Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.422
Filtrar
1.
Chemosphere ; 310: 136796, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36228722

RESUMO

Increased production and usage of organophosphate esters (OPEs) as flame retardants and plasticizers has trended towards larger and 'novel' (oligomeric) OPEs, although there is a dearth of understanding of the environmental fate, stability, toxicokinetics, biotransformation and bioaccumulation of novel OPEs in exposed biota. The present study characterized in vitro biotransformation of the novel OPE bisphenol-A bis(diphenyl phosphate) (BPADP) using Wistar-Han rat and herring gull liver based microsomal assays. Hypothesized target metabolites bisphenol-A (BPA) and diphenyl phosphate (DPHP) and other metabolites were investigated by applying a lines of evidence approach. In silico modelling predicted both BPA and DPHP as rat metabolites of BPADP, these metabolites were quantified via UHPLC-QQQ-MS/MS. Additional non-target metabolites were determined by UHPLC-Q-Exactive-Orbitrap-HRMS/MS and identified by Compound Discoverer software. Mean BPADP depletion of 44 ± 10% was quantified with 3.9% and 2.6% conversion to BPA and DPHP, respectively, in the rat assay. BPADP metabolism was much slower when compared to the well-studied OPE, triphenyl phosphate (TPHP). BPADP depletion in gull liver assays was far slower relative to the rat. Additional non-target metabolites identified included two Phase I, O-dealkylation products, five Phase I oxidation products and one Phase II glutathione adduct, demonstrating agreement between lines of in vitro and in silico evidence. Lines of evidence suggest that BPADP is biologically persistent in exposed mammals or birds. These findings add to the understanding of BPADP stability and biotransformation, and perhaps of other novel OPEs, which are factors highly applicable to hazard assessments of exposure, persistence and bioaccumulation in biota.


Assuntos
Retardadores de Chama , Fosfatos , Ratos , Animais , Fosfatos/metabolismo , Espectrometria de Massas em Tandem , Ratos Wistar , Organofosfatos/análise , Retardadores de Chama/análise , Biotransformação , Aves/metabolismo , Fígado/metabolismo , Ésteres/análise , Mamíferos/metabolismo
2.
J Hazard Mater ; 442: 130106, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209612

RESUMO

Fungus Cladosporium sp. strain F1 showed highly effective biosorption capacity to lead phosphate mineral and perovskite solar cells lead iodide compared to other fungi Aspergillus niger VKMF-1119 and Mucor ramannianus R-56. Scanning electron microscopy and transmission electron microscopy analyses shows that Cladosporium sp. strain F1, which previously showed high biosorption capacity to uranium phosphate nanorods and nanoplates, can accumulate lead phosphate mineral and lead iodide on the fungal hyphae surface in large amounts under a wide range of pH conditions, while A. niger VKMF-1119 and M. ramannianus R-56 adsorbed small amounts of minerals. After biosorption of lead iodide minerals on Cladosporium sp. strain F1, aqueous dimethyl sulfoxide (50%) at pH 2 (70 °C) released the mineral more than 99%. Based on the fungal surface analyses, hydrophobic properties on the surfaces of Cladosporium sp. strain F1 could affect the higher biosorption capacity of strain F1 to lead phosphate mineral and lead iodide as compared to other tested fungi. Cladosporium sp. strain F1 may be the novel biosorbents to remediate the phosphate rich environment and to recover lead from perovskite solar cells lead iodide.


Assuntos
Cladosporium , Urânio , Cladosporium/metabolismo , Adsorção , Fosfatos/metabolismo , Concentração de Íons de Hidrogênio , Biomassa , Iodetos , Urânio/metabolismo , Dimetil Sulfóxido , Chumbo/metabolismo , Aspergillus niger , Minerais/metabolismo
3.
Enzyme Microb Technol ; 162: 110139, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36244089

RESUMO

A plasmid was constructed to express the CapA-SpeA fusion protein from the capA gene, which encodes one of the subunits of capsular poly-γ-glutamate synthetase of Bacillus subtilis subsp. natto, and the speA gene, encoding biosynthetic arginine decarboxylase (EC 4.1.1.19) of Escherichia coli, under the control of the T5 promoter. The expression of SpeA on the extracellular surface of cells was confirmed by confocal microscopy with the anti-SpeAE. coli antibody and anti-rabbit IgG L & H conjugated with Alexa Fluor 488. The constructed strain SH2290 produced 200 mM agmatine from 200 mM arginine, 20 mM MgSO4, 0.9 % NaCl, and 0.02 mg/mL pyridoxal 5'-phosphate (initial pH 5.3) by adjusting pH of the reaction mixture to 6.8 with HCl after each sampling during the reaction. The addition of pyridoxal 5'-phosphate to the reaction mixture was required for the maximum agmatine production. The present results demonstrate that the expression of enzymes on the extracellular surface of cells is a very powerful method for enzymatic conversion.


Assuntos
Agmatina , Carboxiliases , Escherichia coli/metabolismo , Agmatina/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Fosfatos/metabolismo , Piridoxal/metabolismo
4.
Nutrients ; 14(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364739

RESUMO

Phosphorus is one of the most abundant minerals in the human body. It is essential for almost all biochemical activities through ATP formation, intracellular signal transduction, cell membrane formation, bone mineralization, DNA and RNA synthesis, and inflammation modulation through various inflammatory cytokines. Phosphorus levels must be optimally regulated, as any deviations may lead to substantial derangements in glucose homeostasis. Clinical studies have reported that hyperphosphatemia can increase an individual's risk of developing metabolic syndrome. High phosphate burden has been shown to impair glucose metabolism by impairing pancreatic insulin secretion and increasing the risk of cardiometabolic disorders. Phosphate toxicity deserves more attention as metabolic syndrome is being seen more frequently worldwide and should be investigated further to determine the underlying mechanism of how phosphate burden may increase the cardiometabolic risk in the general population.


Assuntos
Doenças Cardiovasculares , Síndrome Metabólica , Humanos , Síndrome Metabólica/etiologia , Fosfatos/metabolismo , Insulina/metabolismo , Fósforo
5.
Nutrients ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36364791

RESUMO

Phosphorus, present as phosphate in biological systems, is an essential mineral for various biological activities and biochemical processes. Numerous studies have indicated that disturbed phosphate balance may contribute to the development of metabolic syndrome (MetS). However, no consistent result was found on the association between phosphorus intake and serum phosphate concentration with MetS. It is believed that both positive and negative impacts of phosphorus/phosphate co-exist in parallel during MetS condition. Reduced phosphate level contributed to the development of obesity and hyperglycaemia. Low phosphate is believed to compromise energy production, reduce exercise capacity, increase food ingestion, and impair glucose metabolism. On the other hand, the effects of phosphorus/phosphate on hypertension are rather complex depending on the source of phosphorus and subjects' health conditions. Phosphorus excess activates sympathetic nervous system, renin-angiotensin-aldosterone system, and induces hormonal changes under pathological conditions, contributing to the blood pressure-rising effects. For lipid metabolism, adequate phosphate content ensures a balanced lipid profile through regulation of fatty acid biosynthesis, oxidation, and bile acid excretion. In conclusion, phosphate metabolism serves as a potential key feature for the development and progression of MetS. Dietary phosphorus and serum phosphate level should be under close monitoring for the management of MetS.


Assuntos
Fenômenos Bioquímicos , Síndrome Metabólica , Humanos , Obesidade/metabolismo , Fósforo , Fosfatos/metabolismo
6.
BMC Microbiol ; 22(1): 276, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36401227

RESUMO

BACKGROUND: In soils, phosphorous (P) mostly exists in fixed/insoluble form and unavailable for plants use in soil solution, hence it is in scarcity. P is fixed in the form of aluminium, iron and manganese phosphates in acidic soils and calcium phosphate in alkaline soils. Phosphate solubilizing bacteria, the ecological engineers play a pivotal role in the mobilization of fixed forms of P by using different mechanisms. The objectives of this study were to evaluate inorganic phosphate solubilizing efficiency and other multiple plant growth promoting traits of Erythrina brucei root nodule endophytic bacteria and to investigate effects of the selected endophytic bacteria on the growth of wheat plant under phosphorous deficient sand culture at greenhouse conditions. RESULTS: Among a total of 304 passenger endophytic bacteria, 119 (39%) exhibited tricalcium phosphate (TCP) solubilization; however, none of them were formed clear halos on solid medium supplemented with aluminum phosphate (Al-P) or iron phosphate (Fe-P). Among 119 isolates, 40% exhibited IAA production. The selected nine potential isolates also exhibited potentials of IAA, HCN, NH3 and/or hydrolytic enzymes production. All the selected isolates were potential solubilizers of the three inorganic phosphates (Al-P, Fe-P and TCP) included in liquid medium. The highest values of solubilized TCP were recorded by isolates AU4 and RG6 (A. soli), 108.96 mg L-1 and 107.48 mg L-1, respectively at sampling day3 and 120.36 mg L-1 and 112.82 mg L-1, respectively at day 6. The highest values of solubilized Al-P and Fe-P were recorded by isolate RG6, 102.14 mg L-1 and 96.07 mg L-1, respectively at sampling days 3 and 6, respectively. The highest IAA, 313.61 µg mL-1 was recorded by isolate DM17 (Bacillus thuringiensis). Inoculation of wheat with AU4, RG6 and RG5 (Acinetobacter soli) increased shoot length by 11, 17.4 and 14.6%, respectively compared to the negative control. Similarly, 76.9, 69.2 and 53.8% increment in shoot dry weight is recorded by inoculation with RG6, AU4 and RG5, respectively. These nine potential endophytic isolates are identified to Gluconobacter cerinus (4), Acinetobacter soli (3), Achromobacter xylosoxidans (1) and Bacillus thuringiensis (1). CONCLUSION: AU4, RG6 and RG5 can be potential bio-inoculants candidates as low cost agricultural inputs in acidic and/or alkaline soils for sustainable crop production.


Assuntos
Erythrina , Erythrina/metabolismo , Endófitos , Fosfatos/metabolismo , Bactérias , Triticum/microbiologia , Solo , Ferro/metabolismo
7.
Braz J Biol ; 82: e261797, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36350935

RESUMO

Phosphorus is an essential nutrient for plant growth and development. The ability of plants to acquire phosphate (Pi) from the rhizosphere soil is critical in the Brazilian Cerrado characterized by acidic soil. The induction of Pi transporters is one of the earliest molecular responses to Pi deficiency in plants. In this study, we characterize the transcriptional regulation of six (ZmPT1 to ZmPT6) high-affinity Pi transporters genes in four Pi-efficient and four Pi-inefficient maize (Zea mays) genotypes. The expression analysis indicated that Pi-starvation induced the transcription of all ZmPT genes tested. The abundance of transcripts was inversely related to Pi concentration in nutrient solution and was observed as early as five days following the Pi deprivation. The Pi-starved plants replenished with 250 µM Pi for four to five days resulted in ZmPT suppression, indicating the Pi role in gene expression. The tissue-specific expression analysis revealed the abundance of ZmPT transcripts in roots and shoots. The six maize Pi transporters were primarily detected in the upper and middle root portions and barely expressed in root tips. The expression profiles of the six ZmPTs phosphate transporters between and among Pi-efficient and Pi-inefficient genotypes showed an absence of significant differences in the expression pattern of the ZmPTs among Pi-efficient and Pi-inefficient genotypes. The results suggested that Pi acquisition efficiency is a complex trait determined by quantitative loci in maize.


Assuntos
Fosfatos , Zea mays , Zea mays/genética , Fosfatos/metabolismo , Fósforo/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Raízes de Plantas , Genótipo , Solo
8.
Arch Microbiol ; 204(12): 698, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355213

RESUMO

Antarctica has a great diversity of microorganisms with biotechnological potential but is not very well Known about yeasts with phosphate solubilization activity. Thus, the aim of this study was to evaluate the ability of yeasts from Antarctica lichens to solubilize phosphate in vitro. In the screening, 147 yeasts were tested and 43 (29%) showed P solubilization in solid NBRIP medium at 15.0 °C, with a higher prevalence of positive genera Vishniacozyma, followed by Cystobasidium. Most of the positive yeasts were isolated from Usnea auratiacoatra, followed by Polycauliona regalis and Lecania brialmontii. Two strains with better activity after screening were selected for the solubilization in the liquid medium, Vishniacozyma victoriae 2.L15 and A.L6 (unidentified). Vishniacozyma victoriae 2.L15 exhibiting activities at 25.0 °C (29.91 mg/L of phosphate and pH 6.85) and at 30.0 °C (619.04 mg/L of phosphate and pH 3.73) and A.L6 strain at 25.0 °C (25.05 mg/L of phosphate and pH 6.69) and at 30.0 °C (31.25 mg/L of phosphate and pH 6.47). Of eight organic acids tested by HPLC, tartaric and acetic acids were detected during phosphate solubilization, with greater release in the period of 144 (2.13 mg/L) and 72 (13.72 mg/L) hours, respectively. Future studies to elucidate the presence of functional genes for P metabolism in lichens, as well as studies in the field of proteomics for the discovery of yeast proteins related to P solubilization are needed. Thus, the high prevalence of lichen-associated yeast communities probably contributed to the high frequency of phosphate-solubilizing isolates in this study.


Assuntos
Líquens , Fosfatos , Fosfatos/metabolismo , Líquens/metabolismo , Regiões Antárticas , Leveduras
9.
World J Microbiol Biotechnol ; 38(12): 255, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319705

RESUMO

Phosphate (Pi) is essential for life as it is an integral part of the universal chemical energy adenosine triphosphate (ATP), and macromolecules such as, DNA, RNA proteins and lipids. Despite the core roles and the need of this nutrient in living cells, some bacteria can grow in environments that are poor in Pi. The metabolic mechanisms that enable bacteria to proliferate in a low phosphate environment are not fully understood. In this study, the soil microbe Pseudomonas (P.) fluorescens was cultured in a control and a low Pi (stress) medium in order to delineate how energy homeostasis is maintained. Although there was no significant variation in biomass yield in these cultures, metabolites like isocitrate, oxaloacetate, pyruvate and phosphoenolpyruvate (PEP) were markedly increased in the phosphate-starved condition. Components of the glycolytic, glyoxylate and tricarboxylic acid cycles operated in tandem to generate ATP by substrate level phosphorylation (SLP) as NADH-producing enzymes were impeded. The α-ketoglutarate (KG) produced when glutamine, the sole carbon nutrient was transformed into phosphoenol pyruvate (PEP) and succinyl-CoA (SC), two high energy moieties. The metabolic reprogramming orchestrated by isocitrate lyase (ICL), phosphoenolpyruvate synthase (PEPS), pyruvate phosphate dikinase (PPDK), and succinyl-CoA synthetase fulfilled the ATP budget. Cell free extract experiments confirmed ATP synthesis in the presence of such substrates as PEP, oxaloacetate and isocitrate respectively. Gene expression profiling revealed elevated transcripts associated with numerous enzymes including ICL, PEPS, and succinyl-CoA synthetase (SCS). This microbial adaptation will be critical in promoting biological activity in Pi-poor ecosystems.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/metabolismo , Trifosfato de Adenosina/metabolismo , Isocitratos/metabolismo , Fosfatos/metabolismo , Ecossistema , Fosfoenolpiruvato/metabolismo , Homeostase , Ácido Pirúvico/metabolismo , Oxaloacetatos/metabolismo , Ligases/metabolismo
10.
Nat Commun ; 13(1): 6773, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351933

RESUMO

DNA phosphorothioate (PT) modification, with a nonbridging phosphate oxygen substituted by sulfur, represents a widespread epigenetic marker in prokaryotes and provides protection against genetic parasites. In the PT-based defense system Ssp, SspABCD confers a single-stranded PT modification of host DNA in the 5'-CPSCA-3' motif and SspE impedes phage propagation. SspE relies on PT modification in host DNA to exert antiphage activity. Here, structural and biochemical analyses reveal that SspE is preferentially recruited to PT sites mediated by the joint action of its N-terminal domain (NTD) hydrophobic cavity and C-terminal domain (CTD) DNA binding region. PT recognition enlarges the GTP-binding pocket, thereby increasing GTP hydrolysis activity, which subsequently triggers a conformational switch of SspE from a closed to an open state. The closed-to-open transition promotes the dissociation of SspE from self PT-DNA and turns on the DNA nicking nuclease activity of CTD, enabling SspE to accomplish self-nonself discrimination and limit phage predation, even when only a small fraction of modifiable consensus sequences is PT-protected in a bacterial genome.


Assuntos
DNA , Genoma Bacteriano , DNA Bacteriano/genética , DNA/genética , DNA/química , Fosfatos/metabolismo , Guanosina Trifosfato
11.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361694

RESUMO

Dimethylallyl diphosphate (DMAPP) is a key intermediate metabolite in the synthesis of isoprenoids and is also the prenyl donor for biosynthesizing prenylated flavonoids. However, it is difficult to prepare DMAPP via chemical and enzymatic methods. In this study, three promiscuous kinases from Shigella flexneri (SfPK), Escherichia coli (EcPK), and Saccharomyces cerevisiae (ScPK) and three isopentenyl phosphate kinases from Methanolobus tindarius (MtIPK), Methanothermobacter thermautotrophicus str. Delta H (MthIPK), and Arabidopsis thaliana (AtIPK) were cloned and expressed in Escherichia coli. The enzymatic properties of recombinant enzymes were determined. The Kcat/Km value of SfPK for DMA was 6875 s-1 M-1, which was significantly higher than those of EcPK and ScPK. The Kcat/Km value of MtIPK for DMAP was 402.9 s-1 M-1, which was ~400% of that of MthIPK. SfPK was stable at pH 7.0-9.5 and had a 1 h half-life at 65 °C. MtIPK was stable at pH 6.0-8.5 and had a 1 h half-life at 50 °C. The stability of SfPK and MtIPK was better than that of the other enzymes. Thus, SfPK and MtIPK were chosen to develop a one-pot enzymatic cascade for producing DMAPP from DMA because of their catalytic efficiency and stability. The optimal ratio between SfPK and MtIPK was 1:8. The optimal pH and temperature for the one-pot enzymatic cascade were 7.0 and 35 °C, respectively. The optimal concentrations of ATP and DMA were 10 and 80 mM, respectively. Finally, maximum DMAPP production reached 1.23 mM at 1 h under optimal conditions. Therefore, the enzymatic method described herein for the biosynthesis of DMAPP from DMA can be widely used for the synthesis of isoprenoids and prenylated flavonoids.


Assuntos
Hemiterpenos , Fosfatos , Fosfatos/metabolismo , Escherichia coli/metabolismo , Organofosfatos/metabolismo , Terpenos/metabolismo , Flavonoides/metabolismo
12.
J Agric Food Chem ; 70(45): 14329-14338, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36323308

RESUMO

In this study, 6:2 and 8:2 polyfluoroalkyl phosphate diester (diPAP) were individually investigated in lysimeters under near-natural conditions. Leachate was sampled for 2 years, as was the soil after the experiment. In the leachate of the diPAP-spiked soils, perfluorocarboxylic acids (PFCAs) of different chain lengths were detected [23.2% (6:2 diPAP variant) and 20.8% (8:2 diPAP variant) of the initially applied molar amount]. After 2 years, the soils still contained 36-37% 6:2 diPAP and 41-45% 8:2 diPAP, respectively, in addition to smaller amounts of PFCAs (1.5 and 10.6%, respectively). Amounts of PFCAs found in the grass were low (<0.1% in both variants). The recovery rate of both 6:2 diPAP and 8:2 diPAP did not reach 100% (63.9 and 83.2%, respectively). The transformation of immobile diPAPs into persistent mobile PFCAs and their transport into the groundwater shows a pathway for human exposure to hazardous PFCAs through drinking water and irrigation of crops.


Assuntos
Fluorcarbonetos , Poluentes Químicos da Água , Humanos , Fosfatos/metabolismo , Fluorcarbonetos/análise , Organofosfatos/metabolismo , Solo , Produtos Agrícolas/metabolismo
13.
Biomed Res Int ; 2022: 7441296, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246988

RESUMO

The saponins of Polygonatum sibiricum had many pharmacological activities such as antitumor, antioxidation, and blood sugar lowering, which were synthesized by two pathways: mevalonate (MVA) and methylerythritol phosphate (MEP). 3-Hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) was the key enzyme in the MVA synthesis pathway, and its expression level may affect the accumulation of saponins which were the main active ingredients of P. sibiricum. In this study, we successfully cloned HMGS1 and HMGS2 from P. sibiricum and their sequence similarity was 93.71% with 89 different sites. The multiple sequence alignment results indicated that the N-terminal sequences of HMGS were conserved. Phylogenetic analysis showed that P. sibiricum, A. officinalis, N. tazetta, D. nobile, and other relatives had a common evolutionary ancestor. The expression levels of both HMGSs and the total saponin content in different tissues revealed that HMGS expression in rhizomes was positively correlated with total saponin content. Further study of the abiotic stress effect of Methyl Jasmonate (MeJA) demonstrated that the expression of HMGS1 and HMGS2 genes was induced by MeJA, peaked at 24 h, and fell by 48 h. Our present findings would provide a blueprint for future studies of HMGS and its role in triterpenoid biosynthesis in P. sibiricum.


Assuntos
Polygonatum , Saponinas , Triterpenos , Acetatos , Glicemia , Clonagem Molecular , Coenzima A/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Ácido Mevalônico/metabolismo , Oxilipinas , Fosfatos/metabolismo , Filogenia , Polygonatum/genética
14.
PLoS One ; 17(10): e0275742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36260560

RESUMO

Phytases, enzymes that degrade phytate present in feedstuffs, are widely added to the diets of monogastric animals. Many studies have correlated phytase addition with improved animal productivity and a subset of these have sought to correlate animal performance with phytase-mediated generation of inositol phosphates in different parts of the gastro-intestinal tract or with release of inositol or of phosphate, the absorbable products of phytate degradation. Remarkably, the effect of dietary phytase on tissue inositol phosphates has not been studied. The objective of this study was to determine effect of phytase supplementation on liver and kidney myo-inositol and myo-inositol phosphates in broiler chickens. For this, methods were developed to measure inositol phosphates in chicken tissues. The study comprised wheat/soy-based diets containing one of three levels of phytase (0, 500 and 6,000 FTU/kg of modified E. coli 6-phytase). Diets were provided to broilers for 21 D and on day 21 digesta were collected from the gizzard and ileum. Liver and kidney tissue were harvested. Myo-inositol and inositol phosphates were measured in diet, digesta, liver and kidney. Gizzard and ileal content inositol was increased progressively, and total inositol phosphates reduced progressively, by phytase supplementation. The predominant higher inositol phosphates detected in tissues, D-and/or L-Ins(3,4,5,6)P4 and Ins(1,3,4,5,6)P5, differed from those (D-and/or L-Ins(1,2,3,4)P4, D-and/or L-Ins(1,2,5,6)P4, Ins(1,2,3,4,6)P5, D-and/or L-Ins(1,2,3,4,5)P5 and D-and/or L-Ins(1,2,4,5,6)P5) generated from phytate (InsP6) degradation by E. coli 6-phytase or endogenous feed phytase, suggesting tissue inositol phosphates are not the result of direct absorption. Kidney inositol phosphates were reduced progressively by phytase supplementation. These data suggest that tissue inositol phosphate concentrations can be influenced by dietary phytase inclusion rate and that such effects are tissue specific, though the consequences for physiology of such changes have yet to be elucidated.


Assuntos
6-Fitase , Animais , 6-Fitase/metabolismo , Fosfatos de Inositol/metabolismo , Ácido Fítico/metabolismo , Galinhas/fisiologia , Aves Domésticas/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Escherichia coli/metabolismo , Ração Animal/análise , Digestão , Suplementos Nutricionais , Rim/metabolismo , Fosfatos/metabolismo
15.
J Med Invest ; 69(3.4): 173-179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36244766

RESUMO

Phosphate (Pi)-containing food additives are used in several forms. Polyphosphate (PPi) salt has more harmful effects than monophosphate (MPi) salt on bone physiology and renal function. This study aimed to analyze the levels of parathyroid hormone PTH and fibroblast growth factor 23 (FGF23) and the expression of renal / intestinal Pi transport-related molecules in mice fed with an MPi or PPi diet. There were no significant differences in plasma Pi concentration and fecal Pi excretion levels between mice fed with the high-MPi and PPi diet. However, more severe tubular dilatation, interstitial fibrosis, and calcification were observed in the kidneys of mice fed with the high PPi diet versus the MPi diet. Furthermore, there was a significant increase in serum FGF23 levels and a decrease in renal phosphate transporter protein expression in mice fed with the PPi diet versus the MPi diet. Furthermore, the high MPi diet was associated with significantly suppressed expression and activity of intestinal alkaline phosphatase protein. In summary, PPi has a more severe effect on renal damage than MPi, as well as induces more FGF23 secretion. Excess FGF23 may be more involved in inflammation, fibrosis, and calcification in the kidney. J. Med. Invest. 69 : 173-179, August, 2022.


Assuntos
Fosfatase Alcalina , Polifosfatos , Animais , Camundongos , Fosfatase Alcalina/metabolismo , Dieta , Fatores de Crescimento de Fibroblastos , Fibrose , Aditivos Alimentares/metabolismo , Rim/metabolismo , Hormônio Paratireóideo/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Fosfatos/farmacologia , Polifosfatos/metabolismo
16.
PLoS One ; 17(10): e0268592, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206263

RESUMO

Fetuin-A is a liver derived plasma protein showing highest serum concentrations in utero, preterm infants, and neonates. Fetuin-A is also present in cerebrospinal fluid (CSF). The origin of CSF fetuin-A, blood-derived via the blood-CSF barrier or synthesized intrathecally, is presently unclear. Fetuin-A prevents ectopic calcification by stabilizing calcium and phosphate as colloidal calciprotein particles mediating their transport and clearance. Thus, fetuin-A plays a suppressive role in inflammation. Fetuin-A is a negative acute-phase protein under investigation as a biomarker for multiple sclerosis (MS). Here we studied the association of pediatric inflammatory CNS diseases with fetuin-A glycosylation and phosphorylation. Paired blood and CSF samples from 66 children were included in the study. Concentration measurements were performed using a commercial human fetuin-A/AHSG ELISA. Of 60 pairs, 23 pairs were analyzed by SDS-PAGE following glycosidase digestion with PNGase-F and Sialidase-AU. Phosphorylation was analyzed in 43 pairs by Phos-TagTM acrylamide electrophoresis following alkaline phosphatase digestion. Mean serum and CSF fetuin-A levels were 0.30 ± 0.06 mg/ml and 0.644 ± 0.55 µg/ml, respectively. This study showed that serum fetuin-A levels decreased in inflammation corroborating its role as a negative acute-phase protein. Blood-CSF barrier disruption was associated with elevated fetuin-A in CSF. A strong positive correlation was found between the CSF fetuin-A/serum fetuin-A quotient and the CSF albumin/serum albumin quotient, suggesting predominantly transport across the blood-CSF barrier rather than intrathecal fetuin-A synthesis. Sialidase digestion showed increased asialofetuin-A levels in serum and CSF samples from children with neuroinflammatory diseases. Desialylation enhanced hepatic fetuin-A clearance via the asialoglycoprotein receptor thus rapidly reducing serum levels during inflammation. Phosphorylation of fetuin-A was more abundant in serum samples than in CSF, suggesting that phosphorylation may regulate fetuin-A influx into the CNS. These results may help establish Fetuin-A as a potential biomarker for neuroinflammatory diseases.


Assuntos
Cálcio , alfa-2-Glicoproteína-HS , Acrilamidas/metabolismo , Proteínas de Fase Aguda/metabolismo , Fosfatase Alcalina/metabolismo , Receptor de Asialoglicoproteína/metabolismo , Biomarcadores , Cálcio/metabolismo , Doenças do Sistema Nervoso Central , Criança , Glicosilação , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Inflamação/metabolismo , Fígado/metabolismo , Neuraminidase/metabolismo , Fosfatos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Albumina Sérica/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , alfa-Fetoproteínas/metabolismo
17.
Nat Commun ; 13(1): 5924, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207292

RESUMO

Haploinsufficiency of GRN causes frontotemporal dementia (FTD). The GRN locus produces progranulin (PGRN), which is cleaved to lysosomal granulin polypeptides. The function of lysosomal granulins and why their absence causes neurodegeneration are unclear. Here we discover that PGRN-deficient human cells and murine brains, as well as human frontal lobes from GRN-mutation FTD patients have increased levels of gangliosides, glycosphingolipids that contain sialic acid. In these cells and tissues, levels of lysosomal enzymes that catabolize gangliosides were normal, but levels of bis(monoacylglycero)phosphates (BMP), lipids required for ganglioside catabolism, were reduced with PGRN deficiency. Our findings indicate that granulins are required to maintain BMP levels to support ganglioside catabolism, and that PGRN deficiency in lysosomes leads to gangliosidosis. Lysosomal ganglioside accumulation may contribute to neuroinflammation and neurodegeneration susceptibility observed in FTD due to PGRN deficiency and other neurodegenerative diseases.


Assuntos
Demência Frontotemporal , Gangliosidoses , Progranulinas/metabolismo , Animais , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Gangliosídeos/metabolismo , Gangliosidoses/metabolismo , Granulinas/metabolismo , Humanos , Lisossomos/metabolismo , Camundongos , Ácido N-Acetilneuramínico/metabolismo , Fosfatos/metabolismo , Progranulinas/genética
18.
BMC Plant Biol ; 22(1): 475, 2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36203134

RESUMO

Astragalus mongholicus is a widely used Traditional Chinese Medicine. However, cultivated A. mongholicus is often threatened by water shortage at all growth stage, and the content of medicinal compounds of cultivated A. mongholicus is much lower than that of wild plants. To alleviate drought stress on A. mongholicus and improve the accumulation of medicinal components in roots of A. mongholicus, we combined different bacteria with plant growth promotion or abiotic stress resistance characteristics and evaluated the role of bacterial consortium in helping plants tolerate drought stress and improving medicinal component content in roots simultaneously. Through the determination of 429 bacterial strains, it was found that 97 isolates had phosphate solubilizing ability, 63 isolates could release potassium from potash feldspar, 123 isolates could produce IAA, 58 isolates could synthesize ACC deaminase, and 21 isolates could secret siderophore. Eight bacterial consortia were constructed with 25 bacterial isolates with more than three functions or strong growth promoting ability, and six out of eight bacterial consortia significantly improved the root dry weight. However, only consortium 6 could increase the root biomass, astragaloside IV and calycosin-7-glucoside content in roots simultaneously. Under drought challenge, the consortium 6 could still perform these functions. Compared with non-inoculated plants, the root dry weight of consortium inoculated-plants increased by 120.0% and 78.8% under mild and moderate drought stress, the total content of astragaloside IV increased by 183.83% and 164.97% under moderate and severe drought stress, calycosin-7-glucoside content increased by 86.60%, 148.56% and 111.45% under mild, moderate and severe drought stress, respectively. Meanwhile, consortium inoculation resulted in a decrease in MDA level, while soluble protein and proline content and SOD, POD and CAT activities increased. These findings provide novel insights about multiple bacterial combinations to improve drought stress responses and contribute to accumulate more medicinal compounds.


Assuntos
Astragalus propinquus , Secas , Bactérias , Glucosídeos/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Plantas , Potássio/metabolismo , Prolina/metabolismo , Saponinas , Sideróforos/metabolismo , Superóxido Dismutase/metabolismo , Triterpenos , Água/metabolismo
19.
Philos Trans R Soc Lond B Biol Sci ; 377(1864): 20210323, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36189807

RESUMO

Diabetic cardiomyopathy is a leading cause of heart failure in diabetes. At the cellular level, diabetic cardiomyopathy leads to altered mitochondrial energy metabolism and cardiomyocyte ultrastructure. We combined electron microscopy (EM) and computational modelling to understand the impact of diabetes-induced ultrastructural changes on cardiac bioenergetics. We collected transverse micrographs of multiple control and type I diabetic rat cardiomyocytes using EM. Micrographs were converted to finite-element meshes, and bioenergetics was simulated over them using a biophysical model. The simulations also incorporated depressed mitochondrial capacity for oxidative phosphorylation (OXPHOS) and creatine kinase (CK) reactions to simulate diabetes-induced mitochondrial dysfunction. Analysis of micrographs revealed a 14% decline in mitochondrial area fraction in diabetic cardiomyocytes, and an irregular arrangement of mitochondria and myofibrils. Simulations predicted that this irregular arrangement, coupled with the depressed activity of mitochondrial CK enzymes, leads to large spatial variation in adenosine diphosphate (ADP)/adenosine triphosphate (ATP) ratio profile of diabetic cardiomyocytes. However, when spatially averaged, myofibrillar ADP/ATP ratios of a cardiomyocyte do not change with diabetes. Instead, average concentration of inorganic phosphate rises by 40% owing to lower mitochondrial area fraction and dysfunction in OXPHOS. These simulations indicate that a disorganized cellular ultrastructure negatively impacts metabolite transport in diabetic cardiomyopathy. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Creatina Quinase/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/metabolismo , Fosfatos/metabolismo , Ratos
20.
Microbiol Res ; 265: 127217, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36206648

RESUMO

Soil salinization is a major stress affecting crop production on a global scale. Application of stress tolerant plant growth promoting rhizobacteria (PGPR) in saline soil can be an ideal practice for improving soil fertility. Rhizospheric microbiota of stress tolerant Eichhornia crassipes was screened for saline tolerant phosphate solubilizing bacteria, and the two isolates showing maximum solubilization index at 1 M NaCl were subjected to further analyses. The isolates were identified as Pantoea dispersa and Pseudomonas aeruginosa. Among the two isolates, P. dispersa PSB1 showed better phosphorus (P) solubilization potential under saline stress (335 ± 30 mg/L) than P. aeruginosa PSB5 (200 ± 24 mg/L). The mechanisms of P-solubilization, such as the production of organic acids and phosphatase were found to be influenced negatively by saline stress. The adaptive mechanisms of the isolates to overcome salt stress were analyzed by protein profiling which revealed salt stress induced modulations in protein expression involved in amino acid biosynthesis, carbon metabolisms, chemotaxis, and stress responses. Survival mechanisms such as protein RecA, LexA repressor and iron-sulfur cluster synthesis were upregulated in both the organisms under saline stress. P. dispersa PSB1 showed improved defense mechanisms such as the production of osmotolerants, redox enzymes, and quorum quenchers under saline stress, which may explain its better P solubilization potential than the P. aeruginosa PSB5. This study emphasizes the need for molecular approaches like proteome analysis of PGPR for identifying novel traits like stress tolerance and plant growth promotion before developing them as biofertilizers and biocontrol formulations.


Assuntos
Eichhornia , Pantoea , Aminoácidos/metabolismo , Carbono/metabolismo , Eichhornia/metabolismo , Ferro/metabolismo , Pantoea/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fósforo/metabolismo , Proteoma/metabolismo , Proteômica , Pseudomonas/metabolismo , Rizosfera , Cloreto de Sódio/metabolismo , Solo/química , Microbiologia do Solo , Enxofre/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...