprint that identifies reactive similarities between drug-drug and drug-metabolite pairs. We validated the application, scope, and performance of NICEdrug.ch over similar methods in the field on golden standard datasets describing drugs and metabolites sharing reactivity, drug toxicities, and drug targets. We use NICEdrug.ch to evaluate inhibition and toxicity by the anticancer drug 5-fluorouracil, and suggest avenues to alleviate its side effects. We propose shikimate 3-phosphate for targeting liver-stage malaria with minimal impact on the human host cell. Finally, NICEdrug.ch suggests over 1300 candidate drugs and food molecules to target COVID-19 and explains their inhibitory mechanism for further experimental screening. The NICEdrug.ch database is accessible online to systematically identify the reactivity of small molecules and druggable enzymes with practical applications in lead discovery and drug repurposing.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Preparações Farmacêuticas/metabolismo , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/metabolismo , Antivirais/química , Antivirais/farmacologia , COVID-19/tratamento farmacológico , Bases de Dados de Produtos Farmacêuticos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Fluoruracila/química , Fluoruracila/metabolismo , Humanos , Preparações Farmacêuticas/química , Fluxo de Trabalho
6.
BMC Bioinformatics ; 22(1): 402, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388963

RESUMO

BACKGROUND: The advent of next generation sequencing has opened new avenues for basic and applied research. One application is the discovery of sequence variants causative of a phenotypic trait or a disease pathology. The computational task of detecting and annotating sequence differences of a target dataset between a reference genome is known as "variant calling". Typically, this task is computationally involved, often combining a complex chain of linked software tools. A major player in this field is the Genome Analysis Toolkit (GATK). The "GATK Best Practices" is a commonly referred recipe for variant calling. However, current computational recommendations on variant calling predominantly focus on human sequencing data and ignore ever-changing demands of high-throughput sequencing developments. Furthermore, frequent updates to such recommendations are counterintuitive to the goal of offering a standard workflow and hamper reproducibility over time. RESULTS: A workflow for automated detection of single nucleotide polymorphisms and insertion-deletions offers a wide range of applications in sequence annotation of model and non-model organisms. The introduced workflow builds on the GATK Best Practices, while enabling reproducibility over time and offering an open, generalized computational architecture. The workflow achieves parallelized data evaluation and maximizes performance of individual computational tasks. Optimized Java garbage collection and heap size settings for the GATK applications SortSam, MarkDuplicates, HaplotypeCaller, and GatherVcfs effectively cut the overall analysis time in half. CONCLUSIONS: The demand for variant calling, efficient computational processing, and standardized workflows is growing. The Open source Variant calling workFlow (OVarFlow) offers automation and reproducibility for a computationally optimized variant calling task. By reducing usage of computational resources, the workflow removes prior existing entry barriers to the variant calling field and enables standardized variant calling.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Genoma , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Fluxo de Trabalho
7.
Int J Oral Implantol (Berl) ; 14(3): 321-333, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34415131

RESUMO

PURPOSE: Simplified and predictable immediate single-tooth replacement therapy can be optimised by leveraging recent advances in digital workflows that combine static surgical guidance and customised prosthesis design and fabrication. The present case report illustrates a novel approach to successfully executing immediate single-tooth replacement therapy via static computer-aided immediate implant placement and digital provisionalisation utilising angulated screw access, with a 1-year follow-up after delivery of the definitive restoration. MATERIALS AND METHODS: A healthy 27-year-old woman with congenital agenesis of the mandibular second premolars and who required replacement of the mandibular left second premolar underwent immediate single-tooth replacement therapy via computer-aided, restrictive implant placement and provisionalisation using custom prosthetic components designed prior to the surgical intervention being performed. RESULTS: After a 6-month healing period, the provisional crown was replaced with the definitive restoration. After 1 year, the peri-implant keratinised mucosa demonstrated vertical gain in the mid-buccal portion and stability in the interproximal aspects, and no changes in marginal bone level were observed. CONCLUSIONS: The present case report demonstrates the successful application of novel digital tools to facilitate both surgical and prosthetic aspects of immediate single-tooth replacement therapy. Digital workflows can optimise the clinical efficiency and predictability of tooth replacement therapy with dental implants by reducing surgical and restorative chair time and increasing patient satisfaction.


Assuntos
Implantes Dentários para Um Único Dente , Carga Imediata em Implante Dentário , Adulto , Implantação Dentária Endo-Óssea , Feminino , Humanos , Reimplante Dentário , Fluxo de Trabalho
8.
PLoS One ; 16(8): e0255259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34351973

RESUMO

In response to the soaring needs of human mobility data, especially during disaster events such as the COVID-19 pandemic, and the associated big data challenges, we develop a scalable online platform for extracting, analyzing, and sharing multi-source multi-scale human mobility flows. Within the platform, an origin-destination-time (ODT) data model is proposed to work with scalable query engines to handle heterogenous mobility data in large volumes with extensive spatial coverage, which allows for efficient extraction, query, and aggregation of billion-level origin-destination (OD) flows in parallel at the server-side. An interactive spatial web portal, ODT Flow Explorer, is developed to allow users to explore multi-source mobility datasets with user-defined spatiotemporal scales. To promote reproducibility and replicability, we further develop ODT Flow REST APIs that provide researchers with the flexibility to access the data programmatically via workflows, codes, and programs. Demonstrations are provided to illustrate the potential of the APIs integrating with scientific workflows and with the Jupyter Notebook environment. We believe the platform coupled with the derived multi-scale mobility data can assist human mobility monitoring and analysis during disaster events such as the ongoing COVID-19 pandemic and benefit both scientific communities and the general public in understanding human mobility dynamics.


Assuntos
Disseminação de Informação/métodos , Dinâmica Populacional/tendências , Big Data , COVID-19/epidemiologia , Humanos , Modelos Estatísticos , Análise Numérica Assistida por Computador , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Dinâmica Populacional/estatística & dados numéricos , Reprodutibilidade dos Testes , SARS-CoV-2/patogenicidade , Fluxo de Trabalho
9.
Nat Commun ; 12(1): 4787, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373457

RESUMO

Label-free proteomics by data-dependent acquisition enables the unbiased quantification of thousands of proteins, however it notoriously suffers from high rates of missing values, thus prohibiting consistent protein quantification across large sample cohorts. To solve this, we here present IceR (Ion current extraction Re-quantification), an efficient and user-friendly quantification workflow that combines high identification rates of data-dependent acquisition with low missing value rates similar to data-independent acquisition. Specifically, IceR uses ion current information for a hybrid peptide identification propagation approach with superior quantification precision, accuracy, reliability and data completeness compared to other quantitative workflows. Applied to plasma and single-cell proteomics data, IceR enhanced the number of reliably quantified proteins, improved discriminability between single-cell populations, and allowed reconstruction of a developmental trajectory. IceR will be useful to improve performance of large scale global as well as low-input proteomics applications, facilitated by its availability as an easy-to-use R-package.


Assuntos
Espectrometria de Massas/métodos , Proteoma , Proteômica/métodos , Peptídeos , Espectrometria de Massas em Tandem , Fluxo de Trabalho
10.
BMC Bioinformatics ; 22(1): 411, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34412594

RESUMO

BACKGROUND: Once bulk RNA-seq data has been processed, i.e. aligned and then expression and differential tables generated, there remains the essential process where the biology is explored, visualized and interpreted. Without the use of a visualisation and interpretation pipeline this step can be time consuming and laborious, and is often completed using R. Though commercial visualisation and interpretation pipelines are comprehensive, freely available pipelines are currently more limited. RESULTS: Here we demonstrate Searchlight, a freely available bulk RNA-seq visualisation and interpretation pipeline. Searchlight provides: a comprehensive statistical and visual analysis, focusing on the global, pathway and single gene levels; compatibility with most differential experimental designs irrespective of organism or experimental complexity, via three workflows; reports; and support for downstream user modification of plots via user-friendly R-scripts and a Shiny app. We show that Searchlight offers greater automation than current best tools (VIPER and BioJupies). We demonstrate in a timed re-analysis study, that alongside a standard bulk RNA-seq processing pipeline, Searchlight can be used to complete bulk RNA-seq projects up to the point of manuscript quality figures, in under 3 h. CONCLUSIONS: Compared to a manual R based analysis or current best freely available pipelines (VIPER and BioJupies), Searchlight can reduce the time and effort needed to complete bulk RNA-seq projects to manuscript level. Searchlight is suitable for bioinformaticians, service providers and bench scientists. https://github.com/Searchlight2/Searchlight2 .


Assuntos
Publicações , Software , RNA-Seq , Sequenciamento Completo do Exoma , Fluxo de Trabalho
11.
Methods Mol Biol ; 2351: 67-90, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382184

RESUMO

The Cap Analysis of Gene Expression (CAGE) is a powerful method to identify Transcription Start Sites (TSSs) of capped RNAs while simultaneously measuring transcripts expression level. CAGE allows mapping at single nucleotide resolution at all active promoters and enhancers. Large CAGE datasets have been produced over the years from individual laboratories and consortia, including the Encyclopedia of DNA Elements (ENCODE) and Functional Annotation of the Mammalian Genome (FANTOM) consortia. These datasets constitute open resource for TSS annotations and gene expression analysis. Here, we provide an experimental protocol for the most recent CAGE method called Low Quantity (LQ) single strand (ss) CAGE "LQ-ssCAGE", which enables cost-effective profiling of low quantity RNA samples. LQ-ssCAGE is especially useful for samples derived from cells cultured in small volumes, cellular compartments such as nuclear RNAs or for samples from developmental stages. We demonstrate the reproducibility and effectiveness of the method by constructing 240 LQ-ssCAGE libraries from 50 ng of THP-1 cell extracted RNAs and discover lowly expressed novel enhancer and promoter-derived lncRNAs.


Assuntos
Biologia Computacional/métodos , Elementos Facilitadores Genéticos , Regiões Promotoras Genéticas , Capuzes de RNA , Sítio de Iniciação de Transcrição , Bases de Dados Genéticas , Regulação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Sequências Reguladoras de Ácido Nucleico , Reprodutibilidade dos Testes , Fluxo de Trabalho
12.
Methods Mol Biol ; 2351: 307-320, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34382197

RESUMO

The transition from silenced heterochromatin to a biologically active state and vice versa is a fundamental part of the implementation of cell type-specific gene expression programs. To reveal structure-function relationships and dissect the underlying mechanisms, experiments that ectopically induce transcription are highly informative. In particular, the approach to perturb chromatin states by recruiting fusions of the catalytically inactive dCas9 protein in a sequence-specific manner to a locus of interest has been used in numerous applications. Here, we describe how this approach can be applied to activate pericentric heterochromatin (PCH) in mouse cells as a prototypic silenced state by providing protocols for the following workflow: (a) Recruitment of dCas9 fusion constructs with the strong transcriptional activator VPR to PCH. (b) Analysis of the resulting changes in chromatin compaction, epigenetic marks, and active transcription by fluorescence microscopy-based readouts. (c) Automated analysis of the resulting images with a set of scripts in the R programming language. Furthermore, we discuss how parameters for chromatin decondensation and active transcription are extracted from these experiments and can be combined with other readouts to gain insights into PCH activation.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Regulação da Expressão Gênica , Heterocromatina/genética , Ativação Transcricional , Animais , Proteína 9 Associada à CRISPR/genética , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/metabolismo , Imunofluorescência/métodos , Expressão Gênica , Heterocromatina/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia de Fluorescência , Ligação Proteica , Transfecção , Fluxo de Trabalho
13.
AMIA Annu Symp Proc ; 2021: 142-151, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34457128

RESUMO

Phenotyping is an effective way to identify cohorts of patients with particular characteristics within a population. In order to enhance the portability of a phenotype definition across institutions, it is often defined abstractly, with implementers expected to realise the phenotype computationally before executing it against a dataset. However, un-clear definitions, with little information about how best to implement the definition in practice, hinder this process. To address this issue, we propose a new multi-layer, workflow-based model for defining phenotypes, and a novel authoring architecture, Phenoflow, that supports the development of these structured definitions and their realisation as computable phenotypes. To evaluate our model, we determine its impact on the portability of both code-based (COVID-19) and logic-based (diabetes) definitions, in the context of key datasets, including 26,406 patients at North-western University. Our approach is shown to ensure the portability of phenotype definitions and thus contributes to the transparency of resulting studies.


Assuntos
COVID-19 , Registros Eletrônicos de Saúde , Algoritmos , Humanos , Fenótipo , SARS-CoV-2 , Fluxo de Trabalho
14.
Anal Chem ; 93(32): 11108-11115, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34348022

RESUMO

Studies of the metal content of metalloproteins in tissues from the human central nervous system (CNS) can be compromised by preparative techniques which alter levels of, or interactions between, metals and the protein of interest within a complex mixture. We developed a methodological workflow combining size exclusion chromatography, native isoelectric focusing, and either proton or synchrotron X-ray fluorescence within electrophoresis gels to analyze the endogenous metal content of copper-zinc superoxide dismutase (SOD1) purified from minimal amounts (<20 mg) of post-mortem human brain and spinal cord tissue. Abnormal metallation and aggregation of SOD1 are suspected to play a role in amyotrophic lateral sclerosis and Parkinson's disease, but data describing SOD1 metal occupancy in human tissues have not previously been reported. Validating our novel approach, we demonstrated step-by-step metal preservation, preserved SOD1 activity, and substantial enrichment of SOD1 protein versus confounding metalloproteins. We analyzed tissues from nine healthy individuals and five CNS regions (occipital cortex, substantia nigra, locus coeruleus, dorsal spinal cord, and ventral spinal cord). We found that Cu and Zn were bound to SOD1 in a ratio of 1.12 ± 0.28, a ratio very close to the expected value of 1. Our methodological workflow can be applied to the study of endogenous native SOD1 in a pathological context and adapted to a range of metalloproteins from human tissues and other sources.


Assuntos
Esclerose Amiotrófica Lateral , Zinco , Sistema Nervoso Central , Cobre , Humanos , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase-1 , Fluxo de Trabalho
15.
Nat Commun ; 12(1): 4855, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381044

RESUMO

The vertebrate brain consists of diverse neuronal types, classified by distinct anatomy and function, along with divergent transcriptomes and proteomes. Defining the cell-type specific neuroproteomes is important for understanding the development and functional organization of neural circuits. This task remains challenging in complex tissue, due to suboptimal protein isolation techniques that often result in loss of cell-type specific information and incomplete capture of subcellular compartments. Here, we develop a genetically targeted proximity labeling approach to identify cell-type specific subcellular proteomes in the mouse brain, confirmed by imaging, electron microscopy, and mass spectrometry. We virally express subcellular-localized APEX2 to map the proteome of direct and indirect pathway spiny projection neurons in the striatum. The workflow provides sufficient depth to uncover changes in the proteome of striatal neurons following chemogenetic activation of Gαq-coupled signaling cascades. This method enables flexible, cell-type specific quantitative profiling of subcellular proteome snapshots in the mouse brain.


Assuntos
Ascorbato Peroxidases/metabolismo , Núcleo Celular/metabolismo , Corpo Estriado/metabolismo , Proteoma/metabolismo , Animais , Ascorbato Peroxidases/genética , Corpo Estriado/citologia , Citosol/metabolismo , Espectrometria de Massas , Camundongos , Vias Neurais , Neurônios/citologia , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Coloração e Rotulagem , Fluxo de Trabalho
16.
Nat Commun ; 12(1): 4992, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404777

RESUMO

Liquid chromatography-mass spectrometry-based metabolomics studies are increasingly applied to large population cohorts, which run for several weeks or even years in data acquisition. This inevitably introduces unwanted intra- and inter-batch variations over time that can overshadow true biological signals and thus hinder potential biological discoveries. To date, normalisation approaches have struggled to mitigate the variability introduced by technical factors whilst preserving biological variance, especially for protracted acquisitions. Here, we propose a study design framework with an arrangement for embedding biological sample replicates to quantify variance within and between batches and a workflow that uses these replicates to remove unwanted variation in a hierarchical manner (hRUV). We use this design to produce a dataset of more than 1000 human plasma samples run over an extended period of time. We demonstrate significant improvement of hRUV over existing methods in preserving biological signals whilst removing unwanted variation for large scale metabolomics studies. Our tools not only provide a strategy for large scale data normalisation, but also provides guidance on the design strategy for large omics studies.


Assuntos
Metabolômica/métodos , Cromatografia Líquida , Humanos , Espectrometria de Massas/métodos , Modelos Biológicos , Fluxo de Trabalho
17.
Artigo em Inglês | MEDLINE | ID: mdl-34443993

RESUMO

The fabrication of a non-metal clasp removable partial denture (RPD) using polymethylmethacrylate in a fully digital workflow has been reported. According to some studies, the polyamide material may be alternatively used for this purpose. The authors are unaware of any reports concerning the additive manufacturing of polyamide. The current proof-of-concept dental technique describes the pathway to construct the non-metal clasp RPD using intraoral scanning and fused filament fabrication (FFF) printing of gingiva-colored polyamide. The present RPD showed acceptable fit and sufficient retention and was considered a valid temporary treatment option.


Assuntos
Prótese Parcial Removível , Desenho Assistido por Computador , Nylons , Impressão Tridimensional , Fluxo de Trabalho
18.
Am J Orthod Dentofacial Orthop ; 160(3): 331-334, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34455996
19.
Talanta ; 234: 122608, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364421

RESUMO

This paper presents a structured workflow for glass fragment analysis based on a combination of Elemental Analysis using PIXE and Machine Learning tools, with the ultimate goal of standardizing and helping forensic efforts. The proposed workflow was implemented on glass fragments received from the Israeli DIFS (Israeli Police Force's Division of Identification and Forensic Sciences) that were collected from various vehicles, including glass fragments from different manufacturers and years of production. We demonstrate that this workflow can produce models with high (>80%) accuracy in identifying glass fragment's origins and provide a test-case demonstrating how the model can be applied in real-life forensic events. We provide a standard, reproducible methodology that can be used in many forensic domains beyond glass fragments, for example, Gun Shot Residue, flammable liquids, illegal substances, and more.


Assuntos
Vidro , Aprendizado de Máquina , Ciências Forenses , Fluxo de Trabalho
20.
Artigo em Inglês | MEDLINE | ID: mdl-34360407

RESUMO

(1) Background: The surgical table within a typical ambulatory surgery operating room is frequently rotated and placed in different orientations to facilitate surgery or in response to surgeon preferences. However, different surgical table orientations can impact access to different work zones, areas and equipment in the OR, potentially impacting workflow of surgical team members and creating patient safety risks; (2) Methods: This quantitative observational study used a convenience sample of 38 video recordings of the intraoperative phase of pediatric outpatient surgeries to study the impacts of surgical table orientation on flow disruptions (FDs), number of contacts between team members and distance traveled; (3) Results: This study found that the orientation of the surgical table significantly influenced staff workflow and movement in the OR with an angled surgical table orientation being least disruptive to surgical work. The anesthesia provider, scrub nurse and circulating nurse experienced more FDs compared to the surgeon; (4) Conclusions: The orientation of the surgical table matters, and clinicians and architects must consider different design and operational strategies to support optimal table orientation in the OR.


Assuntos
Procedimentos Cirúrgicos Ambulatórios , Cirurgiões , Criança , Humanos , Salas Cirúrgicas , Segurança do Paciente , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...