Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.525
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445535

RESUMO

Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in 'Honeycrisp'. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of 'Honeycrisp' apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-ß-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.


Assuntos
Ácido Abscísico/metabolismo , Aldeídos/farmacologia , Parede Celular/metabolismo , Frutas/crescimento & desenvolvimento , Malus/crescimento & desenvolvimento , Melatonina/metabolismo , Proteínas de Plantas/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Malus/efeitos dos fármacos , Malus/metabolismo , Proteínas de Plantas/genética
2.
Phytochemistry ; 191: 112912, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34450419

RESUMO

The esterification of carotenoids has been associated with high-level accumulation, greater stability and potentially improved dietary bioavailability. Engineering the formation of ketocarotenoids into tomato fruit has resulted in the esterification of these non-endogenous metabolites. A genotype of tomato was created that contains; (i) the mutant pale yellow petal (pyp)1-1 allele, which is responsible for the absence of carotenoid esters in tomato flowers and (ii) the heterologous enzymes for ketocarotenoid formation. Analysis of the resulting progeny showed altered quantitative and qualitative differences in esterified carotenoids. For example, in ripe fruit tissues, in the presence of the pyp mutant allele, non-endogenous ketocarotenoid esters were absent while their free forms accumulated. These data demonstrate the involvement of the PYP gene product in the esterification of diverse xanthophylls.


Assuntos
Lycopersicon esculentum , Aciltransferases/metabolismo , Esterificação , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Lycopersicon esculentum/genética , Lycopersicon esculentum/metabolismo , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Xantofilas/metabolismo
3.
BMC Plant Biol ; 21(1): 396, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34433422

RESUMO

BACKGROUND: Bagging can improve the appearance of fruits and increase the food safety and commodification, it also has effects on intrinsic quality of the fruits, which was commonly reported negative changes. Fig can be regarded as a new model fruit with its relatively small genome size and long fruit season. RESULTS: In this study, widely targeted metabolomics based on HPLC MS/MS and RNA-seq of the fruit tissue of the 'Zibao' fig before and after bagging were analyzed to reveal the metabolites changes of the edible part of figs and the underneath gene expression network changes. A total of 771 metabolites were identified in the metabolome analysis using fig female flower tissue. Of these, 88 metabolites (including one carbohydrate, eight organic acids, seven amino acids, and two vitamins) showed significant differences in fruit tissue before and after bagging. Changes in 16 structural genes, 13 MYB transcription factors, and endogenous hormone (ABA, IAA, and GA) metabolism and signal transduction-related genes in the biosynthesis pathway of flavonoids after bagging were analyzed by transcriptome analysis. KEGG enrichment analysis also determined significant differences in flavonoid biosynthesis pathways in female flower tissue before and after bagging. CONCLUSIONS: This work provided comprehensive information on the composition and abundance of metabolites in the female flower tissue of fig. The results showed that the differences in flavor components of the fruit before and after bagging could be explained by changes in the composition and abundance of carbohydrates, organic acids, amino acids, and phenolic compounds. This study provides new insights into the effects of bagging on changes in the intrinsic and appearance quality of fruits.


Assuntos
Ficus/genética , Ficus/metabolismo , Flavonoides/análise , Flavonoides/biossíntese , Flavonoides/genética , Frutas/genética , Frutas/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Flores/genética , Flores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Metaboloma
4.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360556

RESUMO

In grapevines, as in other plants, sucrose and its constituents glucose and fructose are fundamentally important and carry out a multitude of roles. The aims of this review are three-fold. First, to provide a summary of the metabolism and transport of sucrose in grapevines, together with new insights and interpretations. Second, to stress the importance of considering the compartmentation of metabolism. Third, to outline the key role of acid invertase in osmoregulation associated with sucrose metabolism and transport in plants.


Assuntos
Metabolismo dos Carboidratos , Frutas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Sacarose/metabolismo , Vitis/metabolismo , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Vitis/crescimento & desenvolvimento
5.
Nutrients ; 13(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371928

RESUMO

The "drunken monkey" hypothesis posits that attraction to ethanol derives from an evolutionary linkage among the sugars of ripe fruit, associated alcoholic fermentation by yeast, and ensuing consumption by human ancestors. First proposed in 2000, this concept has received increasing attention from the fields of animal sensory biology, primate foraging behavior, and molecular evolution. We undertook a review of English language citations subsequent to publication of the original paper and assessed research trends and future directions relative to natural dietary ethanol exposure in primates and other animals. Two major empirical themes emerge: attraction to and consumption of fermenting fruits (and nectar) by numerous vertebrates and invertebrates (e.g., Drosophila flies), and genomic evidence for natural selection consistent with sustained exposure to dietary ethanol in diverse taxa (including hominids and the genus Homo) over tens of millions of years. We also describe our current field studies in Uganda of ethanol content within fruits consumed by free-ranging chimpanzees, which suggest chronic low-level exposure to this psychoactive molecule in our closest living relatives.


Assuntos
Consumo de Bebidas Alcoólicas , Evolução Biológica , Exposição Dietética , Etanol/metabolismo , Fermentação , Frutas/microbiologia , Leveduras/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Alcoolismo/metabolismo , Alcoolismo/psicologia , Animais , Exposição Dietética/efeitos adversos , Etanol/efeitos adversos , Comportamento Alimentar , Frutas/metabolismo , Humanos , Pan troglodytes
6.
Molecules ; 26(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34299402

RESUMO

Prunus persica L. is one of the most important fruit crops in European production, after grapes, apples, oranges and watermelons. Most varieties are rich in secondary metabolites, showing antioxidant properties for human health. The purpose of this study was to develop a chemical analysis methodology, which involves the use of different analytical-instrumental techniques to deepen the knowledge related to the profile of metabolites present in selected cultivars of peaches and nectarines cultivated in the Mediterranean area (Southern Italy). The comparative study was conducted by choosing yellow-fleshed peaches (RomeStar, ZeeLady) and yellow-fleshed nectarines (Nectaross, Venus) from two geographical areas (Piana di Sibari and Piana di Metaponto), and by determining the chemical parameters for the flesh and skin that allow for identification of any distinctive varietal and/or geographical characteristics. A combined analytical and chemometric approach was used, trough rheological, thermogravimetric (TGA), chromatographic (HPLC-ESI-MS), spectroscopic (UV-Vis, ATR-FTIR, NMR) and spectrometric (ToF-SIMS) analysis. This approach allowed us to identify the characterizing parameters for the analysis of a plant matrix so that the developed methodology could define an easily exportable and extendable model for the characterization of other types of vegetable matrices.


Assuntos
Antioxidantes/análise , Frutas/classificação , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Modelos Estatísticos , Prunus persica/classificação , Prunus persica/metabolismo , Antioxidantes/metabolismo , Geografia
7.
J Plant Physiol ; 264: 153472, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315028

RESUMO

Citrus fruit are generally confronted with various fungal diseases that cause fruit deterioration and economic loss. Salicylic acid (SA), a plant hormone, is an important signal molecule required for stimulating the disease resistance of plants. However, there has been limited information about the molecular mechanism of SA biosynthesis involving biotic stress response in citrus fruit. In the present study, an R2R3 MYB transcription factor (CsMYB96) was identified to mediate SA signaling in response to fungal diseases. The transient overexpression assay revealed that CsMYB96 contributed to the strong tolerance of citrus fruit to Penicillium italicum along with an increase in SA content; meanwhile, CsMYB96 conferred resistance to Botrytis cinerea in Arabidopsis plants. Further metabolomic profiling of stable transgenic Arabidopsis revealed that CsMYB96 participated in the regulation of various metabolism pathways and enhanced the accumulation of phenolic acids. RNA-seq analysis confirmed that overexpression of CsMYB96 activated the expression of genes involved in plant-pathogen interaction, phenylpropanoid biosynthesis, and SA signaling. Besides, CsMBY96 directly activated the transcription of calmodulin binding protein 60g (CsCBP60g), a predominant transcription factor required for the activation of SA signaling. In summary, our results reveal that CsMYB96 promotes SA biosynthesis and the accumulation of defense metabolites to enhance the fungal pathogen resistance of citrus fruit and Arabidopsis and provide new insights into the regulation of disease response.


Assuntos
Citrus sinensis/imunologia , Resistência à Doença , Frutas/microbiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis , Botrytis , Citrus sinensis/metabolismo , Citrus sinensis/microbiologia , Frutas/imunologia , Frutas/metabolismo , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas
8.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206687

RESUMO

Apple trees (Malus domestica Borgh) are a rich source of dihydrochalcones, phenolic acids and flavonoids. Considering the increasing demand for these phytochemicals with health-benefitting properties, the objective of this study was to evaluate the profile of the main bioactive compounds-phloridzin, phloretin, chlorogenic acid and rutin-in apple tree bark, leaves, flower buds and twigs. The variety in the phenolic profiles of four apple tree cultivars was monitored during the vegetation period from March to September using chromatography analysis. Phloridzin, the major glycoside of interest, reached the highest values in the bark of all the tested cultivars in May (up to 91.7 ± 4.4 mg g-1 of the dried weight (DW), cv. 'Opal'). In the leaves, the highest levels of phloridzin were found in cv. 'Opal' in May (82.5 ± 22.0 mg g-1 of DW); in twigs, the highest levels were found in cv. 'Rozela' in September (52.4 ± 12.1 mg g-1 of DW). In the flower buds, the content of phloridzin was similar to that in the twigs. Aglycone phloretin was found only in the leaves in relatively low concentrations (max. value 2.8 ± 1.4 mg g-1 of DW). The highest values of rutin were found in the leaves of all the tested cultivars (10.5 ± 2.9 mg g-1 of DW, cv. 'Opal' in September); the concentrations in the bark and twigs were much lower. The highest content of chlorogenic acid was found in flower buds (3.3 ± 1.0 mg g-1 of DW, cv. 'Rozela'). Whole apple fruits harvested in September were rich in chlorogenic acid and phloridzin. The statistical evaluation by Scheffe's test confirmed the significant difference of cv. 'Rozela' from the other tested cultivars. In conclusion, apple tree bark, twigs, and leaves were found to be important renewable resources of bioactive phenolics, especially phloridzin and rutin. The simple availability of waste plant material can therefore be used as a rich source of phenolic compounds for cosmetics, nutraceuticals, and food supplement preparation.


Assuntos
Frutas/metabolismo , Malus/metabolismo , Florizina/metabolismo , Casca de Planta/metabolismo , Folhas de Planta/metabolismo , Rutina/metabolismo
9.
Int J Mol Sci ; 22(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34299293

RESUMO

Brassinosteroids (BRs) are growth-promoting phytohormones that can efficiently function by exogenous application at micromolar concentrations or by endogenous fine-tuning of BR-related gene expression, thus, precisely controlling BR signal strength is a key factor in exploring the agricultural potential of BRs. BRASSINOSTEROID INSENSITIVE1 (BRI1), a BR receptor, is the rate-limiting enzyme in BR signal transduction, and the phosphorylation of each phosphorylation site of SlBRI1 has a distinct effect on BR signal strength and botanic characteristics. We recently demonstrated that modifying the phosphorylation sites of tomato SlBRI1 could improve the agronomic traits of tomato to different extents; however, the associated agronomic potential of SlBRI1 phosphorylation sites in tomato has not been fully exploited. In this research, the biological functions of the phosphorylation site threonine-825 (Thr-825) of SlBRI1 in tomato were investigated. Phenotypic analysis showed that, compared with a tomato line harboring SlBRI1, transgenic tomato lines expressing SlBRI1 with a nonphosphorylated Thr-825 (T825A) exhibited a larger plant size due to a larger cell size and higher yield, including a greater plant height, thicker stems, longer internodal lengths, greater plant expansion, a heavier fruit weight, and larger fruits. Molecular analyses further indicated that the autophosphorylation level of SlBRI1, BR signaling, and gibberellic acid (GA) signaling were elevated when SlBRI1 was dephosphorylated at Thr-825. Taken together, the results demonstrated that dephosphorylation of Thr-825 can enhance the functions of SlBRI1 in BR signaling, which subsequently activates and cooperates with GA signaling to stimulate cell elongation and then leads to larger plants and higher yields per plant. These results also highlight the agricultural potential of SlBRI1 phosphorylation sites for breeding high-yielding tomato varieties through precise control of BR signaling.


Assuntos
Brassinosteroides/metabolismo , Lycopersicon esculentum/genética , Proteínas Serina-Treonina Quinases/genética , Tamanho Celular , Frutas/metabolismo , Lycopersicon esculentum/crescimento & desenvolvimento , Lycopersicon esculentum/metabolismo , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Treonina/metabolismo
10.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209216

RESUMO

Dead organs enclosing embryos, such as seed coats and pericarps, are emerging as important maternally-derived components of the dispersal unit that affect seed performance and fate. In the face of climate change and increased incidents of heatwaves, we sought to investigate the effect of salinity (S), short episodes of high temperature (HS), and combination of S + HS (SHS), at the reproductive phase, on the properties of dead pericarps of Brassica juncea. Proteome and metabolome analyses revealed multiple proteins and metabolites stored in dead pericarps whose levels and composition were altered under single and combined stress conditions. The protein profile of SHS showed a higher correlation with salt than with HS indicating the dominant effect of salt over heat stress. On the other hand, the analysis of metabolites showed that the profile of SHS has better correlation with HS than with salt. The integration of metabolic and proteomic data showed that changes in TCA cycle intermediates and certain amino acids (e.g., proline) under salt treatments (S and SHS) are highly correlated with changes in proteins involved in their biosynthetic pathways. Thus, accumulation of proteins and metabolites in dead pericarps is differently affected by single and combination of salt and heat stresses. Salinity appears to dominate plant response to combined stresses at the protein level, while heat appears to be the major factor affecting metabolite accumulation in dead pericarps.


Assuntos
Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Mostardeira/metabolismo , Pressão Osmótica , Proteínas de Plantas/biossíntese
11.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204618

RESUMO

There is scientific evidence of the positive effect of polyphenols from plant foods on inflammation and oxidative status. The aim of the present study was to investigate whether treatment with a high-polyphenolic nutraceutical reduces the plasmatic concentration of certain oxidative and inflammatory biomarkers in a healthy population. One hundred and eight subjects were selected and stratified by sex in the intervention group (n = 53) and the placebo group (n = 55). Ninety-two subjects completed the study after two 16-week treatment periods separated by a four-week washout period. The results revealed statistically significant differences in subjects treated with the polyphenolic extract compared to the placebo: A decrease in homocysteine, oxidized low-density lipoprotein (OxLDL), TNF-α, sTNFR1, and C-reactive protein (CRP). The most significant decrease was observed for OxLDL (from 78.98 ± 24.48 to 69.52 ± 15.64; p < 0.05) and CRP (from 1.50 ± 0.33 to 1.39 ± 0.37; p < 0.05), both showing significant differences compared to the placebo (p < 0.001). Moreover, catecholamines increased after the administration of the product under investigation, especially in the case of dopamine (from 15.43 ± 2.66 to 19.61 ± 5.73; p < 0.05). Therefore, the consumption of a nutraceutical based on fruit and vegetables with a high polyphenol content seems to improve the parameters related to health benefits (oxidative and inflammatory biomarkers), including remarkable changes in the expression of catecholamines.


Assuntos
Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Adulto , Antioxidantes/farmacologia , Biomarcadores/sangue , Catecolaminas/metabolismo , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Frutas/metabolismo , Humanos , Lipoproteínas LDL/efeitos dos fármacos , Masculino , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Placebos , Verduras/metabolismo
12.
Molecules ; 26(12)2021 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-34204744

RESUMO

The cambuci is a native Brazilian fruit from the Atlantic Forest biome. A soft and astringent pulp, a green color, and a sweet aroma are its main characteristics. Classical food quality attributes (fresh fruit mass, fruit height, diameters, total soluble solid, titratable acidity, and ratio) and the metabolic profile from ten accessions from three different locations were analyzed herein by analytical methods (refractometry and neutralization titration) and nuclear magnetic resonance spectroscopy. Concerning sugar content, sucrose was the predominant compound, with glucose and fructose alternating in second, depending on the accession. Citric acid was the most relevant acid, followed by shikimic and quinic acids in quite variable amounts. These three main acids vary in amounts for each accession. Ascorbic acid content emerges as an important quality attribute and makes this fruit nutritionally attractive, due to values comparable to those contained in citric fruits. The main amino acids identified in cambuci were glutamic acid individually or in comprising the tripeptide glutathione (glutamic acid, cysteine, glycine). The quality diversity of the evaluated accessions suggests the potentiality of cambuci use in future breeding programs.


Assuntos
Frutas/química , Frutas/metabolismo , Myrtaceae/metabolismo , Ácidos/metabolismo , Antioxidantes/análise , Ácido Ascórbico/análise , Brasil , Carboidratos/análise , Qualidade dos Alimentos , Frutose/metabolismo , Glucose/metabolismo , Metaboloma , Metabolômica/métodos , Floresta Úmida
13.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199320

RESUMO

Cucurbita moschata Duchesne (Cucurbitaceae) is a plant food highly appreciated for the content of nutrients and bioactive compounds, including polyphenols and carotenoids, which contribute to its antioxidant and antimicrobial capacities. The purpose of this study was to identify phenolic acids and flavonoids of Cucurbita moschata Duchesne using high-performance liquid chromatography-diode array detection-electrospray ionization tandem mass spectrometry (HPLC-DAD-ESI-MS) at different ripening stages (young, mature, ripened) and determine its antioxidant and antimicrobial activities. According to the results, phenolic acids and flavonoids were dependent on the maturity stage. The mature fruits contain the highest total phenolic and flavonoids contents (97.4 mg GAE. 100 g-1 and 28.6 mg QE. 100 g-1).A total of 33 compounds were identified. Syringic acid was the most abundant compound (37%), followed by cinnamic acid (12%) and protocatechuic acid (11%). Polyphenol extract of the mature fruits showed the highest antioxidant activity when measured by DPPH (0.065 µmol TE/g) and ABTS (0.074 µmol TE/g) assays. In the antimicrobial assay, the second stage of ripening had the highest antibacterial activity. Staphylococcus aureus was the most sensitive strain with an inhibition zone of 12 mm and a MIC of 0.75 mg L-1. The lowest inhibition zone was obtained with Salmonella typhimurium (5 mm), and the MIC value was 10 mg L-1.


Assuntos
Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Cucurbita/química , Frutas/química , Extratos Vegetais/química , Polifenóis/metabolismo , Anti-Infecciosos/química , Antioxidantes/química , Cucurbita/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Frutas/metabolismo , Polifenóis/análise
14.
BMC Plant Biol ; 21(1): 348, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301189

RESUMO

BACKGROUND: The oil-tea tree (Camellia oleifera Abel.) is a woody tree species that produces edible oil in the seed. C. oleifera oil has high nutritional value and is also an important raw material for medicine and cosmetics. In China, due to the uncertainty on maturity period and oil synthesis mechanism of many C. oleifera cultivars, growers may harvest fruits prematurely, which could not maximize fruit and oil yields. In this study, our objective was to explore the mechanism and differences of oil synthesis between two Camellia oleifera cultivars for a precise definition of the fruit ripening period and the selection of appropriate cultivars. RESULTS: The results showed that 'Huashuo' had smaller fruits and seeds, lower dry seed weight and lower expression levels of fatty acid biosynthesis genes in July. We could not detect the presence of oil and oil bodies in 'Huashuo' seeds until August, and oil and oil bodies were detected in 'Huajin' seeds in July. Moreover, 'Huashuo' seeds were not completely blackened in October with up to 60.38% of water and approximately 37.98% of oil in seed kernels whose oil content was much lower than normal mature seed kernels. The oil bodies in seed endosperm cells of 'Huajin' were always higher than those of 'Huashuo' from July to October. CONCLUSION: Our results confirmed that C. oleifera 'Huashuo' fruits matured at a lower rate compared to 'Huajin' fruits and that 'Huajin' seeds entered the oil synthesis period earlier than 'Huashuo' seeds. Moreover, 'Huashuo' fruits did not mature during the Frost's Descent period (October 23-24 each year).


Assuntos
Camellia/crescimento & desenvolvimento , Camellia/genética , Camellia/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Óleos Vegetais/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Ácidos Graxos/metabolismo , Variação Genética , Genótipo , Melhoramento Vegetal , Plantas Medicinais/genética , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/metabolismo , Transcriptoma
15.
BMC Plant Biol ; 21(1): 351, 2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34303342

RESUMO

BACKGROUND: In nature, green apple are associated with the accumulation of chlorophyll, while red apple varieties are associated with anthocyanins accumulation. Notably, in this study, the green skin color apple variety 'white winter pearmain' treated with ultraviolet-B (UV-B) exhibited red skins and marked anthocyanin accumulation, while visible light could not. But there are few reports on the biosynthesis difference of anthocyanins in green apple by visible light and UV-B-treatment. Here, we explored the difference of metabolites and genes expression level in green apple by transcriptomic and metabolic. RESULTS: The metabolic analysis revealed that there were 152 and 178 significantly changed metabolites in the visible light and UV-B-treated green apple, respectively, compared to the control, and flavone, flavonol, and anthocyanin were the most significantly increased; and transcriptomic analysis showed that 37,110 and 37,709 differentially expressed genes, including 382 and 475 transcription factors (TFs) were detected in light and UV-B-treatment fruit, respectively. Quantitative reverse transcription PCR (qRT-PCR) results confirmed changes in the expression levels of genes encoding metabolites involved in the flavonoid synthesis pathways. The flavonoid metabolic flux in the UV-B treatment increased the accumulation of cyanidin 3-glucoside and cyanidin 3, 5-diglucoside compared to under the light-treatment. Furthermore, we performed qRT-PCR analysis of anthocyanin biosynthesis genes and predicted the gene of MD00G1134400 (a UDP glucose-flavonoid 3-0-glucosyltransferase) may be a candidate gene for anthocyanins accumulation and highly expressed in UV-B-treatment fruit. Expression profiles of several transcription factors of the families MYB, bHLH, NAC were highly correlated with the content of the anthocyanin. CONCLUSIONS: The composition and contents of anthocyanins in green apple in UV-B-treatment very greatly. A series of metabolites and candidate genes were revealed through combined analysis of metabolome and transcriptome. These results provide an important data for dissecting candidate genes and molecular basis governing green apple color formation in response to visible light and UV-B light.


Assuntos
Adaptação Ocular/fisiologia , Antocianinas/biossíntese , Antocianinas/genética , Frutas/genética , Frutas/metabolismo , Malus/genética , Malus/metabolismo , Pigmentação/genética , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Metaboloma , Pigmentação/fisiologia , Transcriptoma , Raios Ultravioleta
16.
Plant Sci ; 310: 110958, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315584

RESUMO

'Nantongxiaofangshi' (Diospyros kaki Thunb., D. kaki Thunb.) is a local cultivar of persimmon with dwarf-like traits in Jiangsu, China. Closely spaced planting afforded by dwarfism is usually one of the most important ways to promote fruit cultivation and production. However, the understanding of dwarfism in D. kaki Thunb. is very limited at the molecular level, which hinders the further increase of the fruit production. In this work, a persimmon transgenic system was successfully established, and the field experiments of grafting phenotype were carried out. The results showed that D. kaki Thunb. could be used as an interstock to induce dwarfing in grafted scions, and the dwarf character was better when interstock lengths were between 20 and 25 cm. Furthermore, the key genes related to dwarfism in D. kaki Thunb. were screened and verified, and subsequently, the regulatory role of related genes in persimmon dwarfism was figured out. It was found that the gene encoding gibberellin 2-oxidase-1 (DkGA2ox1) involved in GA biosynthesis was associated with the dwarfing in D. kaki Thunb. Overexpression of DkGA2ox1 in Diospyros lotus resulted in a typical dwarf phenotype. Meanwhile, the microRNA data showed that the miR171f_3 demonstrated the active involvement in GA pathway response in persimmon dwarfism. DkGA2ox1 and MIR171f_3, as two highly expressed genes in D. kaki Thunb. interstock, could be used as stimulus signals to affect the content of GA in scion, however, the specific transmission mechanism still needs to be further explored. Ultimately, the bioactive GA level was decreased, resulting in the scion dwarfism.


Assuntos
Diospyros/metabolismo , Frutas/metabolismo , Giberelinas/metabolismo , Fatores de Transcrição/metabolismo , Diospyros/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
17.
Plant Sci ; 310: 110972, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315590

RESUMO

Cuticular wax covers the surface of fleshy fruit and plays a protective role in fruit development and postharvest storage, including reducing fruit water loss, resisting biotic and abiotic stress and affecting fruit glossiness. The ß-ketoacyl-CoA synthase (KCS) is the rate-limiting enzyme of very long chain fatty acids (VLCFAs) synthesis, which provides precursors for the synthesis of cuticular wax. In this study, a total of 96 KCS genes were identified in six Citrinae species, including 13, 16, 21, 14, 16 and 16 KCS genes in the primitive species (Atalantia buxifolia), the wild species (Citrus ichangensis), and four cultivated species (Citrus medica, Citrus grandis, Citrus sinensis and Citrus clementina), respectively. Compared with primitive species, wild and cultivated species showed expansion of KCS gene family. Evolutionary analysis of KCS gene family indicated that uneven gain and loss of genes resulted in variable numbers of KCS genes in Citrinae, and KCS genes have undergone purifying selection. Expression profiles in C. sinensis revealed that the KCS genes had diverse expression patterns among various tissues. Furthermore, CsKCS2 and CsKCS11 were predominantly expressed in the flavedo and their expression increased sharply with ripening. Subcellular localization analysis indicated that CsKCS2 and CsKCS11 were located in the endoplasmic reticulum. Further, heterologous expression of CsKCS2 and CsKCS11 in Arabidopsis significantly increased the content of cuticular wax in leaves. Thus, CsKCS2 and CsKCS11 are involved in the accumulation of fruit cuticular wax at ripening. This work will facilitate further functional verification and understanding of the evolution of KCS genes in Citrinae.


Assuntos
Frutas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Citrus/genética , Citrus/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Ceras/metabolismo
18.
Planta ; 254(2): 22, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34218358

RESUMO

MAIN CONCLUSION: The downregulation of PpPG21 and PpPG22 expression in melting-flesh peach delays fruit softening and hinders texture changes by influencing pectin solubilization and depolymerization. The polygalacturonase (PG)-catalyzed solubilization and depolymerization of pectin plays a central role in the softening and texture formation processes in peach fruit. In this study, the expression characteristics of 15 PpPG members in peach fruits belonging to the melting flesh (MF) and non-melting flesh (NMF) types were analyzed, and virus-induced gene silencing (VIGS) technology was used to identify the roles of PpPG21 (ppa006839m) and PpPG22 (ppa006857m) in peach fruit softening and texture changes. In both MF and NMF peaches, the expression of PpPG1, 10, 12, 23, and 25 was upregulated, whereas that of PpPG14, 24, 35, 38, and 39 was relatively stable or downregulated during shelf life. PpPG1 was highly expressed in NMF fruit, whereas PpPG21 and 22 were highly expressed in MF peaches. Suppressing the expression of PpPG21 and 22 by VIGS in MF peaches significantly reduced PG enzyme activity, maintained the firmness of the fruit during the late shelf life stage, and suppressed the occurrence of the "melting" stage compared with the control fruits. Moreover, the downregulation of PpPG21 and 22 expression also reduced the water-soluble pectin (WSP) content, increased the contents of ionic-soluble pectin (ISP) and covalent-soluble pectin (CSP) and affected the expression levels of ethylene synthesis- and pectin depolymerization-related genes in the late shelf life stage. These results indicate that PpPG21 and 22 play a major role in the development of the melting texture trait of peaches by depolymerizing cell wall pectin. Our results provide direct evidence showing that PG regulates peach fruit softening and texture changes.


Assuntos
Prunus persica , Parede Celular/metabolismo , Regulação para Baixo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Poligalacturonase/metabolismo
19.
Int J Mol Sci ; 22(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208198

RESUMO

The role of auxin in the fruit-ripening process during the early developmental stages of commercial strawberry fruits (Fragaria x ananassa) has been previously described, with auxin production occurring in achenes and moving to the receptacle. Additionally, fruit softening is a consequence of the depolymerization and solubilization of cell wall components produced by the action of a group of proteins and enzymes. The aim of this study was to compare the effect of exogenous auxin treatment on the physiological properties of the cell wall-associated polysaccharide contents of strawberry fruits. We combined thermogravimetric (TG) analysis with analyses of the mRNA abundance, enzymatic activity, and physiological characteristics related to the cell wall. The samples did not show a change in fruit firmness at 48 h post-treatment; by contrast, we showed changes in the cell wall stability based on TG and differential thermogravimetric (DTG) analysis curves. Less degradation of the cell wall polymers was observed after auxin treatment at 48 h post-treatment. The results of our study indicate that auxin treatment delays the cell wall disassembly process in strawberries.


Assuntos
Biopolímeros/metabolismo , Parede Celular/metabolismo , Fragaria/metabolismo , Frutas/metabolismo , Ácidos Indolacéticos/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Fragaria/efeitos dos fármacos , Fragaria/genética , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura , Termogravimetria , Transcrição Genética/efeitos dos fármacos , Ácidos Tri-Iodobenzoicos/farmacologia
20.
New Phytol ; 232(1): 237-251, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34137052

RESUMO

Ethylene plays an important role in regulating fruit ripening by triggering dynamic changes in expression of ripening-associated genes, but the functions of many of these genes are still unknown. Here, a methionine sulfoxide reductase gene (AdMsrB1) was identified by transcriptomics-based analysis as the gene most responsive to ethylene treatment in ripening kiwifruit. The AdMsrB1 protein exhibits a stereospecific activity toward the oxidative stress-induced R enantiomer of methionine sulfoxide (MetSO), reducing it to methionine (Met). Stable overexpression of AdMsrB1 in kiwifruit significantly increased the content of free Met and 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene, and increased ethylene production. Dual-luciferase assays indicated that the AdMsrB1 promoter was not directly upregulated by ethylene treatment but was modulated by two ethylene-inducible NAM/ATAF/CUC transcription factors (AdNAC2 and AdNAC72) that bind directly to the AdMsrB1 promoter. Overexpression of AdNAC72 in kiwifruit not only enhanced AdMsrB1 expression, but also increased free Met and ACC content and ethylene production rates. This finding establishes an unexpected regulatory loop that enhances ethylene production and the concentration of its biosynthetic intermediates.


Assuntos
Frutas , Fatores de Transcrição , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Metionina , Metionina Sulfóxido Redutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...