Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.023
Filtrar
1.
Ying Yong Sheng Tai Xue Bao ; 30(9): 2941-2948, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31529868

RESUMO

To explore the photosynthetic adaptation of Phoebe bournei to different light conditions, two-year-old P. bournei seedlings were grown under three light regimes (full light, shading rate 50% and 78% of full light). The chlorophyll contents, leaf gas exchange and chlorophyll fluorescence of P. bournei were measured after six-month treatment. The results showed that the contents of chlorophyll a, chlorophyll b, chlorophyll (a+b) and carotenoids in leaves were in a descending order of shading rate 78% > shading rate 50% > full light. There was no significant difference of chlorophyll a/b between natural and shade treatments. The shading treatment reduced light compensation point (LCP), but increased light saturation point (LSP) and apparent quantum yield (AQY), suggesting that plants could utilize both the weak light and the high light. Maximum net photosynthetic rate (Pn max), dark respiration rate (Rd), and maximum electron transfer rate (Jmax) increased under the shading treatment. There was significant difference between natural and shade treatment in net photosynthetic rate (Pn), stomatal conductance to CO2(gsc), intercellular CO2 concentration (Ci), and mesophyll conductance (gm). Pn and gm of different light regimes were sorted from the highest to the lowest as shading rate 78% > shading rate 50% > full light. gsc under shading rate 78% was higher than that under full light. Ci under shading rate 50% and 78% were lower than that under full light. Actual photochemical efficiency of PS2 (Fv'/Fm'), quantum yields of PS2 (ΦPS2), and electron transport rate (J) of P. bournei leaves were significantly higher under shading rate 78% than those under shading rate 50% and full light. In conclusion, P. bournei could increase Pn by increasing chlorophyll content, AQY, J, gsc, and gm under shade condition.


Assuntos
Clorofila/metabolismo , Lauraceae/fisiologia , Folhas de Planta/metabolismo , Clorofila/análise , Clorofila A , Fotossíntese/fisiologia , Folhas de Planta/química , Plântula , Luz Solar
2.
J Agric Food Chem ; 67(38): 10624-10636, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31483633

RESUMO

The freshness and color quality of postharvest tea leaves can be markedly prolonged and retained by proper preservation measures. Here, we investigated the dynamic changes of chlorophyll and its derivatives in postharvest tea leaves under different low-temperature treatments using natural withering as a control. Chlorophyll decomposition was found closely related with chlorophyllide, pheophorbide, and pheophytin. Low-temperature withering could slow chlorophyll degradation in postharvest tea leaves via significant inhibition on the enzyme activity and gene expression of Mg-dechelatase, chlorophyllase, and pheophorbide a oxygenase. At the initial stage of withering, a significant increase was observed in the chlorophyll content, expression of chlorophyll-synthesis-related enzymes (such as glutamyl-tRNA synthetase, etc.), and chlorophyll synthase activity in newly picked tea leaves. Moreover, an obvious decrease was found in the content of l-glutamate as the foremost precursor substance of chlorophyll synthesis. Hence, our findings revealed that the chlorophyll synthesis reaction was induced by the light-dehydration-stress in the initial withering of tea leaves. This study provides a theoretical basis for exploring preservation technology in actual green tea production.


Assuntos
Camellia sinensis/genética , Camellia sinensis/metabolismo , Clorofila/metabolismo , Manipulação de Alimentos/métodos , Regulação da Expressão Gênica de Plantas , Camellia sinensis/química , Camellia sinensis/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clorofila/química , Cor , Enzimas/genética , Enzimas/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Ambiente
3.
Chem Pharm Bull (Tokyo) ; 67(9): 935-939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474732

RESUMO

Chafuroside A and chafuroside B are flavone C-glycosides isolated from oolong tea leaves. They have a number of beneficial pharmacological activities related to antiinflammation at various concentrations. However, no crystallographic study of chafurosides has yet been reported. In the present study, the crystal structures of chafuroside A and chafuroside B were investigated using single-crystal X-ray diffraction. The asymmetric unit of the chafuroside A crystal consists of one chafuroside A and two water molecules, and that of chafuroside B contains one chafuroside B and one water molecule. The flavone moiety of chafuroside A is curved, i.e., the angle between the best-fit planes of the chromene and phenyl rings is 18.9°, whereas the chafuroside B flavone moiety is relatively flat. A comparison of the curvatures of the flavone moieties of various C-glycosides showed that the curvature of chafuroside A is significantly larger than those of the others. This structural feature might contribute to the differences between the strengths of the pharmacological activities of chafurosides A and B.


Assuntos
Flavonas/química , Glicosídeos/química , Compostos Heterocíclicos de 4 ou mais Anéis/química , Chá/química , Camellia sinensis/química , Camellia sinensis/metabolismo , Cristalografia por Raios X , Conformação Molecular , Folhas de Planta/química , Folhas de Planta/metabolismo
4.
BMC Plant Biol ; 19(1): 350, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409298

RESUMO

BACKGROUND: The pentatricopeptide repeat (PPR) gene family, which contains multiple 35-amino acid repeats, constitutes one of the largest gene families in plants. PPR proteins function in organelles to target specific transcripts and are involved in plant development and growth. However, the function of PPR proteins in cotton is still unknown. RESULTS: In this study, we characterized a PPR gene YELLOW-GREEN LEAF (GhYGL1d) that is required for cotton plastid development. The GhYGL1d gene has a DYW domain in C-terminal and is highly express in leaves, localized to the chloroplast fractions. GhYGL1d share high amino acid-sequence homology with AtECB2. In atecb2 mutant, overexpression of GhYGL1d rescued the seedling lethal phenotype and restored the editing of accD and ndhF transcripts. Silencing of GhYGL1d led to the reduction of chlorophyll and phenotypically yellow-green leaves in cotton. Compared with wild type, GhYGL1d-silenced cotton showed significant deformations of thylakoid structures. Furthermore, the transcription levels of plastid-encoded polymerase (PEP) and nuclear-encoded polymerase (NEP) dependent genes were decreased in GhYGL1d-silenced cotton. CONCLUSIONS: Our data indicate that GhYGL1d not only contributes to the editing of accD and ndhF genes, but also affects the expression of NEP- and PEP-dependent genes to regulate the development of thylakoids, and therefore regulates leaf variegation in cotton.


Assuntos
Cloroplastos/genética , Gossypium/genética , Proteínas de Plantas/fisiologia , Cloroplastos/metabolismo , Cloroplastos/fisiologia , Gossypium/anatomia & histologia , Gossypium/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Gene ; 717: 144046, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31434006

RESUMO

Flavonoids are major polyphenol compounds in plant secondary metabolism. The hydroxylation pattern of the B-ring of flavonoids is determined by the flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H). In this paper, one CsF3'H and two CsF3'5'Hs (CsF3'5'Ha and CsF3'5'Hb) were isolated. The phylogenetic tree results showed that F3'H and F3'5'Hs belong to the CYP75B and CYP75A, respectively. The Expression pattern analysis showed that the expression of CsF3'5'Ha and CsF3'5'Hb in the bud and 1st leaf were higher than other tissues. However, the CsF3'H had the highest expression in the 4th and mature leaf. The correlation analysis showed that the expression of CsF3'5'Hs is positively associated with the concentration of B-trihydroxylated catechins, and the expression of CsF3'H is positively associated with the Q contentration. Heterologous expression of these genes in yeast showed that CsF3'H and CsF3'5'Ha can catalyze flavanones, flavonols and flavanonols to the corresponding 3', 4' or 3', 4', 5'-hydroxylated compounds, for which the optimum substrate is naringenin. The enzyme of CsF3'5'Hb can only catalyze flavonols (including K and Q) and flavanonols (DHK and DHQ), of which the highest activities in catalyzing are DHK. Interestingly, The experiment of site-directed mutagenesis suggested that two novel sites near the C-terminal were discovered impacting on the activity of the CsF3'5'H. These results provide a significantly molecular basis on the accumulation B-ring hydroxylation of flavonoids in tea plant.


Assuntos
Camellia sinensis/genética , Sistema Enzimático do Citocromo P-450/genética , Flavonoides/metabolismo , Camellia sinensis/metabolismo , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Flavonoides/química , Regulação da Expressão Gênica de Plantas , Hidroxilação , Mutagênese Sítio-Dirigida , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/genética
6.
BMC Plant Biol ; 19(1): 338, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375063

RESUMO

BACKGROUND: In native environments plants frequently experience simultaneous or sequential unfavourable abiotic and biotic stresses. The plant's response to combined stresses is usually not the sum of the individual responses. Here we investigated the impact of cold on plant defense against subsequent herbivory by a generalist and specialist insect. RESULTS: We determined transcriptional responses of Arabidopsis thaliana to low temperature stress (4 °C) and subsequent larval feeding damage by the lepidopteran herbivores Mamestra brassicae (generalist), Pieris brassicae (specialist) or artificial wounding. Furthermore, we compared the performance of larvae feeding upon cold-experienced or untreated plants. Prior experience of cold strongly affected the plant's transcriptional anti-herbivore and wounding response. Feeding by P. brassicae, M. brassicae and artificial wounding induced transcriptional changes of 1975, 1695, and 2239 genes, respectively. Of these, 125, 360, and 681 genes were differentially regulated when cold preceded the tissue damage. Overall, prior experience of cold mostly reduced the transcriptional response of genes to damage. The percentage of damage-responsive genes, which showed attenuated transcriptional regulation when cold preceded the tissue damage, was highest in M. brassicae damaged plants (98%), intermediate in artificially damaged plants (89%), and lowest in P. brassicae damaged plants (69%). Consistently, the generalist M. brassicae performed better on cold-treated than on untreated plants, whereas the performance of the specialist P. brassicae did not differ. CONCLUSIONS: The transcriptional defense response of Arabidopsis leaves to feeding by herbivorous insects and artificial wounding is attenuated by a prior exposure of the plant to cold. This attenuation correlates with improved performance of the generalist herbivore M. brassicae, but not the specialist P. brassicae, a herbivore of the same feeding guild.


Assuntos
Arabidopsis/fisiologia , Herbivoria , Animais , Arabidopsis/metabolismo , Borboletas/fisiologia , Resposta ao Choque Frio , Dieta , Regulação da Expressão Gênica de Plantas/fisiologia , Herbivoria/fisiologia , Larva , Mariposas/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Transcriptoma
7.
J Chem Ecol ; 45(8): 693-707, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31367970

RESUMO

Crop domestication and selective breeding have altered plant defense mechanisms, influencing insect-plant interactions. A reduction in plant resistance/tolerance against herbivory is generally expected in domesticated species, however, limited efforts have been made to compare inducibility of plant defenses between wild and domesticated genotypes. In the present study, the inducibility of several plant defense mechanisms (e.g. defensive chemicals, trichomes, plant volatiles) were investigated, and the performance and preference of the herbivore Helicoverpa zea were measured in three different tomato genotypes; a) wild tomato, Solanum pimpinellifolium L. (accession LA 2093), b) cherry tomato, S. lycopersicum L. var. cerasiforme (accession Matts Wild Cherry), and c) cultivated tomato, S. lycopersicum L. var. Better Boy). Enhanced inducibility of defensive chemicals, trichomes, and plant volatiles in the cultivated tomato, and a higher level of constitutive plant resistance against herbivory in the wild genotype was observed. When comparing the responses of damaged vs. undamaged leaves, the percent reduction in larval growth was higher on damaged leaves from cultivated tomato, suggesting a higher induced resistance compared to other two genotypes. While all tomato genotypes exhibited increased volatile organic compound (VOCs) emissions in response to herbivory, the cultivated variety responded with generally higher levels of VOCs. Differences in VOC patterns may have influenced the ovipositional preferences, as H. zea female moths significantly preferred laying eggs on the cultivated versus the wild tomato genotypes. Selection of traits during domestication and selective breeding could alter allocation of resources, where plants selected for higher yield performance would allocate resources to defense only when attacked.


Assuntos
Lycopersicon esculentum/química , Mariposas/fisiologia , Solanum/química , Animais , Comportamento Animal/efeitos dos fármacos , Catecol Oxidase/metabolismo , Feminino , Genótipo , Herbivoria , Larva/fisiologia , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Oviposição/efeitos dos fármacos , Fenóis/análise , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Proteínas de Plantas/análise , Análise de Componente Principal , Inibidores de Proteases/química , Solanum/genética , Solanum/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
8.
Gene ; 716: 144024, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31390541

RESUMO

The young leaves generally accumulate a certain concentration anthocyanins in the dominant species of the subtropical forest, and the changes of anthocyanin synthesis-related enzyme genes expression levels had an important effect on the study photoprotection of anthocyanins in the young leaves of subtropical forests. The determination of anthocyanin synthesis-related enzyme gene sequences and the selection of appropriate reference genes provide a basis for analyzing the functional properties of anthocyanins. In this study, four dominant subtropical forest species (i.e., Schima superba, Castanopsis fissa, Acmena acuminatissima, Cryptocarya concinna) were taken as materials. To obtain the correct nucleotide sequences of anthocyanin-related enzymes, the nucleotide sequences of CHS, DFR and ANS in each dominant species were obtained by sequencing and comparison. Then, to select the most stable reference genes for leaves at different developmental stages and different light conditions, the expression levels of six reference genes, including 18S, Actin, GAPDH, TUB, EF1 and UBQ, were studied by real-time fluorescent quantitative PCR (qRT-PCR), and reference gene stability was analyzed by GeNorm and NormFinder software. The results showed that the expression level of Actin was the most stable in S. superba, A. acuminatissima and C. concinna, and the expression level of GAPDH was the most stable in C. fissa. Finally, the expression levels of the anthocyanin synthesis genes CHS, DFR and ANS were analyzed and found to be consistent with the accumulation trend of anthocyanins in leaves. This study has important theoretical and practical significance for future research into the expression of anthocyanin synthesis-related enzyme genes in the dominant tree species in subtropical forests and reveals that anthocyanin has a photoprotective effect for young leaves in high-light environments.


Assuntos
Antocianinas/biossíntese , Árvores/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Antocianinas/metabolismo , Florestas , Genes de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , RNA de Plantas/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Alinhamento de Sequência , Análise de Sequência , Árvores/enzimologia , Árvores/metabolismo
9.
DNA Cell Biol ; 38(10): 1056-1068, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31403329

RESUMO

The AP2/ERF (APETALA2/ETHYLENE RESPONSE FACTOR) transcription factor represents one of the largest plant-specific transcriptional regulators in plants. ERF plays important roles in the regulation of various developmental processes and acts as a mediator in plant external stress responses. However, the research of the ERF gene family is still limited in alfalfa (Medicago sativa L.), one of the most important forage legume species in the world. In the present study, a total of 159 ERF genes were identified, and the phylogenetic reconstruction, classification, conserved motifs, signal peptide prediction, and expression patterns under salt, drought, and low-temperature stresses of these ERF genes were comprehensively analyzed. The ERF genes family in alfalfa could be classified into 10 groups and predicted to be strongly homologous. Based on the structure and functions relationships, the III and IV subfamilies were more likely to play functions in abiotic stresses and 18 MsERF genes were selected for further quantitative real-time PCR validation in different stresses treatment. The results showed that all these MsERF genes were upregulated under three stresses except MsERF008. This study identified the possibility of abiotic tolerance candidate genes playing various roles in stress resistance at the whole-genome level, which would provide primary understanding for exploring ERF-mediated tolerance in alfalfa.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Medicago sativa/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Temperatura Baixa , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Secas , Perfilação da Expressão Gênica , Medicago sativa/classificação , Medicago sativa/metabolismo , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Mapeamento de Interação de Proteínas , Isoformas de Proteínas , Salinidade , Estresse Fisiológico
10.
J Agric Food Chem ; 67(35): 9967-9978, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31403784

RESUMO

Following the recent completion of the draft genome sequence of the tea plant, high-throughput decoding of gene function, especially for those involved in complex secondary metabolic pathways, has become a major challenge. Here, we profiled the metabolome and transcriptome of 11 tea cultivars, and then illustrated a weighted gene coexpression network analysis (WGCNA)-based system biological strategy to interpret metabolomic flux, predict gene functions, and mine key regulators involved in the flavonoid biosynthesis pathway. We constructed a multilayered regulatory network, which integrated the gene coexpression relationship with the microRNA target and promoter cis-regulatory element information. This allowed us to reveal new uncharacterized TFs (e.g., MADSs, WRKYs, and SBPs) and microRNAs (including 17 conserved and 15 novel microRNAs) that are potentially implicated in different steps of the catechin biosynthesis. Furthermore, we applied metabolic-signature-based association method to capture additional key regulators involved in catechin pathway. This provides important clues for the functional characterization of five SCPL1A acyltransferase family members, which might be implicated in the production balance of anthocyanins, galloylated catechins, and proanthocyanins. Application of an "omics"-based system biology strategy should facilitate germplasm utilization and provide valuable resources for tea quality improvement.


Assuntos
Camellia sinensis/metabolismo , Flavonoides/química , Redes Reguladoras de Genes , Camellia sinensis/química , Camellia sinensis/classificação , Camellia sinensis/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolômica , Folhas de Planta/química , Folhas de Planta/classificação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
11.
J Agric Food Chem ; 67(36): 10145-10154, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31418564

RESUMO

2-Phenylethanol (2PE) is a representative aromatic aroma compound in tea (Camellia sinensis) leaves. However, its formation in tea remains unexplored. In our study, feeding experiments of [2H8]L-phenylalanine (Phe), [2H5]phenylpyruvic acid (PPA), or (E/Z)-phenylacetaldoxime (PAOx) showed that three biosynthesis pathways for 2PE derived from L-Phe occurred in tea leaves, namely, pathway I (via phenylacetaldehyde (PAld)), pathway II (via PPA and PAld), and pathway III (via (E/Z)-PAOx and PAld). Furthermore, increasing temperature resulted in increased flux into the pathway for 2PE from L-Phe via PPA and PAld. In addition, tomato fruits and petunia flowers also contained the 2PE biosynthetic pathway from L-Phe via PPA and PAld and increasing temperatures led to increased flux into this pathway, suggesting that such a phenomenon might be common among most plants containing 2PE. This represents a characteristic example of changes in flux into the biosynthesis pathways of volatile compounds in plants in response to stresses.


Assuntos
Camellia sinensis/metabolismo , Lycopersicon esculentum/química , Petunia/química , Álcool Feniletílico/metabolismo , Vias Biossintéticas , Flores/química , Frutas/química , Folhas de Planta/metabolismo , Temperatura Ambiente
12.
J Agric Food Chem ; 67(36): 10235-10244, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31436988

RESUMO

Tea provides a rich taste and has healthy properties due to its variety of bioactive compounds, such as theanine, catechins, and caffeine. Theanine is the most abundant free amino acid (40%-70%) in tea leaves. Key genes related to theanine biosynthesis have been studied, but relatively little is known about the regulatory mechanisms of theanine accumulation in tea leaves. Herein, we analyzed theanine content in tea (Camellia sinensis) and oil tea (Camellia oleifera) and found it to be higher in the roots than in other tissues in both species. The theanine content was significantly higher in tea than oil tea. To explore the regulatory mechanisms of theanine accumulation, we identified genes involved in theanine biosynthesis by RNA-Seq analysis and compared theanine-related modules. Moreover, we cloned theanine synthase (TS) promoters from tea and oil tea plants and found that a difference in TS expression and cis-acting elements may explain the difference in theanine accumulation between the two species. These data provide an important resource for regulatory mechanisms of theanine accumulation in tea plants.


Assuntos
Camellia sinensis/genética , Camellia/genética , Glutamatos/biossíntese , Proteínas de Plantas/genética , Transcriptoma , Camellia/química , Camellia/metabolismo , Camellia sinensis/química , Camellia sinensis/metabolismo , Glutamatos/análise , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/química , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
13.
Sci Total Environ ; 691: 178-186, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31319254

RESUMO

The leaves and seeds of plants frequently function as the source and sink organs for distinct metabolites, which can interactively vary in response to adverse site conditions. Subtropical soils are typically characterized as having deficient phosphorus (P), calcium (Ca), and magnesium (Mg), with enriched aluminum (Al) and iron (Fe), while Al and manganese (Mn) are toxic at low pH. It remains largely unknown how leaf- and seed-sourced metabolites are synergistically linked to adapt to P-variable soils for trees in subtropical areas. Here we quantified the metabolic and elemental profiling in the mature leaves and immature seeds of Quercus variabilis at contrasting geologically-derived phosphorus sites in subtropical China. The results revealed that carbon (C) and nitrogen (N) based metabolites (primarily sugars and organic acids), as well as enzyme- and protein/nucleic acid-related elements (N, P, Mg, and Mn) played important roles toward characterizing the profiling of metabolites and ionomes in leaves and seeds at two site types, respectively. These metabolites (sugars, amino acids, and fatty acids) and elements (N, P, Mg, and Mn) of seeds were closely related to the sugars, organic acids, and elements (N, P, Mg, and Mn) of leaves at the two site types. For the most part, the content of N and P in the soil affected the accumulation of materials (such as, starchs and proteins) in seeds, as well as N and P assimilation in leaves, by influencing C- and N-containing metabolites in leaves. These results suggested that correlated disparities of C- and N-containing metabolites, along with enzyme- and protein/nucleic acid-related elements in both leaves and seeds played important roles in plants to facilitate their adaptation to nutrient-variable sites in subtropical zones.


Assuntos
Monitoramento Ambiental , Fósforo/análise , Folhas de Planta/metabolismo , Quercus/fisiologia , Sementes/metabolismo , Oligoelementos/análise , Alumínio/análise , Cálcio/análise , Carbono/análise , China , Magnésio/análise , Manganês/análise , Minerais/análise , Nitrogênio/análise , Folhas de Planta/química , Potássio/análise , Quercus/química , Sementes/química , Solo/química
14.
BMC Plant Biol ; 19(1): 315, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307378

RESUMO

BACKGROUND: Abaxially anthocyanic leaves of deeply-shaded understorey plants play important ecological significance for the environmental adaption. In contrast to the transient pigmentation in other plants, anthocyanins are permanently presented in these abaxially red leaves, however, the mechanism for the pigment maintenance remains unclear. In the present study, we investigated phenolic metabolites that may affect pigment stability and degradation in Excoecaria cochinchinensis (a bush of permanently abaxial-red leaves), via a comparison with Osmanthus fragrans (a bush of transiently red leaves). RESULTS: High levels of galloylated anthocyanins were identified in the Excoecaria but not in the Osmanthus plants. The galloylated anthocyanin showed slightly higher stability than two non-galloylated anthocyanins, while all the 3 pigments were rapidly degraded by peroxidase (POD) in vitro. High levels of hydrolysable tannins [mainly galloylglucoses/ellagitannins (GGs/ETs)] were identified in Excoecaria but none in Osmanthus. GGs/ETs showed inhibition effect on POD, with IC50 ranged from 35.55 to 83.27 µM, correlated to the markedly lower POD activities detected in Excoecaria than in Osmanthus. Strong copigmentation was observed for GGs/ETs and anthocyanins, with more than 30% increase in the red intensity of non-galloylated anthocyanin solutions. In the leaf tissue, the hydrolysable tannins were observed to be co-localized with anthocyanins at the abaxial layer of the Excoecaria leaves, correlated to the low POD activity, more acidity and increased red intensity of the tissue. CONCLUSION: The results suggest that the Excoecaria leaves accumulate a distinct group of phenolic metabolites, mainly GGs/ETs, at the abaxial layer, which prevent anthocyanin degradation and increase the pigment stability, and consequently lead to the permanent maintenance of the red leaves.


Assuntos
Antocianinas/metabolismo , Euphorbiaceae/metabolismo , Taninos Hidrolisáveis/metabolismo , Peroxidase/antagonistas & inibidores , Pigmentação , Folhas de Planta/metabolismo , Euphorbiaceae/enzimologia , Oleaceae/metabolismo , Peroxidase/metabolismo , Folhas de Planta/crescimento & desenvolvimento
15.
J Photochem Photobiol B ; 197: 111541, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31272033

RESUMO

Here, we report the novel fabrication of ZnO nanoparticles using the Costus igneus leaf extract. Gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy to determine the bioactive components present in the plant extract. The synthesis of Ci-ZnO NPs (C. igneus- coated zinc oxide nanoparticles) was accomplished using a cost-effective and simple technique. Ci-ZnO NPs were specified using UV-visible spectroscopy, FTIR, XRD, and TEM. Ci-ZnO NPs was authenticated by UV-Vis and exhibited a peak at 365 nm. The XRD spectra proved the crystalline character of the Ci-ZnO NPs synthesized as hexagonal wurtzite. The FTIR spectrum illustrated the presence of possible functional groups present in Ci-ZnO NPs. The TEM micrograph showed evidence of the presence of a hexagonal organization with a size of 26.55 nm typical of Ci-ZnO NPs. The α-amylase and α-glucosidase inhibition assays demonstrated antidiabetic activity of Ci-ZnO NPs (74 % and 82 %, respectively), and the DPPH [2,2-diphenyl-1-picrylhydrazyl hydrate] assay demonstrated the antioxidant activity of the nanoparticles (75%) at a concentration of 100 µg/ml. The Ci-ZnO NPs exhibited promising antibacterial and biofilm inhibition activity against the pathogenic bacteria Streptococcus mutans, Lysinibacillus fusiformis, Proteus vulgaris, and Vibrio parahaemolyticus. Additionally, the Ci-ZnO NPs showed biocompatibility with mammalian RBCs with minimum hemolytic activity (0.633 % ±â€¯0.005 %) at a concentration of 200 µg/ml.


Assuntos
Antibacterianos/farmacologia , Antioxidantes/química , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Extratos Vegetais/química , Óxido de Zinco/química , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Costus/química , Costus/metabolismo , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/fisiologia , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/fisiologia , Química Verde , Hemólise/efeitos dos fármacos , Humanos , Insulina/química , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Extratos Vegetais/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo
16.
J Photochem Photobiol B ; 197: 111549, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31302348

RESUMO

Light is a key factor influencing growth and development in plants. Specific irradiance and light quality can improve development and production of secondary compounds such as carotenoids during plant tissue culture. Bixin and norbixin, two apocarotenoids obtained from the seeds of Bixa orellana L. (annatto), are used as natural dyes in various industries. While annatto tissue culture has been successful, the effect of light in this species remains poorly understood. Here, we analyze for the first time the effect of irradiance regime (50, 150, 50 + 150, 200, 50 + 200 µmol m-2 s-1) and light spectral quality (fluorescent, white, blue/red LED) on in vitro development of apexes and bixin content in two contrasting bixin-producing varieties of B. orellana, namely 'Piave Vermelha' and 'UESB74'. The number of leaves per plant, stomatal density, leaf area, leaf expansion, chlorophylls and carotenoids content, malondialdehyde and bixin content were analyzed in the leaves of both cultivars. 'Piave Vermelha' produced 1.6-fold more bixin than 'UESB74'. Stomata cells of both cultivars had a paracytic arrangement with peltate trichomes along the adaxial and abaxial leaf surfaces. 'Piave Vermelha' preferred blue/red LED light; whereas fluorescent light was optimal for 'UESB74'. Under fluorescent light, an irradiance of 50 µmol m-2 s-1 is indicated for both cultivars. LED light increased bixin content only in 'Piave Vermelha', suggesting that the dye biosynthetic pathway is genotype-dependent. The present findings suggest the possibility of using light to modulate the bixin biosynthetic pathway.


Assuntos
Bixaceae/metabolismo , Carotenoides/análise , Luz , Bixaceae/efeitos da radiação , Carotenoides/metabolismo , Clorofila/análise , Fluorescência , Malondialdeído/análise , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Espectrometria de Massas por Ionização por Electrospray
17.
J Photochem Photobiol B ; 197: 111556, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31326842

RESUMO

Facile green synthesis of copper nanoparticles from different biological procedures has been indicated, but among all, biosynthesis of copper nanoparticles from medicinal plants is considered as the most suitable method. The use of medicinal plant material increases the therapeutical effects of copper nanoparticles. The aim of this study was green synthesis of copper nanoparticles from aqueous extract of Falcaria vulgaris leaf (CuNPs) and assessment of their cytotoxicity, antioxidant, antifungal, antibacterial, and cutaneous wound healing properties. These nanoparticles were characterized by X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM) analysis. The synthesized CuNPs had great cell viability dose-dependently (Investigating the effect of the CuNPs on human umbilical vein endothelial cell (HUVEC) line) and indicated this method was nontoxic. Also, 2,2-diphenyl-1-picrylhydrazyl (DPPH) test was done to assess the antioxidant activities, which indicated similar antioxidant potentials for CuNPs and butylated hydroxytoluene. In part of cutaneous wound healing property of CuNPs, after creating the cutaneous wound, the rats were randomly divided into six groups: treatment with 0.2% CuNPs ointment, treatment with 0.2% CuSO4 ointment, treatment with 0.2% F. vulgaris ointment, treatment with 3% tetracycline ointment, treatment with Eucerin basal ointment, and untreated control. These groups were treated for 10 days. Treatment with CuNPs ointment remarkably increased (p ≤ .01) the wound contracture, vessel, hexosamine, hydroxyl proline, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate and substantially reduced (p ≤ .01) the wound area, total cells, neutrophil, and lymphocyte compared to other groups. In antibacterial and antifungal parts of this research, the concentration of CuNPs with minimum dilution and no turbidity was considered minimum inhibitory concentration (MIC). To determine minimum fungicidal concentration (MFC) and minimum bactericidal concentration (MBC), 60 µL MIC and three preceding chambers were cultured on Sabouraud Dextrose Agar and Muller Hinton Agar, respectively. The minimum concentration with no fungal and bacterial growth were considered MFC and MBC, respectively. CuNPs inhibited the growth of all fungi at 2-4 mg/mL concentrations and removed them at 4-8 mg/mL concentrations (p ≤ .01). In case of antibacterial effects of CuNPs, they inhibited the growth of all bacteria at 2-8 mg/mL concentrations and removed them at 4-16 mg/mL concentrations (p ≤ .01). The results of XRD, FT-IR, UV, TEM, and FE-SEM confirm that the aqueous extract of F. vulgaris leaf can be used to yield copper nanoparticles with notable amount of antioxidant, antifungal, antibacterial, and cutaneous wound healing potentials without any cytotoxicity. Further clinical trials are necessary for confirmation these therapeutical effects of CuNPs in human.


Assuntos
Apiaceae/química , Cobre/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Animais , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Antioxidantes/química , Apiaceae/metabolismo , Candida/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Folhas de Planta/química , Folhas de Planta/metabolismo , Ratos , Pele/efeitos dos fármacos , Pele/patologia , Cicatrização/efeitos dos fármacos
18.
J Photochem Photobiol B ; 197: 111550, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31330424

RESUMO

The plant species of the genus Epimedium L. are well-known traditional Chinese medicinal herbs with special therapeutic effects on human beings and animals in invigorating sexuality and strengthening muscles and bones. In large-scale cultivating Epimedium that is a typical shade plant species, they are arbitrarily covered with black colored shade nets. However, their optimal growth conditions, especially light, are still less understood. During the investigation of different light qualities on the growth of Epimedium pseudowushanense, it was found that, all the values of plant growth characteristics (except shoot number) and photosynthetic characteristics were lower under red, yellow, or blue light treatment than under white light treatment. However, yellow light treatment had beneficial effects on shoot number, dry biomass (per plant) as well as net photosynthesis rate (Pn) and maximal apparent quantum efficiency (AQY) in E. pseudowushanense when compared with red or blue light treatment. More importantly, we found that E. pseudowushanense accumulated higher levels of bioactive flavonoids under yellow light treatment than under white, red, or blue light treatment. Furthermore, both RNAseq and qPCR analyses revealed that yellow light could highly up-regulate the expression levels of flavonoid biosynthetic genes, in particular CHS1, F3H1, PT_5, and raGT_5 that possibly contributed to the enhanced accumulation of bioactive flavonoids in E. pseudowushanense. Taken together, our study revealed that yellow light is the optimal light for the growth of E. pseudowushanense. Our results provided key information on how to improve the cultivation condition and concurrently enhance the accumulation of bioactive flavonoids in E. pseudowushanense.


Assuntos
Epimedium/metabolismo , Flavonoides/metabolismo , Luz , Biomassa , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas , Epimedium/crescimento & desenvolvimento , Epimedium/efeitos da radiação , Flavonoides/análise , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/efeitos da radiação , RNA de Plantas/genética , RNA de Plantas/metabolismo , Análise de Sequência de RNA , Transcriptoma/efeitos da radiação
19.
Plant Mol Biol ; 101(3): 257-268, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31302867

RESUMO

KEY MESSAGE: The C-terminal cysteine-rich motif of NYE1/SGR1 affects chlorophyll degradation likely by mediating its self-interaction and conformational change, and somehow altering its Mg-dechelating activity in response to the changing redox potential. During green organ senescence in plants, the most prominent phenomenon is the degreening caused by net chlorophyll (Chl) loss. NON-YELLOWING1/STAY-GREEN1 (NYE1/SGR1) was recently reported to be able to dechelates magnesium (Mg) from Chl a to initiate its degradation, but little is known about the domain/motif basis of its functionality. In this study, we carried out a protein truncation assay and identified a conserved cysteine-rich motif (CRM, P-X3-C-X3-C-X-C2-F-P-X5-P) at its C terminus, which is essential for its function. Genetic analysis showed that all four cysteines in the CRM were irreplaceable, and enzymatic assays demonstrated that the mutation of each of the four cysteines affected its Mg-dechelating activity. The CRM plays a critical role in the conformational change and self-interaction of NYE1 via the formation of inter- and intra-molecular disulfide bonds. Our results may provide insight into how NYE1 responds to rapid redox changes during leaf senescence and in response to various environmental stresses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Clorofila/química , Proteínas de Cloroplastos/metabolismo , Motivos de Aminoácidos , Quelantes/química , DNA Complementar/metabolismo , Dissulfetos , Regulação da Expressão Gênica de Plantas , Magnésio/química , Oxirredução , Fenótipo , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Conformação Proteica , Domínios Proteicos , Estresse Fisiológico
20.
Gene ; 712: 143962, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31288057

RESUMO

Veratrum nigrum is protected plant of Melanthiaceae family, able to synthetize unique steroidal alkaloids important for pharmacy. Transcriptomes from leaves, stems and rhizomes of in vitro maintained V. nigrum plants were sequenced and annotated for genes and markers discovery. Sequencing of samples derived from the different organs resulted in a total of 108,511 contigs with a mean length of 596 bp. Transcripts derived from leaf and stalk were annotated at 28%, and 38% in Nr nucleotide database, respectively. The sequencing revealed 949 unigenes related with lipid metabolism, including 73 transcripts involved in steroids and genus-specific steroid alkaloids biosynthesis. Additionally, 3203 candidate SSRs markers we identified in unigenes with average density of one SSR locus every 6.2 kb sequence. Unraveling of biochemical machinery of the pathway responsible for steroidal alkaloids will open possibility to design and optimize biotechnological process. The transcriptomic data provide valuable resources for biochemical, molecular genetics, comparative transcriptomics, functional genomics, ecological and evolutionary studies of V. nigrum.


Assuntos
Alcaloides/biossíntese , Regulação da Expressão Gênica de Plantas , Esteroides/biossíntese , Transcriptoma , Veratrum/metabolismo , Mapeamento de Sequências Contíguas , DNA Complementar/metabolismo , Biblioteca Gênica , Ontologia Genética , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Anotação de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA