Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.718
Filtrar
1.
PeerJ ; 12: e17620, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952982

RESUMO

Background: This study examined the effects of microbial agents on the enzyme activity, microbial community construction and potential functions of inter-root soil of aubergine (Fragaria × ananassa Duch.). This study also sought to clarify the adaptability of inter-root microorganisms to environmental factors to provide a theoretical basis for the stability of the microbiology of inter-root soil of aubergine and for the ecological preservation of farmland soil. Methods: Eggplant inter-root soils treated with Bacillus subtilis (QZ_T1), Bacillus subtilis (QZ_T2), Bacillus amyloliquefaciens (QZ_T3), Verticillium thuringiensis (QZ_T4) and Verticillium purpureum (QZ_T5) were used to analyse the effects of different microbial agents on the inter-root soils of aubergine compared to the untreated control group (QZ_CK). The effects of different microbial agents on the characteristics and functions of inter-root soil microbial communities were analysed using 16S rRNA and ITS (internal transcribed spacer region) high-throughput sequencing techniques. Results: The bacterial diversity index and fungal diversity index of the aubergine inter-root soil increased significantly with the application of microbial fungicides; gas exchange parameters and soil enzyme activities also increased. The structural and functional composition of the bacterial and fungal communities in the aubergine inter-root soil changed after fungicide treatment compared to the control, with a decrease in the abundance of phytopathogenic fungi and an increase in the abundance of beneficial fungi in the soil. Enhancement of key community functions, reduction of pathogenic fungi, modulation of environmental factors and improved functional stability of microbial communities were important factors contributing to the microbial stability of fungicide-treated aubergine inter-root soils.


Assuntos
Fungicidas Industriais , Fotossíntese , Microbiologia do Solo , Fungicidas Industriais/farmacologia , Fotossíntese/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Solanum melongena/microbiologia , Raízes de Plantas/microbiologia , Solo/química , RNA Ribossômico 16S/genética
2.
Arch Microbiol ; 206(8): 356, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026110

RESUMO

The metabolic breakdown of propiconazole by fungi was examined, and it was found that the microbial model (Cunninghamella elegans ATCC36112) efficiently degrades the triazole fungicide propiconazole through the action of cytochrome P450. This enzyme primarily facilitates the oxidation and hydrolysis processes involved in phase I metabolism. We observed major metabolites indicating hydroxylation/oxidation of propyl groups of propiconazole. Around 98% of propiconazole underwent degradation within a span of 3 days post-treatment, leading to the accumulation of five metabolites (M1-M5). The experiments started with a preliminary identification of propiconazole and its metabolites using GC-MS. The identified metabolites were then separated and identified by in-depth analysis using preparative UHPLC and MS/MS. The metabolites of propiconazole are M1 (CGA-118245), M2(CGA-118244), M3(CGA-136735), M4(GB-XLIII-42-1), and M5(SYN-542636). To further investigate the role of key enzymes in potential fungi, we treated the culture medium with piperonyl butoxide (PB) and methimazole (MZ), and then examined the kinetic responses of propiconazole and its metabolites. The results indicated a significant reduction in the metabolism rate of propiconazole in the medium treated with PB, while methimazole showed weaker inhibitory effects on the metabolism of propiconazole in the fungus C. elegans.


Assuntos
Cunninghamella , Sistema Enzimático do Citocromo P-450 , Fungicidas Industriais , Triazóis , Triazóis/metabolismo , Triazóis/farmacologia , Cunninghamella/metabolismo , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas em Tandem , Oxirredução , Butóxido de Piperonila/metabolismo , Butóxido de Piperonila/farmacologia
3.
J Agric Food Chem ; 72(29): 16112-16127, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38985656

RESUMO

The active splicing strategy has witnessed improvement in bioactivity and antifungal spectra in pesticide discovery. Herein, a series of simple-structured molecules (Y1-Y53) containing chloro-substituted benzyl esters were designed using the above strategy. The structure-activity relationship (SAR) analysis demonstrated that the fatty acid fragment-structured esters were more effective than those containing an aromatic acid moiety or naphthenic acid part. Compounds Y36 and Y41, which featured a thiazole-4-acid moiety and trifluoromethyl aliphatic acid part, respectively, exhibited excellent in vivo curative activity (89.4%, 100 mg/L Y36) and in vitro fungicidal activity (EC50 = 0.708 mg/L, Y41) against Botrytis cinerea. Determination of antifungal spectra and analysis of scanning electron microscopy (SEM), membrane permeability, cell peroxidation, ergosterol content, oxalic acid pathways, and enzymatic assays were performed separately here. Compound Y41 is cost effective due to its simple structure and shows promise as a disease control candidate. In addition, Y41 might act on a novel target through a new pathway that disrupts the cell membrane integrity by inducing cell peroxidation.


Assuntos
Botrytis , Desenho de Fármacos , Ésteres , Fungicidas Industriais , Ésteres/química , Ésteres/farmacologia , Relação Estrutura-Atividade , Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Estrutura Molecular , Doenças das Plantas/microbiologia , Testes de Sensibilidade Microbiana
4.
J Agric Food Chem ; 72(29): 16128-16139, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39003764

RESUMO

Currently, allosteric inhibitors have emerged as an effective strategy in the development of preservatives against the drug-resistant Botrytis cinerea (B. cinerea). However, their passively driven development efficiency has proven challenging to meet the practical demands. Here, leveraging the deep learning Neural Relational Inference (NRI) framework, we actively identified an allosteric inhibitor targeting B. cinerea Chitinase, namely, 2-acetonaphthone. 2-Acetonaphthone binds to the crucial domain of Chitinase, forming the strong interaction with the allosteric sites. Throughout the interaction process, 2-acetonaphthone diminished the overall connectivity of the protein, inducing conformational changes. These findings align with the results obtained from Chitinase activity experiments, revealing an IC50 value of 67.6 µg/mL. Moreover, 2-acetonaphthone exhibited outstanding anti-B. cinerea activity by inhibiting Chitinase. In the gray mold infection model, 2-acetonaphthone significantly extended the preservation time of cherry tomatoes, positioning it as a promising preservative for fruit storage.


Assuntos
Botrytis , Quitinases , Doenças das Plantas , Solanum lycopersicum , Botrytis/efeitos dos fármacos , Quitinases/química , Quitinases/metabolismo , Quitinases/antagonistas & inibidores , Doenças das Plantas/microbiologia , Solanum lycopersicum/microbiologia , Conservação de Alimentos/métodos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Frutas/química , Frutas/microbiologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas
5.
J Agric Food Chem ; 72(29): 16359-16367, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39011851

RESUMO

In our screening program for natural products that are effective in controlling plant diseases, we found that the culture filtrate of Paraconiothyrium sporulosum SFC20160907-M11 effectively suppressed the development of tomato late blight disease caused by Phytophthora infestans. Using a bioassay-guided fractionation of antioomycete activity, 12 active compounds (1-12) were obtained from an ethyl acetate extract of the culture filtrate. Chemical structures of five new compounds 1-5 were determined by the extensive analyses of nuclear magnetic resonance (NMR), high resolution mass spectrometry (HRMS), and circular dichroism (CD) data. Interestingly, mycosporulonol (1) and botrallin (8) completely inhibited the growth of P. infestans at concentrations of 8 and 16 µg/mL, respectively. Furthermore, the spray treatment of 1 and 8 (500 µg/mL) successfully protected tomato seedlings against P. infestans with disease control values of 92%. Taken together, these results suggest that the culture filtrates of P. sporulosum SFC20160907-M11 and their bioactive metabolites can be used as new antioomycete agents for Phytophthora late blight control.


Assuntos
Ascomicetos , Fungicidas Industriais , Phytophthora infestans , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Solanum lycopersicum/química , Doenças das Plantas/microbiologia , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/crescimento & desenvolvimento , Ascomicetos/química , Ascomicetos/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Estrutura Molecular , Espectroscopia de Ressonância Magnética
6.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999990

RESUMO

Phytopathogenic fungi are responsible for diseases in commercially important crops and cause major supply problems in the global food chain. Plants were able to protect themselves from disease before humans played an active role in protecting plants. They are known to synthesize a variety of secondary metabolites (SMs), such as terpenes, alkaloids, and phenolic compounds, which can be extracted using conventional and unconventional techniques to formulate biofungicides; plant extracts have antifungal activity and various mechanisms of action against these organisms. In addition, they are considered non-phytotoxic and potentially effective in disease control. They are a sustainable and economically viable alternative for use in agriculture, which is why biofungicides are increasingly recognized as an attractive option to solve the problems caused by synthetic fungicides. Currently, organic farming continues to grow, highlighting the importance of developing environmentally friendly alternatives for crop production. This review provides a compilation of the literature on biosynthesis, mechanisms of action of secondary metabolites against phytopathogens, extraction techniques and formulation of biofungicides, biological activity of plant extracts on phytopathogenic fungi, regulation, advantages, disadvantages and an overview of the current use of biofungicides in agriculture.


Assuntos
Agricultura Orgânica , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Agricultura Orgânica/métodos , Fungos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Produtos Agrícolas/microbiologia , Antifúngicos/farmacologia , Antifúngicos/química , Metabolismo Secundário , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
7.
Microbiol Res ; 286: 127816, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964072

RESUMO

Apple scab, caused by the hemibiotrophic fungus Venturia inaequalis, is currently the most common and damaging disease in apple orchards. Two strains of V. inaequalis (S755 and Rs552) with different sensitivities to azole fungicides and the bacterial metabolite fengycin were compared to determine the mechanisms responsible for these differences. Antifungal activity tests showed that Rs552 had reduced sensitivity to tebuconazole and tetraconazole, as well as to fengycin alone or in a binary mixture with other lipopeptides (iturin A, pumilacidin, lichenysin). S755 was highly sensitive to fengycin, whose activity was close to that of tebuconazole. Unlike fengycin, lipopeptides from the iturin family (mycosubtilin, iturin A) had similar activity on both strains, while those from the surfactin family (lichenysin, pumilacidin) were not active, except in binary mixtures with fengycin. The activity of lipopeptides varies according to their family and structure. Analyses to determine the difference in sensitivity to azoles (which target the CYP51 enzyme involved in the ergosterol biosynthesis pathway) showed that the reduced sensitivity in Rs552 is linked to (i) a constitutive increased expression of the Cyp51A gene caused by insertions in the upstream region and (ii) greater efflux by membrane pumps with the involvement of ABC transporters. Microscopic observations revealed that fengycin, known to interact with plasma membranes, induced morphological and cytological changes in cells from both strains. Sterol and phospholipid analyses showed a higher level of ergosta-7,22-dien-3-ol and a lower level of PI(C16:0/C18:1) in Rs552 compared with S755. These differences could therefore influence the composition of the plasma membrane and explain the differential sensitivity of the strains to fengycin. However, the similar antifungal activities of mycosubtilin and iturin A in the two strains indirectly indicate that sterols are probably not involved in the fengycin resistance mechanism. This leads to the conclusion that different mechanisms are responsible for the difference in susceptibility to azoles or fengycin in the strains studied.


Assuntos
Ascomicetos , Azóis , Lipopeptídeos , Malus , Doenças das Plantas , Lipopeptídeos/farmacologia , Malus/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Ascomicetos/genética , Azóis/farmacologia , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Fungicidas Industriais/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
8.
J Agric Food Chem ; 72(28): 15541-15551, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959381

RESUMO

Benzimidazoles, the representative pharmacophore of fungicides, have excellent antifungal potency, but their simple structure and single site of action have hindered their wider application in agriculture. In order to extend the structural diversity of tubulin-targeted benzimidazoles, novel benzimidazole derivatives were prepared by introducing the attractive pyrimidine pharmacophore. 2-((6-(4-(trifluoromethyl)phenoxy)pyrimidin-4-yl)thio)-1H-benzo[d]imidazole (A25) exhibited optimal antifungal activity against Sclerotinia sclerotiorum (S. s.), affording an excellent half-maximal effective concentration (EC50) of 0.158 µg/mL, which was higher than that of the reference agent carbendazim (EC50 = 0.594 µg/mL). Pot experiments revealed that compound A25 (200 µg/mL) had acceptable protective activity (84.7%) and curative activity (78.1%), which were comparable with that of carbendazim (protective activity: 90.8%; curative activity: 69.9%). Molecular docking displayed that multiple hydrogen bonds and π-π interactions could be formed between A25 and ß-tubulin, resulting in a stronger bonding effect than carbendazim. Fluorescence imaging revealed that the structure of intracellular microtubules can be changed significantly after A25 treatment. Overall, these remarkable antifungal profiles of constructed novel benzimidazole derivatives could facilitate the application of novel microtubule-targeting agents.


Assuntos
Ascomicetos , Benzimidazóis , Fungicidas Industriais , Simulação de Acoplamento Molecular , Tubulina (Proteína) , Benzimidazóis/química , Benzimidazóis/farmacologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Relação Estrutura-Atividade , Ascomicetos/efeitos dos fármacos , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/química , Doenças das Plantas/microbiologia , Estrutura Molecular , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo
9.
J Agric Food Chem ; 72(28): 15653-15661, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38959424

RESUMO

Phenamacril (PHA) is a highly selective fungicide for controlling fusarium head blight (FHB) mainly caused by F. graminearum and F. asiaticum. However, the C423A mutation in myosin I of F. graminearum (FgMyoI) leads to natural resistance to PHA. Here, based on the computational approaches and biochemical validation, we elucidate the atomic-level mechanism behind the natural resistance of F. graminearum to the fungicide PHA due to the C423A mutation in FgMyoI. The mutation leads to a rearrangement of pocket residues, resulting in increased size and flexibility of the binding pocket, which impairs the stable binding of PHA. MST experiments confirm that the mutant protein FgMyoIC423A exhibits significantly reduced affinity for PHA compared to wild-type FgMyoI and the nonresistant C423K mutant. This decreased binding affinity likely underlies the development of PHA resistance in F. graminearum. Conversely, the nonresistant C423K mutant retains sensitivity to PHA due to the introduction of a strong hydrogen bond donor, which facilitates stable binding of PHA in the pocket. These findings shed light on the molecular basis of PHA resistance and provide new directions for the creation of new myosin inhibitors.


Assuntos
Farmacorresistência Fúngica , Fungicidas Industriais , Fusarium , Mutação , Fusarium/efeitos dos fármacos , Fusarium/genética , Fusarium/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Doenças das Plantas/microbiologia , Doenças das Plantas/genética
10.
J Agric Food Chem ; 72(28): 15474-15486, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38949855

RESUMO

Corn ear rot and fumonisin caused by Fusarium verticillioides pose a serious threat to food security. To find more highly active fungicidal and antitoxic candidates with structure diversity based on naturally occurring lead xanthatin, a series of novel spiropiperidinyl-α-methylene-γ-butyrolactones were rationally designed and synthesized. The in vitro bioassay results indicated that compound 7c showed broad-spectrum in vitro activity with EC50 values falling from 3.51 to 24.10 µg/mL against Rhizoctonia solani and Alternaria solani, which was more active than the positive controls xanthatin and oxathiapiprolin. In addition, compound 7c also showed good antitoxic efficacy against fumonisin with a 48% inhibition rate even at a concentration of 20 µg/mL. Fluorescence quenching and the molecular docking validated both 7c and oxathiapiprolin targeting at FvoshC. RNA sequencing analysis discovered that FUM gene cluster and protein processing in endoplasmic reticulum were downregulated. Our studies have discovered spiropiperidinyl-α-methylene-γ-butyrolactone as a novel FvoshC target-based scaffold for fungicide lead with antitoxin activity.


Assuntos
Alternaria , Fungicidas Industriais , Fusarium , Simulação de Acoplamento Molecular , Rhizoctonia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Alternaria/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Rhizoctonia/efeitos dos fármacos , Relação Estrutura-Atividade , Doenças das Plantas/microbiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/química , Descoberta de Drogas , Zea mays/química , Zea mays/microbiologia , Estrutura Molecular
11.
J Agric Food Chem ; 72(28): 15601-15612, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950526

RESUMO

Peanut southern blight, caused by the soil-borne pathogen Sclerotium rolfsii, is a widespread and devastating epidemic. Frequently, it is laborious to effectively control by labor-intensive foliar sprays of agrochemicals due to untimely find. In the present study, seed treatment with physcion (PHY) at doses of 0.08, 0.16, and 0.32 g AI kg-1 seed significantly improved the growth and photosynthetic activity of peanuts. Furthermore, PHY seed treatment resulted in an elevated enzymatic activity of key enzymes in peanut roots, including peroxidase, superoxide dismutase, polyphenol oxidase, catalase, lipoxygenase, and phenylalanine ammonia-lyase, as well as an increase in callus accumulation and lignin synthesis at the infection site, ultimately enhancing the root activity. This study revealed that PHY seed treatment could promote the accumulation of reactive oxygen species, salicylic acid (SA), and jasmonic acid (JA)/ethylene (ET) in peanut roots, while also decreasing the content of malondialdehyde levels in response to S. rolfsii infection. The results were further confirmed by transcriptome data and metabolomics. These findings suggest that PHY seed treatment activates the plant defense pathways mediated by SA and JA/ET in peanut roots, enhancing the resistance of peanut plants to S. rolfsii. In short, PHY is expected to be developed into a new plant-derived immunostimulant or fungicide to increase the options and means for peanut disease control.


Assuntos
Arachis , Basidiomycota , Doenças das Plantas , Arachis/microbiologia , Arachis/metabolismo , Arachis/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Fungicidas Industriais/farmacologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sementes/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/efeitos dos fármacos , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética
12.
J Agric Food Chem ; 72(28): 15427-15448, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38967261

RESUMO

With fungal diseases posing a major threat to agricultural production, the application of fungicides to control related diseases is often considered necessary to ensure the world's food supply. The search for new bioactive agents has long been a priority in crop protection due to the continuous development of resistance against currently used types of active compounds. Heterocyclic compounds are an inseparable part of the core structures of numerous lead compounds, these rings constitute pharmacophores of a significant number of fungicides developed over the past decade by agrochemists. Among heterocycles, nitrogen-based compounds play an essential role. To date, diazole (imidazole and pyrazole) and diazine (pyrimidine, pyridazine, and pyrazine) derivatives make up an important series of synthetic fungicides. In recent years, many reports have been published on the design, synthesis, and study of the fungicidal activity of these scaffolds, but there was a lack of a comprehensive classified review on nitrogen-containing scaffolds. Regarding this issue, here we have reviewed the published articles on the fungicidal activity of the diazole and diazine families. In current review, we have classified the molecules synthesized so far based on the size of the ring.


Assuntos
Fungicidas Industriais , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/síntese química , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Pirazóis/química , Pirazóis/farmacologia , Desenho de Fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Pirimidinas/química , Pirimidinas/farmacologia , Estrutura Molecular , Imidazóis/química , Imidazóis/farmacologia
13.
Fungal Biol ; 128(4): 1847-1858, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876537

RESUMO

Post-harvest decay of fresh agricultural produce is a major threat to food security globally. Synthetic fungicides, commonly used in practice for managing the post-harvest losses, have negative impacts on consumers' health. Studies have reported the effectiveness of fungal isolates from plants as biocontrol agents of post-harvest diseases, although this is still poorly established in tomatoes (Solanum lycopersicum L. cv. Jasmine). In this study, 800 endophytic fungi were isolated from mature green and ripe untreated and fungicide-treated tomato fruits grown in open soil and hydroponics systems. Of these, five isolates (Aureobasidium pullulans SUG4.1, Coprinellus micaceus SUG4.3, Epicoccum nigrum SGT8.6, Fusarium oxysporum HTR8.4, Preussia africana SUG3.1) showed antagonistic properties against selected post-harvest pathogens of tomatoes (Alternaria alternata, Fusarium solani, Fusarium oxysporum, Geotrichum candidum, Rhizopus stolonifera, Rhizoctonia solani), with Lactiplantibacillus plantarum as a positive control. P. africana SUG3.1 and C. micaceus SUG4.3 significantly inhibited growth of all the pathogens, with antagonistic capabilities comparable to that exhibited by L. plantarum. Furthermore, the isolates produced an array of enzymes, including among others, amylase, cellulose and protease; and were able to utilize several carbohydrates (glucose, lactose, maltose, mannitol, sucrose). In conclusion, P. africana SUG3.1 and C. micaceus SUG4.3 may complement L. plantarum as biocontrol agents against post-harvest pathogens of tomatoes.


Assuntos
Endófitos , Frutas , Fungos , Doenças das Plantas , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Frutas/microbiologia , Endófitos/isolamento & purificação , Endófitos/fisiologia , Endófitos/classificação , Fungos/isolamento & purificação , Fungos/fisiologia , Fungos/classificação , Fungos/efeitos dos fármacos , Antibiose , Agentes de Controle Biológico , Fungicidas Industriais/farmacologia
14.
PLoS One ; 19(6): e0304817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38889131

RESUMO

Rice (Oryza sativa) stands as a crucial staple food worldwide, especially in Bangladesh, where it ranks as the third-largest producer. However, intensified cultivation has made high-yielding rice varieties susceptible to various biotic stresses, notably sheath blight caused by Rhizoctonia solani, which inflicts significant yield losses annually. Traditional fungicides, though effective, pose environmental and health risks. To address this, nanotechnology emerges as a promising avenue, leveraging the antimicrobial properties of nanoparticles like silver nanoparticles (AgNPs). This study explored the green synthesis of AgNPs using Ipomoea carnea leaf extract and silver nitrate (AgNO3), and also examined their efficacy against sheath blight disease in rice. The biosynthesized AgNPs were characterized through various analytical techniques such as UV-vis spectrophotometer, X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Particle size analyzer, Zeta potential, Scanning Electron Microscope (SEM), Field Emission Scanning Electron Microscope (FESEM), Transmission Electron Microscope (TEM) for confirming their successful production and crystalline nature of nanoparticles. The results of UV-visible spectrophotometers revealed an absorption peak ranging from 421 to 434 nm, validated the synthesis of AgNPs in the solution. XRD, DLS, and TEM estimated AgNPs sizes were ~45 nm, 66.2nm, and 46.38 to 73.81 nm, respectively. SEM and FESEM demonstrated that the synthesized AgNPs were spherical in shape. In vitro assays demonstrated the significant inhibitory effects of AgNPs on mycelial growth of Rhizoctonia solani, particularly at higher concentrations and pH levels. Further greenhouse and field experiments validated the antifungal efficacy of AgNPs against sheath blight disease in rice, exhibiting comparable effectiveness to commercial fungicides. The findings highlight the potential of AgNPs as a sustainable and effective alternative for managing rice sheath blight disease, offering a safer solution amidst environmental concerns associated with conventional fungicides.


Assuntos
Química Verde , Nanopartículas Metálicas , Oryza , Doenças das Plantas , Rhizoctonia , Prata , Rhizoctonia/efeitos dos fármacos , Oryza/microbiologia , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Difração de Raios X , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química
15.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892079

RESUMO

Microbes and enzymes play essential roles in soil and plant rhizosphere ecosystem functioning. However, fungicides and plant root secretions may impact the diversity and abundance of microbiota structure and enzymatic activities in the plant rhizosphere. In this study, we analyzed soil samples from the rhizosphere of four cannabinoid-rich hemp (Cannabis sativa) cultivars (Otto II, BaOx, Cherry Citrus, and Wife) subjected to three different treatments (natural infection, fungal inoculation, and fungicide treatment). DNA was extracted from the soil samples, 16S rDNA was sequenced, and data were analyzed for diversity and abundance among different fungicide treatments and hemp cultivars. Fungicide treatment significantly impacted the diversity and abundance of the hemp rhizosphere microbiota structure, and it substantially increased the abundance of the phyla Archaea and Rokubacteria. However, the abundances of the phyla Pseudomonadota and Gemmatimonadetes were substantially decreased in treatments with fungicides compared to those without fungicides in the four hemp cultivars. In addition, the diversity and abundance of the rhizosphere microbiota structure were influenced by hemp cultivars. The influence of Cherry Citrus on the diversity and abundance of the hemp rhizosphere microbiota structure was less compared to the other three hemp cultivars (Otto II, BaOx, and Wife). Moreover, fungicide treatment affected enzymatic activities in the hemp rhizosphere. The application of fungicides significantly decreased enzyme abundance in the rhizosphere of all four hemp cultivars. Enzymes such as dehydrogenase, dioxygenase, hydrolase, transferase, oxidase, carboxylase, and peptidase significantly decreased in all the four hemp rhizosphere treated with fungicides compared to those not treated. These enzymes may be involved in the function of metabolizing organic matter and degrading xenobiotics. The ecological significance of these findings lies in the recognition that fungicides impact enzymes, microbiota structure, and the overall ecosystem within the hemp rhizosphere.


Assuntos
Cannabis , Fungicidas Industriais , Microbiota , Rizosfera , Microbiologia do Solo , Cannabis/enzimologia , Microbiota/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Canabinoides/farmacologia , Canabinoides/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/classificação , Bactérias/enzimologia , RNA Ribossômico 16S/genética
16.
J Agric Food Chem ; 72(26): 14535-14546, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38906830

RESUMO

The development of new fungicide molecules is a crucial task for agricultural chemists to enhance the effectiveness of fungicides in agricultural production. In this study, a series of novel fluoroalkenyl modified succinate dehydrogenase inhibitors were synthesized and evaluated for their antifungal activities against eight fungi. The results from the in vitro antifungal assay demonstrated that compound 34 exhibited superior activity against Rhizoctonia solani with an EC50 value of 0.04 µM, outperforming commercial fluxapyroxad (EC50 = 0.18 µM) and boscalid (EC50 = 3.07 µM). Furthermore, compound 34 showed similar effects to fluxapyroxad on other pathogenic fungi such as Sclerotinia sclerotiorum (EC50 = 1.13 µM), Monilinia fructicola (EC50 = 1.61 µM), Botrytis cinerea (EC50 = 1.21 µM), and also demonstrated protective and curative efficacies in vivo on rapeseed leaves and tomato fruits. Enzyme activity experiments and protein-ligand interaction analysis by surface plasmon resonance revealed that compound 34 had a stronger inhibitory effect on succinate dehydrogenase compared to fluxapyroxad. Additionally, molecular docking and DFT calculation confirmed that the fluoroalkenyl unit in compound 34 could enhance its binding capacity with the target protein through p-π conjugation and hydrogen bond interactions.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Proteínas Fúngicas , Fungicidas Industriais , Rhizoctonia , Succinato Desidrogenase , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/química , Succinato Desidrogenase/metabolismo , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/enzimologia , Relação Estrutura-Atividade , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Simulação de Acoplamento Molecular , Botrytis/efeitos dos fármacos , Botrytis/enzimologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/enzimologia , Solanum lycopersicum/microbiologia , Solanum lycopersicum/química , Estrutura Molecular
17.
J Agric Food Chem ; 72(26): 14984-14992, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38907719

RESUMO

Scaffold hopping and structural fine-tuning are important strategies for agrochemical innovation. Multidimensional optimization of the prevalidated antifungal lead R-LE001 was conducted via the design, synthesis, and bioevaluation of 53 new compounds differing in either scaffold or substituent. The antifungal structure-activity relationship (SAR) revealed that a number of amides containing 2-(2-oxazolinyl) aniline (NHPhOx) or 2-(2-thiazolinyl) aniline (NHPhthiOx) demonstrated a more promising antifungal effect than both R-LE001 and the positive control boscalid. Specifically, compound 10 (encoded LEX-K01) shows an excellent antifungal effect against Botrytis cinerea with an EC50 value lower than 0.11 µM. This small change leads to a significant improvement (over 1 order of magnitude) in bioactivity compared to that of either R-LE001 (EC50 = 1.41 µM) or boscalid (EC50 = 2.01 µM) and fluxapyroxad (EC50 = 4.35 µM). With much lower resistance factors, LEX-K01 (10) was more efficacious against the two boscalid-resistant strains of B. cinerea TZ01 and NJBH2017. A combination of LEX-K01 (10) and boscalid in a ratio of 1:3 showed synergistic effects against resistant B. cinerea TZ01 and NJBH2017, with SR values of 3.01 and 2.55, respectively. LEX-K01 (10) has a curative efficacy (70.3%) more prominent than that of boscalid (51.2%) in controlling disease caused by B. cinerea. The molecular docking simulation of LEX-K01 (10) with the SDH protein of B. cinerea displayed four hydrogen bonds with amino acid residues TYR144, ARG88, TRP81, and SER84, rationalizing a stronger affinity than boscalid. The scanning electron microscopy (SEM) characteristic revealed that it could cause an obvious collapse of B. cinerea mycelium. This work indicates that LEX-K01 (10) has the potential to be further explored as a new antifungal agent.


Assuntos
Botrytis , Fungicidas Industriais , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Relação Estrutura-Atividade , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Fungicidas Industriais/síntese química , Doenças das Plantas/microbiologia , Niacinamida/química , Niacinamida/farmacologia , Niacinamida/análogos & derivados , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Bifenilo
18.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928507

RESUMO

The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.


Assuntos
Botrytis , Interações Hospedeiro-Patógeno , Doenças das Plantas , Interferência de RNA , Botrytis/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Interações Hospedeiro-Patógeno/genética , Fungicidas Industriais/farmacologia
19.
Pestic Biochem Physiol ; 202: 105900, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879291

RESUMO

The phytopathogenic oomycete Phytophthora litchii is the culprit behind the devastating disease known as "litchi downy blight", which causes large losses in litchi production. Although fluopimomide exhibits strong inhibitory efficacy against P. litchii, the exact mechanism of resistance is still unknown. The sensitivity of 137 P. litchii isolates to fluopimomide was assessed, and it was discovered that the median effective concentration (EC50) of the fungicide had a unimodal frequency distribution with a mean value of 0.763 ± 0.922 µg/mL. Comparing the resistant mutants to the equivalent parental isolates, the resistance mutants' survival fitness was much lower. While there was no cross-resistance between fluopimomide and other oomycete inhibitors, there is a notable positive cross-resistance between fluopimomide and fluopicolide. According to the thorough investigation, P. litchii had a moderate chance of developing fluopimomide resistance. The point mutations N771S and K847N in the VHA-a of P. litchii (PlVHA-a) were present in the fluopimomide-resistant mutants, and the two point mutations in PlVHA-a conferring fluopimomide resistance were verified by site-directed mutagenesis in the sensitive P. capsici isolate BYA5 and molecular docking.


Assuntos
Fungicidas Industriais , Phytophthora , Mutação Puntual , Phytophthora/efeitos dos fármacos , Phytophthora/genética , Fungicidas Industriais/farmacologia , Morfolinas/farmacologia , Benzamidas , Piridinas
20.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928014

RESUMO

Triazoles are compounds with various biological activities, including fungicidal action. They became popular through cholinesterase studies after the successful synthesis of the dual binding femtomolar triazole inhibitor of acetylcholinesterase (AChE, EC 3.1.1.7) by Sharpless et al. via in situ click chemistry. Here, we evaluate the anticholinesterase effect of the first isopropanol triazole fungicide mefentrifluconazole (Ravystar®), developed to overcome fungus resistance in plant disease management. Mefentrifluconazole is commercially available individually or in a binary fungicidal mixture, i.e., with pyraclostrobin (Ravycare®). Pyraclostrobin is a carbamate that contains a pyrazole ring. Carbamates are known inhibitors of cholinesterases and the carbamate rivastigmine is already in use for the treatment of Alzheimer's disease. We tested the type and potency of anticholinesterase activity of mefentrifluconazole and pyraclostrobin. Mefentrifluconazole reversibly inhibited human AChE and BChE with a seven-fold higher potency toward AChE (Ki = 101 ± 19 µM). Pyraclostrobin (50 µM) inhibited AChE and BChE progressively with rate constants of (t1/2 = 2.1 min; ki = 6.6 × 103 M-1 min-1) and (t1/2 = 1.5 min; ki = 9.2 × 103 M-1 min-1), respectively. A molecular docking study indicated key interactions between the tested fungicides and residues of the lipophilic active site of AChE and BChE. Additionally, the physicochemical properties of the tested fungicides were compared to values for CNS-active drugs to estimate the blood-brain barrier permeability. Our results can be applied in the design of new molecules with a lesser impact on humans and the environment.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Fungicidas Industriais , Simulação de Acoplamento Molecular , Estrobilurinas , Triazóis , Estrobilurinas/farmacologia , Estrobilurinas/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Triazóis/farmacologia , Triazóis/química , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Pirazóis/farmacologia , Pirazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA