Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62.547
Filtrar
1.
Physiol Plant ; 176(3): e14396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887929

RESUMO

Phosphorus (P) is a crucial macronutrient required for normal plant growth. Its effective uptake from the soil is a trait of agronomic importance. Natural variation in maize (339 accessions) root traits, namely root length and number of primary, seminal, and crown roots, root and shoot phosphate (Pi) contents, and root-to-shoot Pi translocation (root: shoot Pi) under normal (control, 40 ppm) and low phosphate (LP, 1 ppm) conditions, were used for genome-wide association studies (GWAS). The Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) model of GWAS provided 23 single nucleotide polymorphisms (SNPs) and 12 relevant candidate genes putatively linked with root Pi, root: shoot Pi, and crown root number (CRN) under LP. The DNA-protein interaction analysis of Zm00001d002842, Zm00001d002837, Zm00001d002843 for root Pi, and Zm00001d044312, Zm00001d045550, Zm00001d025915, Zm00001d044313, Zm00001d051842 for root: shoot Pi, and Zm00001d031561, Zm00001d001803, and Zm00001d001804 for CRN showed the presence of potential binding sites of key transcription factors like MYB62, bZIP11, ARF4, ARF7, ARF10 and ARF16 known for induction/suppression of phosphate starvation response (PHR). The in-silico RNA-seq analysis revealed up or down-regulation of candidate genes along with key transcription factors of PHR, while Uniprot analysis provided genetic relatedness. Candidate genes that may play a role in P uptake and root-to-shoot Pi translocation under LP are proposed using common PHR signaling components like MYB62, ARF4, ARF7, ARF10, ARF16, and bZIP11 to induce changes in root growth in maize. Candidate genes may be used to improve low P tolerance in maize using the CRISPR strategy.


Assuntos
Estudo de Associação Genômica Ampla , Fosfatos , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Fosfatos/metabolismo , Fosfatos/deficiência , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Desequilíbrio de Ligação/genética
2.
Luminescence ; 39(6): e4809, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38890149

RESUMO

Utilizing the structure characteristic of KCaY (PO4)2 crystal, the site distribution of Eu2+ in KCaY (PO4)2:Eu phosphor coactivated with Eu2+ and Eu3+ ions is tuned. Upon 393-nm excitation, the as-prepared phosphor exhibits a broadband emission of Eu2+ peaked at ~ 475 nm and a typical red emission of Eu3+ with a strong 5D0-7F1 emission at ~ 591 nm. The luminescence color of the phosphor can be adjusted from blue to green, white, yellow, and red. The increasing concentration of Sr2+ and Eu2+ results in a blue shifting of Eu2+ emission. The increasing concentration of Eu3+ results in a red shifting of Eu2+ emission and an enhanced red emission of Eu3+. The luminescence behaviors of the phosphors are analyzed in terms of the site distribution of Eu2+ and Eu3+. A single-phase white light emitting was achieved in KCaY (PO4)2:Eu phosphor upon UV and NUV light excitation, indicating that the phosphor has potential application in white lighting.


Assuntos
Európio , Luminescência , Substâncias Luminescentes , Európio/química , Substâncias Luminescentes/química , Medições Luminescentes , Fosfatos/química
3.
Nutrients ; 16(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38892532

RESUMO

(1) Background: Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. The aim of the study was to examine the existing published results of the association between elevated serum phosphate concentrations and cardiovascular mortality, along with the CVD incidence and subclinical coronary atherosclerosis, in primary prevention among non-selected samples of the general population. (2) Methods: A systematic review and meta-analysis were carried out using literature obtained from PubMed, SCOPUS, and the Web Of Science until March 2024 and following the PRISMA guidelines. Relevant information was extracted and presented. Random and fixed effects models were used to estimate the pooled odds ratio (OR) and hazard ratio (HR) with their 95% coefficient interval (CI), and I2 was used to assess heterogeneity. (3) Results: Twenty-five studies met our inclusion criteria and were included in the meta-analysis (11 cross-sectional and 14 cohort studies). For cardiovascular mortality, which included 7 cohort studies and 41,764 adults, the pooled HR was 1.44 (95% CIs 1.28, 1.61; I2 0%) when the highest versus the reference level of serum phosphate concentrations were compared. For CVDs, which included 8 cohort studies and 61,723 adults, the pooled HR was 1.12 (95% CIs 0.99, 1.27; I2 51%). For subclinical coronary atherosclerosis, which included 11 cross-sectional studies and 24,820 adults, the pooled OR was 1.44 (95% CIs 1.15, 1.79; I2 88%). (4) Conclusions: The highest serum phosphate concentrations were positively associated with a 44% increased risk of cardiovascular mortality and subclinical coronary atherosclerosis.


Assuntos
Doenças Cardiovasculares , Doença da Artéria Coronariana , Fosfatos , Humanos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/epidemiologia , Fosfatos/sangue , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/sangue , Fatores de Risco , Feminino , Masculino , Incidência , Pessoa de Meia-Idade , Adulto
4.
Cell Mol Biol Lett ; 29(1): 85, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38834954

RESUMO

The molecular basis for bulk autophagy activation due to a deficiency in essential nutrients such as carbohydrates, amino acids, and nitrogen is well understood. Given autophagy functions to reduce surplus to compensate for scarcity, it theoretically possesses the capability to selectively degrade specific substrates to meet distinct metabolic demands. However, direct evidence is still lacking that substantiates the idea that autophagy selectively targets specific substrates (known as selective autophagy) to address particular nutritional needs. Recently, Gross et al. found that during phosphate starvation (P-S), rather than nitrogen starvation (N-S), yeasts selectively eliminate peroxisomes by dynamically altering the composition of the Atg1/ULK kinase complex (AKC) to adapt to P-S. This study elucidates how the metabolite sensor Pho81 flexibly interacts with AKC and guides selective autophagic clearance of peroxisomes during P-S, providing novel insights into the metabolic contribution of autophagy to special nutritional needs.


Assuntos
Autofagia , Fosfatos , Proteínas de Saccharomyces cerevisiae , Fosfatos/metabolismo , Fosfatos/deficiência , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Peroxissomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Quinases
5.
Sci Total Environ ; 940: 173667, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823699

RESUMO

The retention and mobilization of phosphate in soils are closely associated with the adsorption of iron (hydr)oxides and root exudation of low-molecular-weight organic acids (LMWOAs). This study investigated the role of LMWOAs in phosphate mobilization under incubation and field conditions. LMWOAs-mediated iron (hydr)oxide transformation and phosphate adsorption experiments revealed that the presence of LMWOAs decreased the phosphate adsorption capacity of iron (hydr)oxides by up to ~74 % due to the competition effect, while LMWOAs-induced iron mineral transformation resulted in an approximately six-fold increase in phosphate retention by decreasing the crystallinity and increasing the surface reactivity. Root simulation in rhizobox experiments demonstrated that LMWOAs can alter the contents of different extractable phosphate species and iron components, leading to 10 % ~ 30 % decreases in available phosphate in the near root region of two tested soils. Field experiments showed that crop covering between mango tree rows promoted the exudation of LMWOAs from mango roots. In addition, crop covering increased the contents of total phosphate and available phosphate by 9.08 % ~ 61.20 % and 34.33 % ~ 147.33 % in the rhizosphere soils of mango trees, respectively. These findings bridge the microscale and field scale to understand the delicate LMWOAs-mediated balance between the retention and mobilization of phosphate on iron (hydr)oxide surface, thereby providing important implications for mitigating the low utilization efficiency of phosphate in iron-rich soils.


Assuntos
Compostos Férricos , Fosfatos , Solo , Compostos Férricos/química , Solo/química , Poluentes do Solo/análise , Adsorção , Peso Molecular
6.
Elife ; 132024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864841

RESUMO

Bone releases calcium and phosphate in response to pro-inflammatory cytokine-mediated inflammation. The body develops impaired urinary excretion of phosphate with age and chronic inflammation given the reduction of the kidney protein Klotho, which is essential to phosphate excretion. Phosphate may also play a role in the development of the resistance of the parathyroid calcium-sensing receptor (CaSR) to circulating calcium thus contributing to calcium retention in the circulation. Phosphate can contribute to vascular smooth muscle dedifferentiation with manifestation of osteoblastogenesis and ultimately endovascular calcium phosphate precipitation. Thus phosphate, along with calcium, contributes to the calcification and inflammation of atherosclerotic plaques and the origin of these elements is likely the bone, which serves as storage for the majority of the body's supply of extracellular calcium and phosphate. Early cardiac evaluation of patients with chronic inflammation and attempts at up-regulating the parathyroid CaSR with calcimimetics or introducing earlier anti-resorptive treatment with bone active pharmacologic agents may serve to delay onset or reduce the quantity of atherosclerotic plaque calcification in these patients.


Assuntos
Cálcio , Inflamação , Fosfatos , Receptores de Detecção de Cálcio , Calcificação Vascular , Humanos , Calcificação Vascular/metabolismo , Fosfatos/metabolismo , Cálcio/metabolismo , Inflamação/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Animais , Vasos Coronários/metabolismo
7.
Microbiol Res ; 285: 127795, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38824819

RESUMO

This study aims to investigate the effect of isolated drought-tolerant rhizobacteria, spanning various groups, such as nitrogen-fixing bacteria (NFB), phosphate solubilizing bacteria (PSB), and other plant growth promoting rhizobacteria (PGPR), on the growth of wheat (Triticum durum) plants, focusing on various morphological and physiological responses under moderate drought and low-P availability. Among 343 rhizobacterial morphotypes, 16 exhibited tolerance to NaCl and PEG-6000. These included 8 PSB, 4 NFB, and 4 osmotolerant-PGPR groups, distributed across 14 different genera. Biochemical characterization showcased diverse PGP capabilities, particularly in P solubilization. The dynamic responses of drought-tolerant PSB to salt and PEG-6000-induced drought stress involved variations in organic acid (OA) secretion, with specific acids, including palmitic, lactic, and stearic, playing crucial roles in enhancing available P fractions. Inoculation with rhizobacteria significantly increased both shoot (SDW) and root (RDW) dry weights of wheat plants, as well as rhizosphere available P. PSB11 (Arthrobacter oryzae) emerged as the most effective strain, plausibly due to its positive impact on root morphological traits (length, surface, and volume). Other isolates, PSB10 (Priestia flexa), PSB13 (Bacillus haynesii), and particularly PGPR2 (Arthrobacter pascens) significantly increased shoot P content (up to 68.91 %), with a 2-fold increase in chlorophyll content. The correlation analysis highlighted positive associations between SDW, shoot P content, chlorophyll content index (CCI), and leaf area. Additionally, a negative correlation emerged between microbial biomass P and root morphophysiological parameters. This pattern could be explained by reduced competition between plants and rhizobacteria for accessible P, as indicated by low microbial biomass P and strong plant growth. Our investigation reveals the potential of drought-tolerant rhizobacteria in enhancing wheat resilience to moderate drought and low-P conditions. This is demonstrated through exceptional performance in influencing root architecture, P utilization efficiency, and overall plant physiological parameters. Beyond these outcomes, the innovative isolation procedure employed, targeting rhizobacteria from diverse groups, opens new avenues for targeted isolation techniques. This unique approach contributes to the novelty of our study, offering promising prospects for targeted bioinoculants in mitigating the challenges of drought and P deficiency in wheat cultivation.


Assuntos
Secas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Triticum , Triticum/microbiologia , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Fosfatos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Fósforo/metabolismo , Estresse Fisiológico
8.
Environ Sci Technol ; 58(24): 10601-10610, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833530

RESUMO

The mobility and bioavailability of phosphate in paddy soils are closely coupled to redox-driven Fe-mineral dynamics. However, the role of phosphate during Fe-mineral dissolution and transformations in soils remains unclear. Here, we investigated the transformations of ferrihydrite and lepidocrocite and the effects of phosphate pre-adsorbed to ferrihydrite during a 16-week field incubation in a flooded sandy rice paddy soil in Thailand. For the deployment of the synthetic Fe-minerals in the soil, the minerals were contained in mesh bags either in pure form or after mixing with soil material. In the latter case, the Fe-minerals were labeled with 57Fe to allow the tracing of minerals in the soil matrix with 57Fe Mössbauer spectroscopy. Porewater geochemical conditions were monitored, and changes in the Fe-mineral composition were analyzed using 57Fe Mössbauer spectroscopy and/or X-ray diffraction analysis. Reductive dissolution of ferrihydrite and lepidocrocite played a minor role in the pure mineral mesh bags, while in the 57Fe-mineral-soil mixes more than half of the minerals was dissolved. The pure ferrihydrite was transformed largely to goethite (82-85%), while ferrihydrite mixed with soil only resulted in 32% of all remaining 57Fe present as goethite after 16 weeks. In contrast, lepidocrocite was only transformed to 12% goethite when not mixed with soil, but 31% of all remaining 57Fe was found in goethite when it was mixed with soil. Adsorbed phosphate strongly hindered ferrihydrite transformation to other minerals, regardless of whether it was mixed with soil. Our results clearly demonstrate the influence of the complex soil matrix on Fe-mineral transformations in soils under field conditions and how phosphate can impact Fe oxyhydroxide dynamics under Fe reducing soil conditions.


Assuntos
Compostos Férricos , Oryza , Fosfatos , Solo , Oryza/química , Fosfatos/química , Solo/química , Adsorção , Compostos Férricos/química , Minerais/química , Espectroscopia de Mossbauer , Ferro/química , Oxirredução
9.
PeerJ ; 12: e17341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827281

RESUMO

Phosphorus is one of the lowest elements absorbed and utilized by plants in the soil. SPX domain-containing genes family play an important role in plant response to phosphate deficiency signaling pathway, and related to seed development, disease resistance, absorption and transport of other nutrients. However, there are no reports on the mechanism of SPX domain-containing genes in response to phosphorus deficiency in eggplant. In this study, the whole genome identification and functional analysis of SPX domain-containing genes family in eggplant were carried out. Sixteen eggplant SPX domain-containing genes were identified and divided into four categories. Subcellular localization showed that these proteins were located in different cell compartments, including nucleus and membrane system. The expression patterns of these genes in different tissues as well as under phosphate deficiency with auxin were explored. The results showed that SmSPX1, SmSPX5 and SmSPX12 were highest expressed in roots. SmSPX1, SmSPX4, SmSPX5 and SmSPX14 were significantly induced by phosphate deficiency and may be the key candidate genes in response to phosphate starvation in eggplant. Among them, SmSPX1 and SmSPX5 can be induced by auxin under phosphate deficiency. In conclusion, our study preliminary identified the SPX domain genes in eggplant, and the relationship between SPX domain-containing genes and auxin was first analyzed in response to phosphate deficiency, which will provide theoretical basis for improving the absorption of phosphorus in eggplants through molecular breeding technology.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Solanum melongena , Solanum melongena/genética , Solanum melongena/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Genoma de Planta/genética , Família Multigênica , Fósforo/metabolismo , Fósforo/deficiência , Genes de Plantas , Fosfatos/metabolismo , Fosfatos/deficiência
10.
Curr Microbiol ; 81(7): 207, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831110

RESUMO

The current study aimed to evaluate the plant growth-promoting (PGP) potential of endophytic strain Bacillus subtilis KU21 isolated from the roots of Rosmarinus officinalis. The strain exhibited multiple traits of plant growth promotion viz., phosphate (P) solubilization, nitrogen fixation, indole-3-acetic acid (IAA), siderophore, hydrogen cyanide (HCN), lytic enzymes production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. The isolate also exhibited antagonistic activity against phytopathogenic fungi, i.e., Fusarium oxysporum, Fusarium graminiarum, and Rhizoctonia solani. The P-solubilization activity of B. subtilis KU21 was further elucidated via detection of glucose dehydrogenase (gdh) gene involved in the production of gluconic acid which is responsible for P-solubilization. Further, B. subtilis KU21 was evaluated for in vivo growth promotion studies of tomato (test crop) under net house conditions. A remarkable increase in seed germination, plant growth parameters, nutrient acquisition, and soil quality parameters (NPK) was observed in B. subtilis KU21-treated plants over untreated control. Hence, the proposed module could be recommended for sustainable tomato production in the Northwest Himalayan region without compromising soil health and fertility.


Assuntos
Bacillus subtilis , Endófitos , Raízes de Plantas , Rosmarinus , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/isolamento & purificação , Bacillus subtilis/metabolismo , Endófitos/isolamento & purificação , Endófitos/metabolismo , Endófitos/genética , Endófitos/classificação , Rosmarinus/química , Rosmarinus/microbiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Fusarium/metabolismo , Microbiologia do Solo , Desenvolvimento Vegetal , Germinação , Ácidos Indolacéticos/metabolismo , Rhizoctonia/crescimento & desenvolvimento , Rhizoctonia/efeitos dos fármacos , Fixação de Nitrogênio , Fosfatos/metabolismo
11.
Bioresour Technol ; 403: 130888, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38788804

RESUMO

Downstream processing of biomolecules, particularly therapeutic proteins and enzymes, presents a formidable challenge due to intricate unit operations and high costs. This study introduces a novel cysteine (cys) functionalized aqueous two-phase system (ATPS) utilizing polyethylene glycol (PEG) and potassium phosphate, referred as PEG-K3PO4/cys, for selective extraction of laccase from complex protein mixtures. A 3D-baffle micro-mixer and phase separator was meticulously designed and equipped with computer vision controller, to enable precise mixing and continuous phase separation under automated-flow. Microfluidic-assisted ATPS exhibits substantial increase in partition coefficient (Kflow = 16.3) and extraction efficiency (EEflow = 88 %) for laccase compared to conventional batch process. Integrated and continuous-flow process efficiently partitioned laccase, even in low concentrations and complex crude extracts. Circular dichroism spectra of laccase confirm structural stability of enzyme throughout the purification process. Eventually, continuous-flow microfluidic bioseparation is highly useful for seamless downstream processing of target biopharmaceuticals in integrated and autonomous manner.


Assuntos
Lacase , Polietilenoglicóis , Lacase/química , Polietilenoglicóis/química , Fosfatos/química , Cisteína/química , Água/química , Dicroísmo Circular , Compostos de Potássio
12.
Genes (Basel) ; 15(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38790218

RESUMO

Phosphorus (P) is a vital nutrient element that is essential for plant growth and development, and arbuscular mycorrhizal fungi (AMF) can significantly enhance P absorption. The phosphate transporter protein 1 (PHT1) family mediates the uptake of P in plants. However, the PHT1 gene has not yet been characterized in Salvia miltiorrhiza. In this study, to gain insight into the functional divergence of PHT1 genes, nine SmPHT1 genes were identified in the S. miltiorrhiza genome database via bioinformatics tools. Phylogenetic analysis revealed that the PHT1 proteins of S. miltiorrhiza, Arabidopsis thaliana, and Oryza sativa could be divided into three groups. PHT1 in the same clade has a similar gene structure and motif, suggesting that the features of each clade are relatively conserved. Further tissue expression analysis revealed that SmPHT1 was expressed mainly in the roots and stems. In addition, phenotypic changes, P content, and PHT1 gene expression were analyzed in S. miltiorrhiza plants inoculated with AMF under different P conditions (0 mM, 0.1 mM, and 10 mM). P stress and AMF significantly affected the growth and P accumulation of S. miltiorrhiza. SmPHT1;6 was strongly expressed in the roots colonized by AMF, implying that SmPHT1;6 was a specific AMF-inducible PHT1. Taken together, these results provide new insights into the functional divergence and genetic redundancy of the PHT1 genes in response to P stress and AMF symbiosis in S. miltiorrhiza.


Assuntos
Regulação da Expressão Gênica de Plantas , Micorrizas , Proteínas de Transporte de Fosfato , Fosfatos , Filogenia , Proteínas de Plantas , Salvia miltiorrhiza , Estresse Fisiológico , Simbiose , Micorrizas/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/microbiologia , Simbiose/genética , Estresse Fisiológico/genética , Fosfatos/metabolismo , Família Multigênica , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Genoma de Planta
13.
Environ Pollut ; 355: 124229, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38801876

RESUMO

Inappropriate handling of lead (Pb)-containing wastewater that is produced as a result of smelting activities threatens the surrounding environment and human health. The microbial-induced phosphate precipitation (MIPP) technology was applied to immobilize Pb2+ in an aqueous solution considering bacterial phosphorolysis ability and Ca-mediated alleviation of lead toxicity. Pb immobilization was accompanied by sample characterization in order to explore the inherent mechanism that affected the immobilization efficiency. Results showed that Ca2+ use elevated the immobilization efficiency through the prevention of bacterial physisorption and chemisorption, an enhancement to the phosphatase activity and the degree of SGP hydrolysis, and the provision of nucleation sites for Pb2+ to attach. The formation of the Pb-GP complex helped the bacteria to maintain its activity at the commencement of catalyzing SGP hydrolysis. The nucleated minerals that were precipitated in a columnar shape through a directional stacking manner under MIPP featured higher chemical stability compared to non-nucleated minerals. As a result, there were three pathways, namely, bacterial physisorption, bacterial chemisorption, and substrate chelation, applied for Pb immobilization. The immobilization efficiency of 99.6% is achieved by precipitating bioprecipitates including Pb5(PO4)3Cl, Pb10(PO4)6Cl2, and Ca2Pb3(PO4)3Cl. The findings accentuate the potential of applying the MIPP technology to Pb-containing wastewater remediation.


Assuntos
Bacillus megaterium , Chumbo , Fosfatos , Chumbo/toxicidade , Chumbo/química , Fosfatos/química , Poluentes Químicos da Água/química , Cálcio/metabolismo , Cálcio/química , Águas Residuárias/química
14.
Environ Res ; 252(Pt 3): 118976, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705451

RESUMO

This study evaluates Alum sludge from drinking water treatment plants for the efficient and cost-effective removal of phosphates from aqueous solutions. Extensive characterization and batch experiments have established that optimal phosphate removal was achieved with a sludge dosage of 20 g L-1 (at an initial phosphate concentration of 100 mg L-1), a pH of 5, a temperature of 23 °C, and a stirring speed of 200 rpm. These conditions significantly reduced phosphate levels, ensuring compliance with legal discharge limits. The Langmuir isotherm, pseudo-second-order kinetic and intraparticle diffusion models best described the adsorption process, highlighting the spontaneous and endothermic nature of the phenomenon. The sludge effectively reduced phosphate concentrations to acceptable levels when applied to dairy effluents. This study underscores the potential of Alum sludge as a viable solution for phosphate management in environmental cleanup efforts.


Assuntos
Compostos de Alúmen , Indústria de Laticínios , Fosfatos , Esgotos , Adsorção , Fosfatos/química , Esgotos/química , Compostos de Alúmen/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Cinética , Modelos Químicos
15.
Bioorg Chem ; 147: 107415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701597

RESUMO

The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.


Assuntos
Antivirais , Proteínas do Capsídeo , Fosfatos , Vírus do Mosaico do Tabaco , Vírus do Mosaico do Tabaco/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Fosfatos/química , Fosfatos/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas do Capsídeo/antagonistas & inibidores , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Desenho de Fármacos , Testes de Sensibilidade Microbiana , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Relação Dose-Resposta a Droga , Descoberta de Drogas , Simulação de Acoplamento Molecular
16.
BMJ Case Rep ; 17(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697682

RESUMO

Tumour-induced osteomalacia is caused by tumorous production of fibroblast growth factor 23 (FGF23) leading to urinary phosphate wasting, hypophosphataemia and decreased vitamin D activation. The resulting osteomalacia presents with muscle weakness and bone pain but progresses to multiple pathological fractures. Patients often remain undiagnosed for years with severe physical, psychological and economic ramifications. A young woman presented with multiple spontaneous fractures including bilateral femoral fractures. Laboratory tests revealed severe hypophosphataemia, elevated bone turnover markers and low to normal calcium and 25-hydroxy-vitamin D levels. Treatment with phosphate, alfalcalcidol, calcium and magnesium was initiated. 68Gallium-DOTATOC positron emission tomography imaging revealed a mass in the right foot and venous sampling of FGF23 from all extremities confirmed this tumour as the culprit. Biopsy and histology were consistent with a phosphaturic mesenchymal tumour, which was surgically resected. Phosphate levels quickly normalised postoperatively but a long convalescence with hungry bone syndrome, fracture healing and physical therapy followed.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Neoplasias de Tecido Conjuntivo , Osteomalacia , Humanos , Osteomalacia/etiologia , Feminino , Neoplasias de Tecido Conjuntivo/diagnóstico , Neoplasias de Tecido Conjuntivo/cirurgia , Adulto , Síndromes Paraneoplásicas/diagnóstico , Hipofosfatemia/etiologia , Fatores de Crescimento de Fibroblastos/sangue , Fraturas do Fêmur/cirurgia , Fraturas do Fêmur/diagnóstico por imagem , Fraturas Espontâneas/etiologia , Fraturas Espontâneas/cirurgia , Fraturas Espontâneas/diagnóstico por imagem , Fosfatos/sangue
17.
Int J Biol Macromol ; 268(Pt 2): 131944, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692531

RESUMO

Efficient removal and recycling of phosphorus from complex water matrices using environmentally friendly and sustainable materials is essential yet challenging. To this end, a novel bio-based adsorbent (DX-FcA-CS) was developed by coupling oxidized dextran-crosslinked chitosan with ferrocene carboxylic acid (FcA). Detailed characterization revealed that the incorporation of FcA reduced the total pore area of DX-FcA-CS to 7.21 m2·g-1, one-third of ferrocene-free DX-CS (21.71 m2·g-1), while enhancing thermal stability and PO43- adsorption performance. Adsorption kinetics and isotherm studies demonstrated that the interaction between DX-FcA-CS and PO43- followed a pseudo-second-order kinetic model and Langmuir model, indicating chemical and monolayered adsorption mechanisms, respectively. Moreover, DX-FcA-CS exhibited excellent anti-interference properties against concentrated co-existing inorganic ions and humic acid, along with high recyclability. The maximum adsorption capacity reached 1285.35 mg·g-1 (∼428.45 mg P g-1), three times that of DX-CS and surpassing many other adsorbents. PO43--loaded DX-FcA-CS could be further carbonized into electrode material due to its rich content of phosphorus and nitrogen, transforming waste into a valuable resource. These outstanding characteristics position DX-FcA-CS as a promising alternative for phosphate capture and recycling. Overall, this study presents a viable approach to designing environmentally friendly, recyclable, and cost-effective biomaterial for wastewater phosphate removal and value-added applications.


Assuntos
Quitosana , Fosfatos , Quitosana/química , Adsorção , Porosidade , Fosfatos/química , Cinética , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Águas Residuárias/química , Fósforo/química
18.
Planta ; 259(6): 144, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709333

RESUMO

MAIN CONCLUSION: Silicon application mitigates phosphate deficiency in barley through an interplay with auxin and nitric oxide, enhancing growth, photosynthesis, and redox balance, highlighting the potential of silicon as a fertilizer for overcoming nutritional stresses. Silicon (Si) is reported to attenuate nutritional stresses in plants, but studies on the effect of Si application to plants grown under phosphate (Pi) deficiency are still very scarce, especially in barley. Therefore, the present work was undertaken to investigate the potential role of Si in mitigating the adverse impacts of Pi deficiency in barley Hordeum vulgare L. (var. BH902). Further, the involvement of two key regulatory signaling molecules--auxin and nitric oxide (NO)--in Si-induced tolerance against Pi deficiency in barley was tested. Morphological attributes, photosynthetic parameters, oxidative stress markers (O2·-, H2O2, and MDA), antioxidant system (enzymatic--APX, CAT, SOD, GR, DHAR, MDHAR as well as non-enzymatic--AsA and GSH), NO content, and proline metabolism were the key traits that were assessed under different treatments. The P deficiency distinctly declined growth of barley seedlings, which was due to enhancement in oxidative stress leading to inhibition of photosynthesis. These results were also in parallel with an enhancement in antioxidant activity, particularly SOD and CAT, and endogenous proline level and its biosynthetic enzyme (P5CS). The addition of Si exhibited beneficial effects on barley plants grown in Pi-deficient medium as reflected in increased growth, photosynthetic activity, and redox balance through the regulation of antioxidant machinery particularly ascorbate-glutathione cycle. We noticed that auxin and NO were also found to be independently participating in Si-mediated improvement of growth and other parameters in barley roots under Pi deficiency. Data of gene expression analysis for PHOSPHATE TRANSPORTER1 (HvPHT1) indicate that Si helps in increasing Pi uptake as per the need of Pi-deficient barley seedlings, and also auxin and NO both appear to help Si in accomplishing this task probably by inducing lateral root formation. These results are suggestive of possible application of Si as a fertilizer to correct the negative effects of nutritional stresses in plants. Further research at genetic level to understand Si-induced mechanisms for mitigating Pi deficiency can be helpful in the development of new varieties with improved tolerance against Pi deficiency, especially for cultivation in areas with Pi-deficient soils.


Assuntos
Hordeum , Ácidos Indolacéticos , Óxido Nítrico , Estresse Oxidativo , Fosfatos , Fotossíntese , Raízes de Plantas , Silício , Hordeum/metabolismo , Hordeum/genética , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Hordeum/fisiologia , Silício/farmacologia , Silício/metabolismo , Ácidos Indolacéticos/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Fotossíntese/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Plântula/efeitos dos fármacos , Plântula/fisiologia
19.
ACS Appl Mater Interfaces ; 16(23): 30355-30370, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38805353

RESUMO

The rational application of fertilizers is crucial for achieving high crop yields and ensuring global food security. The use of biopolymers for slow-release fertilizers (SRFs) development has emerged as a game-changer and environmentally sustainable pathway to enhance crop yields by optimizing plant growth phases. Herein, with a renewed focus on circular bioeconomy, a novel functionalized lignin-based coating material (FLGe) was developed for the sustained release of nutrients. This innovative approach involved the extraction and sustainable functionalization of lignin through a solvent-free esterification reaction with humic acid─an organic compound widely recognized for its biostimulant properties in agriculture. The primary objective was to fortify the hydration barrier of lignin by reducing the number of its free hydroxyl groups, thereby enhancing release control, while simultaneously harnessing the agronomic benefits offered by humic acid. After confirming the synthesis of functionalized lignin (FLGe) through 13C NMR analysis, it was integrated at varying proportions into either a cellulosic or starch matrix. This resulted in the creation of five distinct formulations, which were then utilized as coatings for diammonium phosphate (DAP) fertilizer. Experimental findings revealed an improved morphology and hardness (almost 3-fold) of DAP fertilizer granules after coating along with a positive impact on the soil's water retention capacity (7%). Nutrient leaching in soil was monitored for 100 days and a substantial reduction of nutrients leaching up to 80% was successfully achieved using coated DAP fertilizer. Furthermore, to get a fuller picture of their efficiency, a pot trial was performed using two different soil textures and demonstrated that the application of FLGe-based SRFs significantly enhanced the physiological and agronomic parameters of wheat, including leaf evolution and root architecture, resulting in an almost 50% increase in grain yield and improved quality. The results proved the potential of lignin functionalization to advance agricultural sustainability and foster a robust bioeconomy aligning with the premise "from the soil to the soil".


Assuntos
Fertilizantes , Substâncias Húmicas , Lignina , Triticum , Lignina/química , Triticum/crescimento & desenvolvimento , Triticum/química , Triticum/efeitos dos fármacos , Triticum/metabolismo , Fosfatos/química , Solo/química , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento
20.
Bone ; 185: 117112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38697384

RESUMO

This review examines the possible role of mitochondria in maintaining calcium and phosphate ion homeostasis and participating in the mineralization of bone, cartilage and other vertebrate hard tissues. The paper builds on the known structural features of mitochondria and the documented observations in these tissues that the organelles contain calcium phosphate granules. Such deposits in mitochondria putatively form to buffer excessively high cytosolic calcium ion concentrations and prevent metabolic deficits and even cell death. While mitochondria protect cytosolic enzyme systems through this buffering capacity, the accumulation of calcium ions by mitochondria promotes the activity of enzymes of the tricarboxylic acid (TCA/Krebs) cycle, increases oxidative phosphorylation and ATP synthesis, and leads to changes in intramitochondrial pH. These pH alterations influence ion solubility and possibly the transitions and composition in the mineral phase structure of the granules. Based on these considerations, mitochondria are proposed to support the mineralization process by providing a mobile store of calcium and phosphate ions, in smaller cluster or larger granule form, while maintaining critical cellular activities. The rise in the mitochondrial calcium level also increases the generation of citrate and other TCA cycle intermediates that contribute to cell function and the development of extracellular mineral. This paper suggests that another key role of the mitochondrion, along with the effects just noted, is to supply phosphate ions, derived from the breakdown of ATP, to endolysosomes and autophagic vesicles originating in the endoplasmic reticulum and Golgi and at the plasma membrane. These many separate but interdependent mitochondrial functions emphasize the critical importance of this organelle in the cellular control of vertebrate mineralization.


Assuntos
Calcificação Fisiológica , Mitocôndrias , Vertebrados , Animais , Mitocôndrias/metabolismo , Humanos , Calcificação Fisiológica/fisiologia , Vertebrados/metabolismo , Cálcio/metabolismo , Fosfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...