Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.834
Filtrar
1.
Physiol Plant ; 176(4): e14416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952344

RESUMO

Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Frutas/genética , Frutas/efeitos dos fármacos , Frutas/metabolismo , Vanádio/farmacologia , Estresse Fisiológico/genética , Caragana/genética , Caragana/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Perfilação da Expressão Gênica , Secas , Transcriptoma/genética , Transcriptoma/efeitos dos fármacos , Cactaceae
2.
BMC Plant Biol ; 24(1): 623, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951751

RESUMO

BACKGROUND: Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS: Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION: The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.


Assuntos
Fragaria , Frutas , Lipídeos de Membrana , Ceras , Fragaria/crescimento & desenvolvimento , Fragaria/genética , Fragaria/metabolismo , Fragaria/enzimologia , Frutas/crescimento & desenvolvimento , Frutas/genética , Frutas/metabolismo , Ceras/metabolismo , Lipídeos de Membrana/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
3.
BMC Plant Biol ; 24(1): 626, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961401

RESUMO

BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.


Assuntos
Calmodulina , Flores , Frutas , Passiflora , Filogenia , Proteínas de Plantas , Passiflora/genética , Passiflora/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genes de Plantas , Perfilação da Expressão Gênica
4.
Plant Mol Biol ; 114(4): 84, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995453

RESUMO

Expansins are proteins without catalytic activity, but able to break hydrogen bonds between cell wall polysaccharides hemicellulose and cellulose. This proteins were reported for the first time in 1992, describing cell wall extension in cucumber hypocotyls caused particularly by alpha-expansins. Although these proteins have GH45 and CBM63 domains, characteristic of enzymes related with the cleavage of cell wall polysaccharides, demonstrating in vitro that they extend plant cell wall. Its participation has been associated to molecular processes such as development and growing, fruit ripening and softening, tolerance and resistance to biotic and abiotic stress and seed germination. Structural insights, facilitated by bioinformatics approaches, are highlighted, shedding light on the intricate interactions between alpha-expansins and cell wall polysaccharides. After more than thirty years of its discovery, we want to celebrate the knowledge of alpha-expansins and emphasize their importance to understand the phenomena of disassembly and loosening of the cell wall, specifically in the fruit ripening phenomena, with this state-of-the-art dedicated to them.


Assuntos
Parede Celular , Frutas , Proteínas de Plantas , Parede Celular/metabolismo , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Polissacarídeos/metabolismo
5.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39000287

RESUMO

Cytochrome P450 enzymes are monooxygenases widely diffused in nature ranging from viruses to man. They can catalyze a very wide range of reactions, including the ketonization of C-H bonds, N/O/S-dealkylation, C-C bond cleavage, N/S-oxidation, hydroxylation, and the epoxidation of C=C bonds. Their versatility makes them valuable across various fields such as medicine, chemistry, and food processing. In this review, we aim to highlight the significant contribution of P450 enzymes to fruit quality, with a specific focus on the ripening process, particularly in grapevines. Grapevines are of particular interest due to their economic importance in the fruit industry and their significance in winemaking. Understanding the role of P450 enzymes in grapevine fruit ripening can provide insights into enhancing grape quality, flavor, and aroma, which are critical factors in determining the market value of grapes and derived products like wine. Moreover, the potential of P450 enzymes extends beyond fruit ripening. They represent promising candidates for engineering crop species that are resilient to both biotic and abiotic stresses. Their involvement in metabolic engineering offers opportunities for enhancing fruit quality attributes, such as taste, nutritional content, and shelf life. Harnessing the capabilities of P450 enzymes in crop improvement holds immense promise for sustainable agriculture and food security.


Assuntos
Sistema Enzimático do Citocromo P-450 , Frutas , Vitis , Sistema Enzimático do Citocromo P-450/metabolismo , Frutas/enzimologia , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Vitis/enzimologia , Vitis/metabolismo , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000588

RESUMO

Sand pear is the main cultivated pear species in China, and brown peel is a unique feature of sand pear. The formation of brown peel is related to the activity of the cork layer, of which lignin is an important component. The formation of brown peel is intimately associated with the biosynthesis and accumulation of lignin; however, the regulatory mechanism of lignin biosynthesis in pear peel remains unclear. In this study, we used a newly bred sand pear cultivar 'Xinyu' as the material to investigate the biosynthesis and accumulation of lignin at nine developmental stages using metabolomic and transcriptomic methods. Our results showed that the 30 days after flowering (DAF) to 50DAF were the key periods of lignin accumulation according to data analysis from the assays of lignin measurement, scanning electron microscope (SEM) observation, metabolomics, and transcriptomics. Through weighted gene co-expression network analysis (WGCNA), positively correlated modules with lignin were identified. A total of nine difference lignin components were identified and 148 differentially expressed genes (DEGs), including 10 structural genes (PAL1, C4H, two 4CL genes, HCT, CSE, two COMT genes, and two CCR genes) and MYB, NAC, ERF, and TCP transcription factor genes were involved in lignin metabolism. An analysis of RT-qPCR confirmed that these DEGs were involved in the biosynthesis and regulation of lignin. These findings further help us understand the mechanisms of lignin biosynthesis and provide a theoretical basis for peel color control and quality improvement in pear breeding and cultivation.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Lignina , Metaboloma , Pyrus , Transcriptoma , Lignina/biossíntese , Lignina/metabolismo , Pyrus/genética , Pyrus/metabolismo , Pyrus/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Redes e Vias Metabólicas , Perfilação da Expressão Gênica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
BMC Genomics ; 25(1): 706, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030489

RESUMO

BACKGROUND: According to Chinese ancient books, both fruits and rhizomes of Polygonatum cyrtonema Hua have medicinal and edible values. Up to now, there is no report about the metabolite profiles and regulatory network in fruits and different year-old rhizomes of P. cyrtonema. RESULTS: In this study, we performed integrative analyses of metabolome and transcriptome to reveal the dynamic accumulation and regulatory network of fruits and different year-old rhizomes in P. cyrtonema. The relative content of phenolic acids, lignans and coumarins, flavonoids and alkaloids increased with growth years, while steroids and lipids decreased with it. In addition, the relative content of nucleotides and derivatives, flavonoids, organic acids, steroids and lipids in fruits were higher than rhizomes. Genes that might relate to the biosynthesis of polysaccharides, flavonoids, triterpene saponins and alkaloids biosynthesis were further analyzed by transcriptome analysis, including sacA, GMPP, PMM, CCoAOMT, CHI, ANR, CHS, DXS, GGPS, ZEP, CYP72A219 and so on, for their expressions were positively correlated with the relative content of the metabolites. Additionally, the correlation network in sugar and aromatic amino acids metabolites were constructed to further illustrate the biosynthesis of polysaccharides, flavonoids and alkaloids in P. cyrtonema, and some transcription factors (TFs) were screened, such as C2C2, MYB, bZIP, GRAS and NAC. CONCLUSIONS: This study can deepen our understanding of the accumulation patterns and molecular mechanism of the main compounds in P. cyrtonema, and provide reference for the standardize production of P. cyrtonema.


Assuntos
Frutas , Redes Reguladoras de Genes , Metaboloma , Polygonatum , Rizoma , Transcriptoma , Rizoma/metabolismo , Rizoma/genética , Polygonatum/genética , Polygonatum/metabolismo , Frutas/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Flavonoides/metabolismo
8.
Molecules ; 29(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38998906

RESUMO

The effects of normal (NA) and controlled atmosphere (CA) storage and postharvest treatment with 1-methylcyclopropene (1-MCP) before CA storage for 5 months on the volatilome, biochemical composition and quality of 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples were studied. Apples stored under NA and CA maintained and 1-MCP treatment increased firmness in both cultivars. NA storage resulted in a decrease of glucose, sucrose and fructose levels in both cultivars. When compared to CA storage, 1-MCP treatment caused a more significant decrease in sucrose levels and an increase in glucose levels. Additionally, 1-MCP-treated apples exhibited a significant decrease in malic acid content for both cultivars. All storage conditions led to significant changes in the abundance and composition of the volatilome in both cultivars. GD and RD apples responded differently to 1-MCP treatment compared to CA storage; higher abundance of hexanoate esters and (E,E)-α-farnesene was observed in RD apples treated with 1-MCP. While 1-MCP was effective in reducing (E,E)-α-farnesene abundance in GD apples, its impact on RD apples was more limited. However, for both cultivars, all storage conditions resulted in lower levels of 2-methylbutyl acetate, butyl acetate and hexyl acetate. The effectiveness of 1-MCP is cultivar dependent, with GD showing better results than RD.


Assuntos
Armazenamento de Alimentos , Malus , Malus/química , Malus/metabolismo , Ciclopropanos/farmacologia , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Frutas/química , Frutas/metabolismo , Sacarose/metabolismo , Malatos , Sesquiterpenos/análise , Glucose/metabolismo , Frutose/metabolismo , Frutose/análise
9.
BMC Plant Biol ; 24(1): 656, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987701

RESUMO

Increased selenium (Se) content in fruits can supply Se in human body, but the effects of teas on the Se uptake in fruit trees are unknown. The effects of infusions of four teas (green, black, dark, and white) on the Se uptake of grapevine were studied to promote the Se uptake in fruit trees in this study. However, only black tea infusion increased the biomass, photosynthetic pigment content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, and soluble protein content of grapevine. Except for white tea infusion, other tea infusions also increased the catalase (CAT) activity of grapevine. Furthermore, the tea infusions increased the activities of adenosine triphosphate sulfurase (ATPS) and adenosine 5'-phosphosulfate reductase (APR), and decreased the activities of serine acetyltransferase (SAT) and selenocysteine methyltransferase (SMT). Only the dark and white tea infusions increased the shoot total Se content by 86.53% and 23.32%, respectively (compared with the control), and also increased the shoot inorganic Se content and shoot organic Se content. Notably, four tea infusions decreased the organic Se proportion and increased the inorganic Se proportion in grapevine. Correlation and grey relational analyses showed that the root total Se content, ATPS activity, and ARP activity were closely associated with the shoot total Se content. The principal component and cluster analyses also showed that the ATPS activity, APR activity, root total Se content, and shoot total Se content were classified into one category. These findings show that black tea infusion can promote grapevine growth, while dark and white tea infusions can promote the Se uptake in grapevine.


Assuntos
Selênio , Vitis , Vitis/metabolismo , Vitis/efeitos dos fármacos , Selênio/metabolismo , Chá , Camellia sinensis/metabolismo , Camellia sinensis/efeitos dos fármacos , Frutas/metabolismo , Frutas/crescimento & desenvolvimento
10.
Proc Natl Acad Sci U S A ; 121(28): e2405100121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950372

RESUMO

N6-methyladenosine (m6A) is a fundamentally important RNA modification for gene regulation, whose function is achieved through m6A readers. However, whether and how m6A readers play regulatory roles during fruit ripening and quality formation remains unclear. Here, we characterized SlYTH2 as a tomato m6A reader protein and profiled the binding sites of SlYTH2 at the transcriptome-wide level. SlYTH2 undergoes liquid-liquid phase separation and promotes RNA-protein condensate formation. The target mRNAs of SlYTH2, namely m6A-modified SlHPL and SlCCD1B associated with volatile synthesis, are enriched in SlYTH2-induced condensates. Through polysome profiling assays and proteomic analysis, we demonstrate that knockout of SlYTH2 expedites the translation process of SlHPL and SlCCD1B, resulting in augmented production of aroma-associated volatiles. This aroma enrichment significantly increased consumer preferences for CRISPR-edited fruit over wild type. These findings shed light on the underlying mechanisms of m6A in plant RNA metabolism and provided a promising strategy to generate fruits that are more attractive to consumers.


Assuntos
Adenosina , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Biossíntese de Proteínas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/genética , Adenosina/metabolismo , Adenosina/análogos & derivados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Odorantes/análise
11.
Plant Mol Biol ; 114(4): 83, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972957

RESUMO

Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.


Assuntos
Frutas , Melhoramento Vegetal , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal/métodos , Compostos Orgânicos Voláteis/metabolismo , Paladar , Metabolômica/métodos , Aromatizantes/metabolismo , Clima Tropical , Multiômica
12.
PeerJ ; 12: e17511, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006019

RESUMO

Background: Capsicum chinense Jacq. (Ghost Pepper) is well-known for its high pungency and pleasant aroma. The recent years witnessed a significant decline in popularity of this important crop due to the use of inferior planting material and lack of elite lines. To maintain constant performance across a variety of settings, it is crucial to choose stable lines with high yield and capsaicin content, as these are the most promising traits of Ghost Pepper. Method: In this study, 120 high-capsaicin genotypes were subjected to a 3-year (kharif 2017, 2018 and 2019) stability investigation utilizing two well-known stability methods: Eberhart-Russell (ER) and additive main effects and multiple interaction (AMMI). Three replications were used following Randomized Complete Block Design for 11 traits. The experiment soil was sandy loam with pH 4.9. Minimum and maximum temperature of 18.5 °C, 17.5 °C, 17.4 °C and 32.2 °C, 31.3 °C, 32.7 °C and rainfall of 1,781, 2,099, 1,972 mm respectively was recorded for the study period. Result: The genotype-environment linear interaction (G×E Lin.) was highly significant for days to 50% flowering, capsaicin content, fruit length and girth, fruit yield per plant and number of fruits per plant at p < 0.005. G×E interaction for fruit yield and capsaicin content in AMMI-analysis of variance reported 67.07% and 71.51% contribution by IPCA-1 (interactive principal component axis) and 32.76% and 28.49% by IPCA-2, respectively. Eight genotypes were identified to be stable with high yield and capsaicin content. The identified stable lines can be opted for cultivation to reduce the impact of crop failure when grown in different macro-environments. Moreover, the pharmaceutical and spice sectors will also be benefitted from the lines with high capsaicin content. Further research assessing the lines' performance across various regions of India can provide a solid foundation for the crop's evaluation at national level.


Assuntos
Capsaicina , Capsicum , Frutas , Genótipo , Capsicum/crescimento & desenvolvimento , Capsicum/genética , Capsicum/química , Capsicum/metabolismo , Capsaicina/metabolismo , Capsaicina/análise , Frutas/crescimento & desenvolvimento , Frutas/química , Frutas/genética , Frutas/metabolismo , Interação Gene-Ambiente
13.
Sci Rep ; 14(1): 16513, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39019972

RESUMO

The study of diffusion in biological materials is crucial for fields like food science, engineering, and pharmaceuticals. Research that combines numerical and analytical methods is needed to better understand diffusive phenomena across various dimensions and under variable boundary conditions within food matrices. This study aims to bridge this gap by examining the diffusion of substances through biological materials analytically and numerically, calculating diffusivity and conducting surface analysis. The research proposes a process for sweetening Bing-type cherries (Prunus avium) using sucrose/xylitol solutions and a staining technique utilising erythrosine and red gardenia at varying concentrations (119, 238 and 357 ppm) and temperatures (40, 50 and 60 °C). Given the fruit's epidermis resistance, the effective diffusivities of skin were inferior to those in flesh. Temperature and concentration synergise in enhancing diffusion coefficients and dye penetration within the food matrix (357 ppm and 60 °C). Red gardenia displayed significant temperature-dependent variation (p = 0.001), whereas erythrosine dye remained stable by temperature changes (p > 0.05). Gardenia's effective diffusivities in cherry flesh and skin, at 357 ppm and 60 °C, 3.89E-08 and 6.61E-09 m2/s, respectively, significantly differed from those obtained at lower temperatures and concentrations. The results highlight the temperature-concentration impacts on mass transfer calculations for food colouring processes and preservation methodologies.


Assuntos
Temperatura , Difusão , Frutas/química , Frutas/metabolismo , Eritrosina/química , Sacarose/química , Sacarose/metabolismo
14.
BMC Plant Biol ; 24(1): 684, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020284

RESUMO

Malus sieversii, commonly known as wild apples, represents a Tertiary relict plant species and serves as the progenitor of globally cultivated apple varieties. Unfortunately, wild apple populations are facing significant degradation in localized areas due to a myriad of factors. To gain a comprehensive understanding of the nutrient status and spatiotemporal variations of M. sieversii, green leaves were collected in May and July, and the fallen leaves were collected in October. The concentrations of leaf nitrogen (N), phosphorus (P), and potassium (K) were measured, and the stoichiometric ratios as well as nutrient resorption efficiencies were calculated. The study also explored the relative contributions of soil, topographic, and biotic factors to the variation in nutrient traits. The results indicate that as the growing period progressed, the concentrations of N and P in the leaves significantly decreased (P < 0.05), and the concentration of K in October was significantly lower than in May and July. Throughout plant growth, leaf N-P and N-K exhibited hyperallometric relationships, while P-K showed an isometric relationship. Resorption efficiency followed the order of N < P < K (P < 0.05), with all three ratios being less than 1; this indicates that the order of nutrient limitation is K > P > N. The resorption efficiencies were mainly regulated by nutrient concentrations in fallen leaves. A robust spatial dependence was observed in leaf nutrient concentrations during all periods (70.1-97.9% for structural variation), highlighting that structural variation, rather than random factors, dominated the spatial variation. Nutrient resorption efficiencies (NRE, PRE, and KRE) displayed moderate structural variation (30.2-66.8%). The spatial patterns of nutrient traits varied across growth periods, indicating they are influenced by multifactorial elements (in which, soil property showed the highest influence). In conclusion, wild apples manifested differentiated spatiotemporal variability and influencing factors across various leaf nutrient traits. These results provide crucial insights into the spatiotemporal patterns and influencing factors of leaf nutrient traits of M. sieversii at the permanent plot scale for the first time. This work is of great significance for the ecosystem restoration and sustainable management of degrading wild fruit forests.


Assuntos
Malus , Nitrogênio , Fósforo , Folhas de Planta , Potássio , Folhas de Planta/metabolismo , Malus/metabolismo , Malus/crescimento & desenvolvimento , Malus/fisiologia , China , Fósforo/metabolismo , Fósforo/análise , Nitrogênio/metabolismo , Potássio/metabolismo , Potássio/análise , Florestas , Nutrientes/metabolismo , Nutrientes/análise , Solo/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Análise Espaço-Temporal
15.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961329

RESUMO

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Assuntos
Frutas , Perfilação da Expressão Gênica , Metabolômica , Folhas de Planta , Prunus persica , Folhas de Planta/metabolismo , Folhas de Planta/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Metaboloma , Transcriptoma , Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo
16.
Plant Cell Rep ; 43(8): 194, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008131

RESUMO

KEY MESSAGE: The VlLOG11 mediates the cytokinin signaling pathway to regulate grape fruit setting. Fruit set, as an accepted agronomic trait, is inextricably linked with fruit quality and yield. Previous studies have demonstrated that exogenous treatment with the synthetic cytokinin analog, forchlorfenuron (CPPU), significantly enhances fruit set. In this study, a significant reduction in endogenous cytokinins was found by measuring the content of cytokinins in young grape berries after CPPU treatment. LONELY GUYs (VlLOGs), a key cytokinin-activating enzyme working in the biosynthesis pathway of cytokinins, exhibited differential expression. Some differentially expressed VlLOGs genes were presented by RNA seq data and their functions and regulation patterns were further investigated. The results showed that VlLOG11 was differentially expressed in young grape berries after CPPU treatment. Overexpression of VlLOG11 in tomato increases the amount of fruit set, and upregulated the expression of genes associated with cytokinin signaling including SlHK4, SlHK5, SlHP3, SlHP4, SlPHP1, SlPHP2. VlMYB4 and VlCDF3 could regulate the expression of VlLOG11 by directly binding to its promoter in young grape berries during fruit set. These results strongly demonstrated that VlMYB4/VlCDF3-VlLOG11 regulatory module plays a key role in the process of fruit setting in grape. This provided a basis for the molecular mechanism of VlLOG11-mediated cytokinin biosynthesis in young grape fruit set.


Assuntos
Citocininas , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Regiões Promotoras Genéticas , Vitis , Vitis/genética , Vitis/metabolismo , Frutas/genética , Frutas/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Citocininas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Compostos de Fenilureia/farmacologia , Transdução de Sinais/genética , Piridinas
17.
PeerJ ; 12: e17540, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887620

RESUMO

Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Pyrus , Fatores de Transcrição , Pyrus/metabolismo , Pyrus/genética , Antocianinas/metabolismo , Antocianinas/genética , Antocianinas/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Frutas/metabolismo , Frutas/genética
18.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892093

RESUMO

One key post-transcriptional modification mechanism that dynamically controls a number of physiological processes in plants is alternative splicing (AS). However, the functional impacts of AS on fruit ripening remain unclear. In this research, we used RNA-seq data from climacteric (VED, Harukei 3) and non-climacteric (PI, PS) melon cultivars to explore alternative splicing (AS) in immature and mature fruit. The results revealed dramatic changes in differential AS genes (DAG) between the young and mature fruit stages, particularly in genes involved in fruit development/ripening, carotenoid and capsaicinoid biosynthesis, and starch and sucrose metabolism. Serine/arginine-rich (SR) family proteins are known as important splicing factors in AS events. From the melon genome, a total of 17 SR members were discovered in this study. These genes could be classified into eight distinct subfamilies based on gene structure and conserved motifs. Promoter analysis detected various cis-acting regulatory elements involved in hormone pathways and fruit development. Interestingly, these SR genes exhibited specific expression patterns in reproductive organs such as flowers and ovaries. Additionally, concurrent with the increase in AS levels in ripening fruit, the transcripts of these SR genes were activated during fruit maturation in both climacteric and non-climacteric melon varieties. We also found that most SR genes were under selection during domestication. These results represent a novel finding of increased AS levels and SR gene expression during fruit ripening, indicating that alternative splicing may play a role in fruit maturation.


Assuntos
Processamento Alternativo , Cucumis melo , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Cucumis melo/genética , Cucumis melo/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica
19.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892099

RESUMO

Global warming has caused such problems as the poor coloration of grape skin and the decreased production of high-quality berries. We investigated the effect of synephrine (Syn) on anthocyanin accumulation. Anthocyanin accumulation in cultured grape cells treated with Syn at concentrations of 1 mM or higher showed no significant difference, indicating that the accumulation was concentration-independent. On the other hand, anthocyanin accumulation was dependent on the compound used for treatment. The sugar/acid ratio of the juice from berries treated with Syn did not differ from the control. The expression of anthocyanin-biosynthesis-related genes, but not phytohormones, was increased by the treatment with Syn at 24 h or later. The Syn treatment of cultured cells increased SOD3 expression and hydrogen peroxide (H2O2) production from 3 to 24 h after treatment. Subsequently, the expression of CAT and APX6 encoding H2O2-scavenging enzymes was also increased. Treatment of cultured cells with Syn and H2O2 increased the expression of the H2O2-responsive gene Chit4 and the anthocyanin-biosynthesis-related genes mybA1 and UFGT 4 days after the treatment and increased anthocyanin accumulation 7 days after the treatment. On the other hand, the treatment of berries with Syn and H2O2 increased anthocyanin accumulation after 9 days. These results suggest that Syn increases anthocyanin accumulation through H2O2 production without changing phytohormone biosynthesis. Syn is expected to improve grape skin coloration and contribute to high-quality berry production.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Reguladores de Crescimento de Plantas , Sinefrina , Vitis , Peróxido de Hidrogênio/metabolismo , Antocianinas/biossíntese , Antocianinas/metabolismo , Vitis/metabolismo , Vitis/genética , Vitis/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sinefrina/farmacologia , Sinefrina/metabolismo , Frutas/metabolismo , Frutas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
20.
J Agric Food Chem ; 72(26): 15027-15039, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38886897

RESUMO

Abscisic acid (ABA) is a major regulator of nonclimacteric fruit ripening, with its processes involving epigenetic mechanisms. It remains unclear whether DNA methylation is associated with ABA-regulated ripening. In this study, we investigated the patterns of DNA methylation and gene expression following ABA treatment in grape berries by using whole-genome bisulfite sequencing and RNA-sequencing. ABA application changed global DNA methylation in grapes. The hyper-/hypo-differently methylated regions were enriched in defense-related metabolism, degreening processes, or ripening-related metabolic pathways. Many differentially expressed genes showed an alteration in DNA methylation after ABA treatment. Specifically, ten downregulated genes with hypermethylation in promoters were involved in the ripening process, ABA homeostasis/signaling, and stress response. Nine upregulated genes exhibiting hypo-methylation in promoters were related to the ripening process and stress response. These findings demonstrated ABA-induced DNA alteration of ripening related and stress-responsive genes during grape ripening, which provides new insights of the epigenetic regulation of ABA on fruit ripening.


Assuntos
Ácido Abscísico , Metilação de DNA , Epigênese Genética , Frutas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Vitis , Vitis/genética , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Vitis/efeitos dos fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Metilação de DNA/efeitos dos fármacos , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Epigênese Genética/efeitos dos fármacos , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA