Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28.750
Filtrar
1.
Int Ophthalmol ; 44(1): 307, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955894

RESUMO

PURPOSE: To review long-term outcomes of circumscribed choroidal hemangioma (CCH). METHODS: Hospital charts of all CCH cases diagnosed from 2008 to 2019 were retrospectively reviewed. RESULTS: All 172 patients were managed with either observation, transpupillary thermotherapy, argon laser photocoagulation, photodynamic therapy, plaque brachytherapy or stereotactic radiosurgery. The most common 3 modes of management were clinical observation (30.2%), transpupillary thermotherapy (52.9%) and argon laser photocoagulation (8.7%). Median follow-up time was 10 months (range: 3, 160). Anatomical outcomes were stable in 87.1% of observation group and improved in 60.5% of thermotherapy group. Quantified optical coherence tomography angiography findings showed statistical differences in vascular and perfusion densities in fellow eyes of hemangioma patients. CONCLUSION: Circumscribed choroidal hemangioma can be treated in various ways. Transpupillary thermotherapy is an anatomically effective treatment in selected cases. The diagnosis of CCH may have vascular implications in fellow eyes of the patients.


Assuntos
Neoplasias da Coroide , Angiofluoresceinografia , Hemangioma , Centros de Atenção Terciária , Tomografia de Coerência Óptica , Acuidade Visual , Humanos , Neoplasias da Coroide/terapia , Neoplasias da Coroide/diagnóstico , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Tomografia de Coerência Óptica/métodos , Angiofluoresceinografia/métodos , Adulto , Centros de Atenção Terciária/estatística & dados numéricos , Hemangioma/terapia , Hemangioma/diagnóstico , Idoso , Seguimentos , Fotoquimioterapia/métodos , Hipertermia Induzida/métodos , Fundo de Olho , Adulto Jovem , Corioide/patologia , Corioide/irrigação sanguínea
2.
ACS Nano ; 18(26): 17086-17099, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952327

RESUMO

Traditional external field-assisted therapies, e.g., microwave (MW) therapy and phototherapy, cannot effectively and minimally damage eliminate deep-seated infection, owing to the poor penetrability of light and low reactive oxygen species (ROS) stimulation capability of MW. Herein, an implantable and wireless-powered therapeutic platform (CNT-FeTHQ-TS), in which external MW can be converted into internal light via MW wireless-powered light-emitting chips, is designed to eradicate deep-seated tissue infections by MW-induced deep-seated photodynamic therapy. In application, CNT-FeTHQ-TS is implanted at internal lesions, and the chip emits light under external MW irradiation. Subsequently, CNT-FeTHQ coating in the platform can respond to both MW and light simultaneously to generate ROS and MW-hyperthermia for rapid and precise sterilization at focus. Importantly, MW also improves the photodynamic performance of CNT-FeTHQ by introducing vacancies in FeTHQ to facilitate the photoexcitation process and changing the spin state of electrons to inhibit the complexation of photogenerated electron-hole pairs, which were confirmed by simulation calculations and in situ MW-irradiated photoluminescence experiments. In vivo, CNT-FeTHQ-TS can effectively cure mice with Staphylococcus aureus infection in dorsal subcutaneous tissue. This work overcomes the key clinical limitations of safe energy transmission and conversion for treating deep-seated infections.


Assuntos
Micro-Ondas , Fotoquimioterapia , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Tecnologia sem Fio , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Luz , Staphylococcus aureus/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Camundongos Endogâmicos BALB C , Antibacterianos/farmacologia , Antibacterianos/química
3.
Int J Nanomedicine ; 19: 6377-6397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952677

RESUMO

Background: How to ingeniously design multi-effect photosensitizers (PSs), including multimodal imaging and multi-channel therapy, is of great significance for highly spatiotemporal controllable precise phototherapy of malignant tumors. Methods: Herein, a novel multifunctional zinc(II) phthalocyanine-based planar micromolecule amphiphile (ZnPc 1) was successfully designed and synthesized, in which N atom with photoinduced electron transfer effect was introduced to enhance the near-infrared absorbance and nonradiative heat generation. After simple self-assembling into nanoparticles (NPs), ZnPc 1 NPs would exhibit enhanced multimodal imaging properties including fluorescence (FL) imaging (FLI) /photoacoustic (PA) imaging (PAI) /infrared (IR) thermal imaging, which was further used to guide the combined photodynamic therapy (PDT) and photothermal therapy (PTT). Results: It was that under the self-guidance of the multimodal imaging, ZnPc 1 NPs could precisely pinpoint the tumor from the vertical and horizontal boundaries achieving highly efficient and accurate treatment of cancer. Conclusion: Accordingly, the integration of FL/PA/IR multimodal imaging and PDT/PTT synergistic therapy pathway into one ZnPc 1 could provide a blueprint for the next generation of phototherapy, which offered a new paradigm for the integration of diagnosis and treatment in tumor and a promising prospect for precise cancer therapy.


Assuntos
Indóis , Isoindóis , Imagem Multimodal , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Imagem Multimodal/métodos , Animais , Humanos , Indóis/química , Indóis/farmacologia , Fotoquimioterapia/métodos , Nanopartículas/química , Camundongos , Compostos de Zinco/química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Linhagem Celular Tumoral , Técnicas Fotoacústicas/métodos , Terapia Fototérmica/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos BALB C , Fototerapia/métodos , Feminino
4.
Nanotheranostics ; 8(4): 442-457, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38961886

RESUMO

The global incidence of cancer continues to rise, posing a significant public health concern. Although numerous cancer therapies exist, each has limitations and complications. The present study explores alternative cancer treatment approaches, combining hyperthermia and photodynamic therapy (PDT). Magnetic nanoparticles (MNPs) and amine-functionalized carbon quantum dots (A-CQDs) were synthesized separately and then covalently conjugated to form a single nanosystem for combinational therapy (M-CQDs). The successful conjugation was confirmed using zeta potential, Fourier transform infrared spectroscopy (FT-IR), and UV-visible spectroscopy. Morphological examination in transmission electron microscopy (TEM) further verified the conjugation of CQDs with MNPs. Energy dispersive X-ray spectroscopy (EDX) revealed that M-CQDs contain approximately 12 weight percentages of carbon. Hyperthermia studies showed that both MNP and M-CQDs maintain a constant therapeutic temperature at lower frequencies (260.84 kHz) with high specific absorption rates (SAR) of 118.11 and 95.04 W/g, respectively. In vitro studies demonstrated that MNPs, A-CQDs, and M-CQDs are non-toxic, and combinational therapy (PDT + hyperthermia) resulted in significantly lower cell viability (~4%) compared to individual therapies. Similar results were obtained with Hoechst and propidium iodide (PI) staining assays. Hence, the combination therapy of PDT and hyperthermia shows promise as a potential alternative to conventional therapies, and it could be further explored in combination with existing conventional treatments.


Assuntos
Carbono , Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Fotoquimioterapia , Pontos Quânticos , Pontos Quânticos/química , Fotoquimioterapia/métodos , Humanos , Carbono/química , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Terapia Combinada , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
5.
Anal Chim Acta ; 1316: 342860, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969429

RESUMO

BACKGROUND: Glutathione (GSH), a highly abundant thiol compound within cells, plays a critical role in physiological processes and exhibits close correlation with cancer. Among molecular imaging technologies, most probes have relatively short emission wavelengths and lack photoacoustic imaging (PA) capability, resulting in the inability to obtain tissue images with high penetration depth. The presence of GSH in the tumor microenvironment neutralizes ROS, diminishing the therapeutic effect of PDT, thus resulting in often unsatisfactory therapeutic efficacy. Therefore, it is imperative to develop a dual-modal probe for the detection of GSH and the diagnosis and treatment of cancer. RESULTS: In this study, we synthesized a novel dual-modal probe, Cy-Bio-GSH, utilizing near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques for GSH detection. The probe integrates cyanine dye as the fluorophore, nitroazobenzene as the recognition moiety, and biotin as the tumor-targeting moiety. Upon reacting with GSH, the probe emits NIR fluorescence at 820 nm and generates a PA signal. Significantly, this reaction activates the photodynamic and photothermal properties of the probe. By depleting GSH and employing a synergistic photothermal therapy (PTT) treatment, the therapeutic efficacy of photodynamic therapy (PDT) is remarkably enhanced. In-vivo experiments confirm the capability of the probe to detect GSH via NIRF and PA imaging. Notably, the combined tumor-targeting ability and PDT/PTT synergistic therapy enhance therapeutic outcomes for tumors and facilitate their ablation. SIGNIFICANCE: A novel tumor-targeting and dual-modal imaging probe (Cy-Bio-GSH) is synthesized, exhibiting remarkable sensitivity and selectivity to GSH, enabling the visualization of GSH in cells and the differentiation between normal and cancer cells. Cy-Bio-GSH enhances PDT/PTT with effective killing of cancer cells and makes the ablation of tumors in mice. This work represents the first tumor-targeting probe for GSH detection, and provides crucial tool for cancer diagnosis and treatment by dual-modal imaging with improved PDT/PTT synergistic therapy.


Assuntos
Biotina , Glutationa , Técnicas Fotoacústicas , Fotoquimioterapia , Glutationa/química , Glutationa/metabolismo , Animais , Humanos , Camundongos , Biotina/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Imagem Óptica , Feminino , Terapia Fototérmica , Camundongos Nus , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico
6.
Methods Mol Biol ; 2833: 51-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38949700

RESUMO

Photodynamic therapy (PDT) is an established therapy used for the treatment of cutaneous skin cancers and other non-infective ailments. There has been recent interest in the opportunity to use aPDT (antimicrobial PDT) to treat skin and soft tissue infections. PDT utilizes photosensitizers that infiltrate all cells and "sensitize" them to a given wavelength of light. The photosensitizer is simply highly absorbent to a given wavelength of light and when excited will produce, in the presence of oxygen, damaging oxygen radicals and singlet oxygen. Bacterial cells are comparatively poor at combatting oxidative stress when compared with human cells therefore a degree of selective toxicity can be achieved with aPDT.In this chapter, we outline methodologies for testing aPDT in vitro using standard lab equipment.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Humanos , Oxigênio Singlete/metabolismo , Anti-Infecciosos/farmacologia
7.
Clin Oral Investig ; 28(8): 426, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992200

RESUMO

OBJECTIVES: To assess the short-term efficacy of multiple sessions of antimicrobial photodynamic therapy (aPDT), light-emitting-diode (LED) photobiomodulation, and topical ozone therapy applications following surgical regenerative treatments on clinical parameters, patient-centered outcomes, and mRNA expression levels of VEGF, IL-6, RunX2, Nell-1, and osterix in gingival crevicular fluid samples in patients with stage III/IV, grade C periodontitis. MATERIALS AND METHODS: Forty-eight systemically healthy patients were assigned into four groups to receive adjunctive modalities with regenerative periodontal surgical treatment. A 970 ± 15 nm diode laser plus indocyanine-green for aPDT group, a 626 nm LED for photobiomodulation group, and topical gaseous ozone were applied at 0, 1, 3, and 7 postoperative days and compared to control group. The clinical periodontal parameters, early wound healing index (EHI), and postoperative patients' morbidity were evaluated. The mRNA levels of biomarkers were assessed by real-time polymerase chain reaction. RESULTS: No significant difference in the clinical parameters except gingival recession (GR) was identified among the groups. For group-by-time interactions, plaque index (PI) and probing pocket depths (PD) showed significant differences (p = 0.034; p = 0.022). In sites with initial PD > 7 mm, significant differences were observed between control and photobiomodulation groups in PD (p = 0.011), between control and aPDT, and control and photobiomodulation groups in CAL at 6-month follow-up (p = 0.007; p = 0.022). The relative osterix mRNA levels showed a statistically significant difference among the treatment groups (p = 0.014). CONCLUSIONS: The additional applications of aPDT and LED after regenerative treatment of stage III/IV grade C periodontitis exhibited a more pronounced beneficial effect on clinical outcomes in deep periodontal pockets.


Assuntos
Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Ozônio , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Masculino , Feminino , Ozônio/uso terapêutico , Adulto , Terapia com Luz de Baixa Intensidade/métodos , Lasers Semicondutores/uso terapêutico , Resultado do Tratamento , Pessoa de Meia-Idade , Periodontite/terapia , Verde de Indocianina/uso terapêutico , Terapia Combinada , Reação em Cadeia da Polimerase em Tempo Real , Líquido do Sulco Gengival , Biomarcadores , Fármacos Fotossensibilizantes/uso terapêutico , Cicatrização/efeitos dos fármacos , Índice Periodontal , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core , Fator de Transcrição Sp7
9.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000317

RESUMO

Chemotherapy is among the main classical approaches to the treatment of oncologic diseases. Its efficiency has been comprehensively proven by clinical examinations; however, the low selectivity of chemotherapeutic agents limits the possibilities of this method, making it necessary to search for new approaches to the therapy of oncologic diseases. Photodynamic therapy is the least invasive method and a very efficient alternative for the treatment of malignant tumors; however, its efficiency depends on the depth of light penetration into the tissue and on the degree of oxygenation of the treatment zone. In this work, a hitherto unknown conjugate of a natural bacteriochlorin derivative and doxorubicin was obtained. In vitro and in vivo studies showed a more pronounced activity of the conjugate against MCF-7 and 4T1 cells and its higher tumorotropicity in animal tumor-bearing animals compared to free anthracycline antibiotic. The suggested conjugate implements the advantages of photodynamic therapy and chemotherapy and has great potential in cancer treatment.


Assuntos
Doxorrubicina , Fotoquimioterapia , Porfirinas , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/uso terapêutico , Fotoquimioterapia/métodos , Animais , Humanos , Camundongos , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Feminino , Células MCF-7 , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
10.
J Photochem Photobiol B ; 257: 112971, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955081

RESUMO

Bovine mastitis (BM) represents a significant challenge in the dairy industry. Limitations of conventional treatments have prompted the exploration of alternative approaches, such as photodynamic inactivation (PDI). In this study, we developed a PDI protocol to eliminate BM-associated pathogens using porphyrin-doped conjugated polymer nanoparticles (CPN). The PDI-CPN protocol was evaluated in four mastitis isolates of Staphylococcus and in a hyper-biofilm-forming reference strain. The results in planktonic cultures demonstrated that PDI-CPN exhibited a bactericidal profile upon relatively low light doses (∼9.6 J/cm2). Furthermore, following a seven-hour incubation period, no evidence of cellular reactivation was observed, indicating a highly efficient post-photodynamic inactivation effect. The successful elimination of bacterial suspensions encouraged us to test the PDI-CPN protocol on mature biofilms. Treatment using moderate light dose (∼64.8 J/cm2) reduced biofilm biomass and metabolic activity by up to 74% and 88%, respectively. The impact of PDI-CPN therapy on biofilms was investigated using scanning electron microscopy (SEM), which revealed nearly complete removal of the extracellular matrix and cocci. Moreover, ex vivo studies conducted on bovine udder skin demonstrated the efficacy of the therapy in eliminating bacteria from these scaffolds and its potential as a prophylactic method. Notably, the histological analysis of skin revealed no signs of cellular degeneration, suggesting that the protocol is safe and effective for BM treatment. Overall, this study demonstrates the potential of PDI-CPN in treating and preventing BM pathogens. It also provides insights into the effects of PDI-CPN on bacterial growth, metabolism, and survival over extended periods, aiding the development of effective control strategies and the optimization of future treatments.


Assuntos
Biofilmes , Luz , Mastite Bovina , Nanopartículas , Polímeros , Animais , Bovinos , Nanopartículas/química , Mastite Bovina/microbiologia , Mastite Bovina/tratamento farmacológico , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Feminino , Polímeros/química , Polímeros/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Porfirinas/química , Porfirinas/farmacologia , Staphylococcus/efeitos dos fármacos , Staphylococcus/efeitos da radiação , Antibacterianos/farmacologia , Antibacterianos/química , Microscopia Eletrônica de Varredura , Fotoquimioterapia
11.
J Photochem Photobiol B ; 257: 112974, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964021

RESUMO

Pseudomonas aeruginosa, a gram-negative bacterium, accounts for 7% of all hospital-acquired infections. Despite advances in medicine and antibiotic therapy, P. aeruginosa infection still results in high mortality rates of up to 62% in certain patient groups. This bacteria is also known to form biofilms, that are 10 to 1000 times more resistant to antibiotics compared to their free-floating counterparts. Photodynamic Inactivation (PDI) has been proved to be an effective antimicrobial technique for microbial control. This method involves the incubation of the pathogen with a photosensitizer (PS), then, a light at appropriated wavelength is applied, leading to the production of reactive oxygen species that are toxic to the microbial cells. Studies have focused on strategies to enhance the PDI efficacy, such as a pre-treatment with enzymes to degrade the biofilm matrix and/or an addition of inorganic salts to the PS. The aim of the present study is to evaluate the effectiveness of PDI against P. aeruginosa biofilm in association with the application of the enzymes prior to PDI (enzymatic pre-treatment) or the addition of potassium iodide (KI) to the photosensitizer solution, to increase the inactivation effectiveness of the treatment. First, a range of enzymes and PSs were tested, and the best protocols for combined treatments were selected. The results showed that the use of enzymes as a pre-treatment was effective to reduce the total biomass, however, when associated with PDI, mild bacterial reductions were obtained. Then, the use of KI in association with the PS was evaluated and the results showed that, PDI mediated by methylene blue (MB) in the presence of KI was able to completely eradicate the biofilm. However, when the PDI was performed with curcumin and KI, no additive reduction was observed. In conclusion, out of all strategies evaluated in the present study, the most promising strategy to improve PDI against P. aeruginosa biofilm was the use of KI in association with MB, resulting in eradication with 108 log bacterial inactivation.


Assuntos
Biofilmes , Fármacos Fotossensibilizantes , Iodeto de Potássio , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Biofilmes/efeitos dos fármacos , Biofilmes/efeitos da radiação , Iodeto de Potássio/farmacologia , Iodeto de Potássio/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Luz , Fotoquimioterapia
12.
Lasers Med Sci ; 39(1): 191, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043901

RESUMO

Triple negative breast cancer (TNBC) is one of the subtypes of breast cancer characterized by a heterogeneous and aggressive nature. Photodynamic therapy (PDT) has drawn significant attention in cancer treatment. However, solubility of photosensitizer, penetration problems into a target tissue and insufficient oxygen concentration limit the effectiveness of PDT. To overcome these limitations and to reduce the side effects of chemotherapy, combination treatment modalities play an essential role in cancer treatment. In this study, we aimed to investigate the combination efficacy of cisplatin-based chemotherapy and 5-Aminolevulinic acid (5-ALA)/PDT in TNBC cells and healthy breast cells in vitro. To determine the effect of the combination effects of cisplatin and 5-ALA/PDT on TNBC cells, two treatment protocols (simultaneous and sequential combination therapy) were evaluated compared with cisplatin and 5-ALA/PDT monotherapy and WST-1, Annexin V assay, acridine orange (AO) and mitochondrial staining were performed. Our findings showed that MDA-MB-231 TNBC cell viability was significantly decreased following simultaneous combination treatment compared to cisplatin and 5-ALA/PDT monotherapy. Additionally, simultaneous combination treatment was more effective than sequential combination treatment. The simultaneous combination treatment of 2.5 µM cisplatin and 5-ALA/PDT at 6 J/cm2 and 9 J/cm2 induced 46.78% and 53.6% total apoptotic death, respectively in TNBC cells compared with monotherapies (cisplatin (37.88%) and 5-ALA/PDT (6 J/cm2: 31.48% and 9 J/cm2: 37.78%). Additionally, cisplatin and 5-ALA/PDT combination treatment resulted in nuclear fragmentation and mitochondrial damage due to apoptosis. Our results suggest that cisplatin and 5-ALA/PDT simultaneous combination therapy could be a promising new alternative strategy for treating TNBC. However, further studies are required to assess the underlying molecular mechanisms of cisplatin and 5-ALA/PDT combination treatment at the molecular level.


Assuntos
Ácido Aminolevulínico , Apoptose , Cisplatino , Fotoquimioterapia , Fármacos Fotossensibilizantes , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Ácido Aminolevulínico/administração & dosagem , Fotoquimioterapia/métodos , Cisplatino/administração & dosagem , Feminino , Fármacos Fotossensibilizantes/administração & dosagem , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Antineoplásicos/administração & dosagem , Terapia Combinada
13.
J Cell Mol Med ; 28(14): e18536, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39044341

RESUMO

Low-dose 5-aminolevulinic acid photodynamic therapy (ALA-PDT) has been used to cope with skin photoaging, and is thought to involve DNA damage repair responses. However, it is still unknown how low-dose ALA-PDT regulates DNA damage repair to curb skin photoaging. We established a photoaging model using human dermal fibroblasts (HDFs) and rat skin. RNA-sequencing (RNA-seq) analysis was conducted to identify differentially expressed genes (DEGs) in HDFs before and after low-dose ALA-PDT treatment, followed by bioinformatics analysis. Senescence-associated ß-galactosidase (SA-ß-gal) staining was employed to assess skin aging-related manifestations and Western blotting to evaluate the expression of associated proteins. A comet assay was used to detect cellular DNA damage, while immunofluorescence to examine the expression of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in cells and skin tissues. In both in vivo and in vitro models, low-dose ALA-PDT alleviated the manifestations of ultraviolet B (UVB)-induced skin photoaging. Low-dose ALA-PDT significantly reduced DNA damage in photoaged HDFs. Furthermore, low-dose ALA-PDT accelerated the clearance of the photoproduct 8-oxo-dG in photoaged HDFs and superficial dermis of photoaged rat skin. RNA-seq analysis suggested that low-dose ALA-PDT upregulated the expression of key genes in the base excision repair (BER) pathway. Further functional validation showed that inhibition on BER expression by using UPF1069 significantly suppressed SA-ß-gal activity, G2/M phase ratio, expression of aging-associated proteins P16, P21, P53, and MUTYH proteins, as well as clearance of the photoproduct 8-oxo-dG in photoaged HDFs. Low-dose ALA-PDT exerts anti-photoaging effects by activating the BER signalling pathway.


Assuntos
Ácido Aminolevulínico , Dano ao DNA , Reparo do DNA , Fibroblastos , Fotoquimioterapia , Transdução de Sinais , Envelhecimento da Pele , Raios Ultravioleta , Ácido Aminolevulínico/farmacologia , Reparo do DNA/efeitos dos fármacos , Animais , Raios Ultravioleta/efeitos adversos , Humanos , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Fotoquimioterapia/métodos , Ratos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/efeitos da radiação , Pele/patologia , Masculino , Fármacos Fotossensibilizantes/farmacologia , 8-Hidroxi-2'-Desoxiguanosina/metabolismo
14.
Transl Vis Sci Technol ; 13(7): 14, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39023444

RESUMO

Purpose: Photoactivated chromophore for keratitis-corneal cross-linking (PACK-CXL) stabilizes the corneal stroma and eliminates microorganisms. Numerous PACK-CXL protocols, using different energy sources and chromophores, have been applied in preclinical studies, including live animal studies, with various experimental designs and endpoints. So far, a systematic mapping of the applied protocols and consistency across studies seems lacking but is essential to guide future research. Methods: The scoping review protocol was in line with the JBI Manual for Evidence Synthesis. Electronic databases were searched (Embase, MEDLINE, Scopus, Web of Science) to identify eligible records, followed by a two-step selection process (title and abstract screening, full text screening) for record inclusion. We extracted information on (1) different PACK-CXL protocol characteristics; (2) infectious pathogens tested; (3) study designs and experimental settings; and (4) endpoints used to determine antimicrobial and tissue stabilizing effects. The information was charted in frequency maps. Results: The searches yielded 3654 unique records, 233 of which met the inclusion criteria. With 103 heterogeneous endpoints, the researchers investigated a wide range of PACK-CXL protocols. The tested microorganisms reflected pathogens commonly associated with infectious keratitis. Bacterial solutions and infectious keratitis rabbit models were the most widely used models to study the antimicrobial effects of PACK-CXL. Conclusions: If preclinical PACK-CXL studies are to guide future translational research, further cross-disciplinary efforts are needed to establish, promote, and facilitate acceptance of common endpoints relevant to PACK-CXL. Translational Relevance: Systematic mapping of PACK-CXL protocols in preclinical studies guides future translational research.


Assuntos
Reagentes de Ligações Cruzadas , Ceratite , Fármacos Fotossensibilizantes , Riboflavina , Animais , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Reagentes de Ligações Cruzadas/uso terapêutico , Reagentes de Ligações Cruzadas/farmacologia , Reagentes de Ligações Cruzadas/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Riboflavina/uso terapêutico , Riboflavina/farmacologia , Humanos , Fotoquimioterapia/métodos , Substância Própria/metabolismo , Substância Própria/efeitos dos fármacos , Raios Ultravioleta , Colágeno/metabolismo , Crosslinking Corneano
15.
J Nanobiotechnology ; 22(1): 427, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030546

RESUMO

Colorectal cancer, the third most prevalent cancer globally, contributes significantly to mortality rates, with over 1.9 million reported cases and nearly 935,000 fatalities annually. Surgical resection is a primary approach for localized colorectal tumors, with adjunct therapies like chemotherapy, radiotherapy, and targeted/immunotherapy considered depending on the tumor stage. However, despite preferences for targeted and immunotherapy post-surgery, chemotherapy remains commonly chosen due to its lower cost and high cancer-killing efficiency. Yet, chemotherapy faces issues such as tumor resistance and severe side effects. Nanotechnology has emerged in cancer therapy by alleviating the drawbacks of current treatment approaches. In the past few decades, inorganic nanoparticles have shown promise in combating colorectal cancer, offering advantages over conventional chemotherapy. Compared to organic nanoparticles, inorganic nanoparticles exhibit properties like photosensitivity, conductivity, magnetic allure, and thermal proficiency, allowing them to function as both drug carriers and therapeutic agents. Derived primarily from carbon, silica, metals, and metal oxides, they offer superior drug-loading capacity, heightened quantum yield, and participation in advanced photothermal and photodynamic therapies. This review provides a brief overview of the pathophysiology of colorectal cancer and the pivotal role of inorganic nanoparticles in photothermal therapy photodynamic therapy, and drug delivery. Additionally, it discusses numerous inorganic nanoparticles in colorectal cancer therapy based on recent literature.


Assuntos
Neoplasias Colorretais , Nanopartículas , Fotoquimioterapia , Humanos , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas/química , Nanopartículas/uso terapêutico , Fotoquimioterapia/métodos , Animais , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia
16.
J Nanobiotechnology ; 22(1): 430, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033108

RESUMO

Immunotherapy exhibits considerable promise for sustained tumor reduction. However, current cancer immunotherapy methods elicit limited responses due to the inadequate immunogenicity exhibited by cancer cells. This obstacle may be addressed using nanoplatforms that can activate synergistic therapies (photodynamic therapy and ferroptosis) in response to the acidic pH of the tumor microenvironment. We previously developed an amphiphilic photosensitizer, SR780, which displays satisfactory photodynamic effects. This photosensitizer is inactivated when bound to Fe3+ (SR780Fe) but is activated upon release in mildly acidic conditions. In this study, M1 macrophage-derived extracellular vesicles (EVs) were fused with REV and SR780Fe-loaded liposomes (REV@SR780Fe@Lip) to form REV@SR780Fe@LEV hybrid nanovesicles. Further modification with the RS17 peptide for tumor targeting enabled a combination of photodynamic therapy, ferroptosis, and cGAS-STING pathway activation, resulting in enhanced antitumor efficacy through a synergistic effect. Upon laser irradiation, REV@SR780Fe@LEV-RS17 demonstrated antitumor effects in 4T1 breast cancer models, including the inhibition of lung and liver metastasis, as well as prevention of tumor recurrence.


Assuntos
Vesículas Extracelulares , Imunoterapia , Macrófagos , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Imunoterapia/métodos , Vesículas Extracelulares/química , Camundongos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Linhagem Celular Tumoral , Feminino , Lipossomos/química , Concentração de Íons de Hidrogênio , Microambiente Tumoral/efeitos dos fármacos , Humanos , Ferroptose/efeitos dos fármacos , Nanopartículas/química
17.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999115

RESUMO

According to the World Health Organization (WHO) and the International Agency for Research on Cancer (IARC), the number of cancer cases and deaths worldwide is predicted to nearly double by 2030, reaching 21.7 million cases and 13 million fatalities. The increase in cancer mortality is due to limitations in the diagnosis and treatment options that are currently available. The close relationship between diagnostics and medicine has made it possible for cancer patients to receive precise diagnoses and individualized care. This article discusses newly developed compounds with potential for photodynamic therapy and diagnostic applications, as well as those already in use. In addition, it discusses the use of artificial intelligence in the analysis of diagnostic images obtained using, among other things, theranostic agents.


Assuntos
Inteligência Artificial , Neoplasias , Fotoquimioterapia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico , Neoplasias/terapia , Fotoquimioterapia/métodos , Nanomedicina Teranóstica/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia
18.
BMC Microbiol ; 24(1): 246, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970013

RESUMO

Previous studies have shown that antimicrobial photodynamic inactivation (aPDI) can be strongly potentiated by the addition of the non-toxic inorganic salt, potassium iodide (KI). This approach was shown to apply to many different photosensitizers, including the xanthene dye Rose Bengal (RB) excited by green light (540 nm). Rose Bengal diacetate (RBDA) is a lipophilic RB derivative that is easily taken up by cells and hydrolyzed to produce an active photosensitizer. Because KI is not taken up by microbial cells, it was of interest to see if aPDI mediated by RBDA could also be potentiated by KI. The addition of 100 mM KI strongly potentiated the killing of Gram-positive methicillin-resistant Staphylocccus aureus, Gram-negative Eschericia coli, and fungal yeast Candida albicans when treated with RBDA (up to 15 µM) for 2 hours followed by green light (540 nm, 10 J/cm2). Both RBDA aPDI regimens (400 µM RBDA with or without 400 mM KI followed by 20 J/cm2 green light) accelerated the healing of MRSA-infected excisional wounds in diabetic mice, without damaging the host tissue.


Assuntos
Candida albicans , Staphylococcus aureus Resistente à Meticilina , Fármacos Fotossensibilizantes , Iodeto de Potássio , Rosa Bengala , Infecções Estafilocócicas , Cicatrização , Animais , Rosa Bengala/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Iodeto de Potássio/farmacologia , Camundongos , Candida albicans/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Escherichia coli/efeitos dos fármacos , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Experimental/tratamento farmacológico , Fotoquimioterapia/métodos , Sinergismo Farmacológico , Luz , Masculino
19.
ACS Appl Mater Interfaces ; 16(28): 36142-36156, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968001

RESUMO

There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.


Assuntos
Compostos Ferrosos , Ácido Hialurônico , Verde de Indocianina , Metalocenos , Fotoquimioterapia , Compostos Ferrosos/química , Humanos , Metalocenos/química , Animais , Camundongos , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Verde de Indocianina/farmacologia , Ácido Hialurônico/química , Terapia Fototérmica , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico
20.
BMC Complement Med Ther ; 24(1): 270, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010043

RESUMO

BACKGROUND: Medicinal plant-mediated combinational therapies have gained importance globally due to minimal side effects and enhanced treatment outcomes compared to single-drug modalities. We aimed to analyze the cytotoxic potential of each conventional treatment i.e., photodynamic therapy (PDT), chemotherapy (doxorubicin hydrochloride; Dox-HCl) with or without various concentrations of medicinal plant extracts (PE) on soft tissue cancer Rhabdomyosarcoma (RD) cell line. METHODS: The Rhabdomyosarcoma (RD) cell line was cultured and treated with Photosensitizer (Photosense (AlPc4)), Chemo (Dox-HCl), and their combinations with different concentrations of each plant extract i.e., Thuja occidentalis, Moringa oleifera, Solanum surattense. For the source of illumination, a Diode laser (λ = 630 nm ± 1 nm, Pmax = 1.5 mW) was used. Photosensitizer uptake time (∼ 45 min) was optimized through spectrophotometric measurements (absorption spectroscopy). Drug response of each treatment arm was assessed post 24 h of administration using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- 5-diphenyl-2 H- tetrazolium bromide (MTT) assay. RESULTS: PE-mediated Chemo-Photodynamic therapy (PDT) exhibited synergistic effects (CI < 1). Moreover, Rhabdomyosarcoma culture pretreated with various plant extracts for 24 h exhibited significant inhibition of cell viability however most effective outcomes were shown by low and high doses of Moringa oleifera compared to other plant extracts. Post low doses treated culture with all plant extracts followed by PDT came up with more effectiveness when compared to all di-therapy treatments. CONCLUSION: The general outcome of this work shows that the ethanolic plant extracts (higher doses) promote the death of cancerous cells in a dose-dependent way and combining Dox-HCl and photo-mediated photodynamic therapy can yield better therapeutic outcomes.


Assuntos
Doxorrubicina , Fotoquimioterapia , Fármacos Fotossensibilizantes , Extratos Vegetais , Plantas Medicinais , Rabdomiossarcoma , Fotoquimioterapia/métodos , Humanos , Doxorrubicina/farmacologia , Rabdomiossarcoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/farmacologia , Plantas Medicinais/química , Solanum/química , Sobrevivência Celular/efeitos dos fármacos , Moringa oleifera/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA