Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.047
Filtrar
1.
J Agric Food Chem ; 67(40): 11005-11017, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31532657

RESUMO

The limited number of agrochemicals targeting plant bacterial diseases has driven us to develop highly efficient, low-cost, and versatile antibacterial alternatives. Herein, a novel type of simple furan-functionalized quinazolin-4-amines was systematically fabricated and screened for their antibacterial activity. Bioassay results revealed that compounds C1 and E4 could substantially block the growth of two frequently mentioned pathogens Xanthomonas oryzae pv oryzae and X. axonopodis pv citri in vitro, displaying appreciable EC50 values of 7.13 and 10.3 mg/L, respectively. This effect was prominently improved by comparing those of mainly used agrochemicals. An in vivo experiment against bacterial blight further illustrated their viable applications as antimicrobial ingredients. Quantitative proteomics demonstrated that C1 possessed a remarkable ability to manipulate the upregulation and downregulation of expressed proteins, which probably involved d-glucose and biotin metabolic pathways. This finding was substantially verified by parallel reaction monitoring analysis. Scanning electron microscopy images and fluorescence spectra also indicated that the designed compounds had versatile capacities for destroying the integrity of bacteria. Given these remarkable characteristics, furan-functionalized quinazoline hybrids can serve as a viable platform for developing innovative antibiotic alternatives against bacterial infections.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Furanos/farmacologia , Quinazolinas/farmacologia , Xanthomonas/efeitos dos fármacos , Antibacterianos/síntese química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Furanos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Doenças das Plantas/microbiologia , Proteômica , Quinazolinas/química , Relação Estrutura-Atividade , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/metabolismo
2.
Anticancer Res ; 39(9): 4775-4779, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31519578

RESUMO

BACKGROUND: Osteosarcoma is a recalcitrant disease treated with surgery and intensive chemotherapy as standard. The 5-year survival rate of patients with relapsed and lung metastatic osteosarcoma is as low as 20%. MATERIALS AND METHODS: A 16-year-old patient developed left distal femoral high-grade osteosarcoma and underwent cisplatinum-based neoadjuvant chemotherapy and surgery. From the resected tumor, a patient-derived orthotopic xenograft (PDOX) model was established in the femur of nude mice. PDOX models were randomized into the following groups: untreated control, or treatment with doxorubicin (3 mg/kg, i.p., weekly for 14 days), sunitinib (40 mg/kg, oral gavage, daily for 14 days), pazopanib (100 mg/kg, oral gavage, daily for 14 days), temozolomide(25 mg/kg, oral gavage, daily for 14 days), and eribulin (1.5 mg/kg, i.p., daily for 14 days). Tumor volume and body weight were monitored twice a week. RESULTS: The osteosarcoma PDOX was resistant to doxorubicin, sunitinib, and pazopanib. In contrast, eribulin and temozolomide arrested tumor growth. CONCLUSION: This study demonstrated the utility of the PDOX model in allowing effective from non-effective drugs to be distinguished in a model in which the tumor was growing on the organ corresponding to that of the patient.


Assuntos
Cisplatino/farmacologia , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Furanos/farmacologia , Cetonas/farmacologia , Neoplasias Pulmonares/secundário , Osteossarcoma/patologia , Adolescente , Animais , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos , Osteossarcoma/tratamento farmacológico , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Life Sci ; 233: 116732, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31394125

RESUMO

AIMS: Linderane, an important bioactive compound in Linderae, improved glucose and lipid metabolism in ob/ob mice. However, the effect of linderane on streptozotocin (STZ)-induced oxidative damage in INS-1 cells remains unclear. MAIN METHODS: INS-1 cells were pre-treated with different doses of linderane for 2 h and then treated with 3 mM STZ for 12 h. Cell viability was determined by MTT assay. Cell apoptosis was detected using an Annexin V-FITC Apoptosis Detection Kit. The level of intracellular ROS was determined using dichlorofluorescein-diacetate (DCFH-DA). The activities of insulin secretion, SOD, catalase (CAT) and GPx were measured using ELISA kits. The expression levels of bax, bcl-2, p38, p-p38, nuclear Nrf2 and HO-1 were measured using western blot. KEY FINDINGS: The results showed that STZ-caused inhibitory effects on cell viability and insulin secretion were mitigated by linderane. Furthermore, linderane inhibited apoptosis and oxidative stress in STZ-induced INS-1 cells. Finally, linderane suppressed the activation of p38 MAPK pathway, as well as enhanced the activation of Nrf2 pathway in STZ-induced INS-1 cells. Activation of p38 MAPK pathway or inhibition of Nrf2 significantly reversed the protective effects of linderane against STZ-induced ROS production and cell apoptosis. SIGNIFICANCE: The protective effects of linderane on STZ-induced INS-1 cells might be attributed to the inhibition of p38 MAPK and activation of Nrf2 pathway.


Assuntos
Apoptose/efeitos dos fármacos , Furanos/farmacologia , Insulina/metabolismo , Insulinoma/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Sesquiterpenos/farmacologia , Estreptozocina/toxicidade , Animais , Insulinoma/metabolismo , Insulinoma/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ratos , Células Tumorais Cultivadas
4.
Chem Pharm Bull (Tokyo) ; 67(8): 888-895, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31366838

RESUMO

New sugar hydrazones incorporating furan and/or 1,3,4-thiadiazole ring systems were synthesized by reaction of the corresponding hydrazide with different aldose sugars. Heterocyclization of the formed hydrazones afforded the derived acyclic nucleoside analogues possessing the 1,3,4-oxadiazoline as modified nucleobase via acetylation followed by the heterocyclization process. The anticancer activity of the synthesized compounds was studied against human liver carcinoma cell (HepG-2) and at human normal retina pigmented epithelium cells (RPE-1). High activities were revealed by compounds 3, 12 and 14 with IC50 values near to that of the reference drug doxorubicin.


Assuntos
Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Furanos/farmacologia , Oxidiazóis/farmacologia , Açúcares/farmacologia , Tiadiazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Furanos/síntese química , Furanos/química , Células Hep G2 , Humanos , Estrutura Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Relação Estrutura-Atividade , Açúcares/síntese química , Açúcares/química , Tiadiazóis/síntese química , Tiadiazóis/química
5.
Anticancer Res ; 39(7): 3757-3765, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262902

RESUMO

BACKGROUND/AIM: The study focused on identifying the mechanisms or drugs that might sensitize resistant KBV20C human oral squamous carcinoma cells overexpressing P-glycoprotein (P-gp) to antimitotic drug treatment. MATERIALS AND METHODS: Five HIV protease inhibitors (atazanavir, nelfinavir, darunavir, lopinavir, and ritonavir) were tested to identify drugs that could be used at a relatively low dose for sensitizing antimitotic drug-resistant KBV20C cells. Fluorescence-activated cell sorting, annexin V analyses, and rhodamine uptake tests were performed to further investigate the mechanism of action. RESULTS: Co-treatment with nelfinavir or lopinavir had a high sensitizing effect on vincristine-treated KBV20C cells. Nelfinavir and lopinavir reduced cell viability, increased G2 phase arrest, and up-regulated apoptosis when used as a co-treatment with vincristine. We also demonstrated that eribulin co-treatment with nelfinavir and lopinavir similarly increased sensitization of KBV20C cells. Only lopinavir was found to have a high P-gp-inhibitory activity (similar to verapamil). Interestingly, nelfinavir had very low P-gp-inhibitory activity, suggesting that vincristine-nelfinavir sensitization is independent of the P-gp-inhibitory effect of nelfinavir. We also demonstrated this same combination mainly caused sensitization due to late apoptosis in P-gp-overexpressing drug-resistant KBV20C cells. CONCLUSION: Highly antimitotic drug-resistant KBV20C cells can be sensitized by co-treatment with the repositioned HIV protease inhibitors nelfinavir and lopinavir. In particular, the sensitizing effect of co-treatment with nelfinavir on antimitotic drug-resistant cancer cells was found to be strong and independent of P-gp-inhibitory activity. As P-gp inhibition can be toxic to normal cells, selecting nelfinavir may be safer for normal cells in patients with drug-resistant cancer.


Assuntos
Antimitóticos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Furanos/farmacologia , Inibidores da Protease de HIV/farmacologia , Cetonas/farmacologia , Lopinavir/farmacologia , Nelfinavir/farmacologia , Vincristina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Sinergismo Farmacológico , Flufenazina/farmacologia , Humanos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Ritonavir/farmacologia
6.
Cancer Sci ; 110(7): 2247-2257, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31099446

RESUMO

Glioblastoma is one of the most devastating human malignancies for which a novel efficient treatment is urgently required. This pre-clinical study shows that eribulin, a specific inhibitor of telomerase reverse transcriptase (TERT)-RNA-dependent RNA polymerase, is an effective anticancer agent against glioblastoma. Eribulin inhibited the growth of 4 TERT promoter mutation-harboring glioblastoma cell lines in vitro at subnanomolar concentrations. In addition, it suppressed the growth of glioblastoma cells transplanted subcutaneously or intracerebrally into mice, and significantly prolonged the survival of mice harboring brain tumors at a clinically equivalent dose. A pharmacokinetics study showed that eribulin quickly penetrated brain tumors and remained at a high concentration even when it was washed away from plasma, kidney or liver 24 hours after intravenous injection. Moreover, a matrix-assisted laser desorption/ionization mass spectrometry imaging analysis revealed that intraperitoneally injected eribulin penetrated the brain tumor and was distributed evenly within the tumor mass at 1 hour after the injection whereas only very low levels of eribulin were detected in surrounding normal brain. Eribulin is an FDA-approved drug for refractory breast cancer and can be safely repositioned for treatment of glioblastoma patients. Thus, our results suggest that eribulin may serve as a novel therapeutic option for glioblastoma. Based on these data, an investigator-initiated registration-directed clinical trial to evaluate the safety and efficacy of eribulin in patients with recurrent GBM (UMIN000030359) has been initiated.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Furanos/administração & dosagem , Glioblastoma/tratamento farmacológico , Cetonas/administração & dosagem , Regiões Promotoras Genéticas/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Feminino , Furanos/farmacologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Humanos , Injeções Intraperitoneais , Cetonas/farmacologia , Camundongos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Telomerase/genética , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Food Chem Toxicol ; 129: 444-457, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31077737

RESUMO

Recently, our research team reported the anti-amnesic potential of desalted-hydroethanolic extracts of Salicornia europaea L. (SE-EE). In this study, we performed bioactivity-guided isolation and identification of Acanthoside B (Aca.B), from SE-EE, as the potential bioactive candidate and examined anti-amnesic activity with its potential mechanism of action using an in vivo model. S7-L3-3 purified from SE-EE showed enhanced in vitro acetylcholinesterase (AChE) inhibitory activity. The isolated S7-L3-3 was identified and characterized as Aca.B using varied spectral analyses, i.e., Nuclear magnetic resonance (NMR), Ultraviolet-visible (UV-Vis), and Electrospray ionization-mass spectrometry (ESI-MS). In the in vitro studies, Aca.B exhibited negligible toxicity and showed a dose-dependent nitric oxide inhibitory potential in Lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. In the in vivo studies, the oral administration of Aca.B to mice showed enhanced bioavailability and dose-dependent repression of the behavioral/cognitive impairment by regulating the cholinergic function, restoring the antioxidant status, attenuating the inflammatory cytokines/mediators and actively enriching neurotropic proteins in the hippocampal regions of the scopolamine-administered mice.


Assuntos
Amnésia/induzido quimicamente , Furanos/farmacologia , Glucosídeos/farmacologia , Inflamação/metabolismo , Lignanas/farmacologia , Receptores Colinérgicos/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Camundongos , Oxirredução , Proteínas Tirosina Quinases/metabolismo , Escopolamina/farmacologia
8.
Int J Oncol ; 54(6): 2189-2199, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31081046

RESUMO

Glioblastoma (GB) is the most common and aggressive malignant tumor of the central nervous system. Despite current intensive treatment regimens, consisting of surgical resection followed by radiotherapy with concomitant and adjuvant temozolomide (TMZ) chemotherapy, the prognosis of patients with GB remains extremely poor. Considering that alterations of the p53 tumor suppressor pathway have a key role in both GB development and resistance to TMZ treatment, the re­activation of p53 could be an effective therapeutic approach against GB. In this study, we challenged p53 wild­type and mutant GB cell lines with RITA, a molecule originally identified for its ability to restore p53 functions, although it was subsequently shown to act also through p53­independent mechanisms. We examined the effects of RITA on GB cell viability, through MTS and clonogenic assays, and analyzed cell death through cytoflourimetric analyses. In all the tested GB cell lines, RITA significantly reduced the cell proliferative and clonogenic potential and induced cell accumulation in the S and/or G2/M cell cycle phases and massive p53­dependent apoptosis. Moreover, RITA was more effective than the well­known p53 re­activating molecule, nutlin­3, and did not affect the viability of normal astrocytes. In addition, RITA decreased survivin expression and induced DNA damage, two mechanisms that likely contribute to its anti­tumor effects. Furthermore, RITA synergized with TMZ and was able to decrease the expression of MGMT, which is a crucial player in TMZ resistance. Thus, although further studies are warranted to clarify the exact mechanisms of action of RITA, the data of this study suggest the potential of such an approach for GB therapy, which may also help to overcome resistance to TMZ.


Assuntos
Neoplasias Encefálicas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Furanos/farmacologia , Glioblastoma/metabolismo , Temozolomida/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Imidazóis/farmacologia , Mutação , Piperazinas/farmacologia , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética
9.
Expert Opin Drug Saf ; 18(5): 347-355, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31107111

RESUMO

Introduction: Eribulin mesylate is a highly potent anticancer agent approved for use in pretreated metastatic breast cancer (MBC). Clinical trials of eribulin in MBC have demonstrated activity against this tumor type, and a phase 3 study in patients with MBC previously treated with an anthracycline and a taxane showed a significant increase in overall survival (OS) with eribulin versus control regimens. Areas covered: This review presents overviews of the development of eribulin, its pharmacology, and its efficacy in MBC. A detailed review of its safety profile is presented, and the safety of eribulin is compared with other agents commonly used to treat MBC. Expert opinion: As eribulin is the only drug shown to improve OS in patients with pretreated MBC, it is an important treatment option for many patients. Eribulin is currently considered a second-line (Europe) or third-line (United States) therapy, and studies have been examining use in the first-line setting. The use of eribulin in combination with other therapies is beginning to be explored because its manageable safety profile makes it an ideal combination-treatment partner. Emerging eribulin combination-treatment data suggest a manageable toxicity profile, and eribulin is set to be a key drug for the treatment of MBC in the future.


Assuntos
Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Furanos/efeitos adversos , Cetonas/efeitos adversos , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/patologia , Feminino , Furanos/administração & dosagem , Furanos/farmacologia , Humanos , Cetonas/administração & dosagem , Cetonas/farmacologia , Metástase Neoplásica , Taxa de Sobrevida
10.
Life Sci ; 230: 68-75, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31129140

RESUMO

AIMS: The aim of the present study was to investigate the protective effects of AGK2 as a selective SIRT2 inhibitor on thioacetamide (TAA)-induced acute liver failure (ALF) in mice and its potential mechanism. MAIN METHODS: All male C57BL/6 mice were separated into control, TAA, AGK2 + TAA, and AGK2 groups. The histological changes were observed by hematoxylin and eosin (HE) staining. The apoptosis cells of liver tissues were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were used to evaluate the damage of liver function. The inflammatory cytokines of iNOS, TNF-α, IL-1ß was detected by Western blotting and RT-PCR assay. The expression of mitogen-activated protein kinase (MAPK), NF-κB, and apoptosis pathways was determined by Western blotting. KEY FINDINGS: AGK2 improved the damage of TAA-induced liver pathology and function. AGK2 pretreatment also reduced the levels of pro-inflammatory cytokines in ALF liver tissues. AGK2 improved the TAA-induced survival rate. Moreover, AGK2 administration suppressed the increase of phosphorylation NF-κB-p65 and the activation of MAPK pathway. In addition, pretreatment alleviated TAA-induced the liver cells apoptosis. SIGNIFICANCE: AGK2 improve TAA-induced survival rate in mice with ALF, suppress the inflammatory responses by inhibition of MAPK and NF-κB signaling pathways, and decrease the hepatocyte necrosis by inhibition of apoptosis. Pharmacologic inhibition of SIRT2 may be a promising approach for the treatment of ALF.


Assuntos
Furanos/farmacologia , Falência Hepática Aguda/tratamento farmacológico , Fígado/patologia , Quinolinas/farmacologia , Alanina Transaminase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/metabolismo , Citocinas/metabolismo , Furanos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Quinolinas/metabolismo , Transdução de Sinais , Sirtuína 2/antagonistas & inibidores , Tioacetamida/farmacologia , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
11.
Phytochemistry ; 164: 122-129, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31125862

RESUMO

A phytochemical study on the fruits of Rubus idaeus L. (Rosaceae) yielded eight pairs of enantiomeric lignans, including one undescribed furolactone named (-)-idaeusinol A and six undescribed furofuran derivatives named (+/-)-idaeusinol B-D. The structures of these isolated compounds were elucidated by spectroscopic analyses and a combination of computational techniques including gauge-independent atomic orbital (GIAO) calculation of 1D NMR data and TD-DFT calculation of electronic circular dichroism (ECD) spectra. Bioactivity screenings suggested that (+)-idaeusinol D exhibited the most significant protective effect against H2O2-induced neurotoxicity at the concentration of 25 µM. In contrast, (-)-idaeusinol D, as the enantiomer of (+)-idaeusinol D, showed no effect against H2O2-induced neurotoxicity at both 25 and 50 µM concentration.


Assuntos
Furanos/farmacologia , Lactonas/farmacologia , Fármacos Neuroprotetores/farmacologia , Rubus/química , Sobrevivência Celular/efeitos dos fármacos , Teoria da Densidade Funcional , Relação Dose-Resposta a Droga , Furanos/química , Furanos/isolamento & purificação , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/farmacologia , Lactonas/química , Lactonas/isolamento & purificação , Conformação Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Estereoisomerismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Molecules ; 24(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934811

RESUMO

Although smoke-isolated karrikins (KAR1) could regulate secondary metabolism in medicinal plants, the signal transduction mechanism has not been reported. This study highlights the influence of KAR1 on tanshinone I (T-I) production in Salvia miltiorrhiza and the involved signal molecules. Results showed KAR1-induced generation of nitric oxide (NO), jasmonic acid (JA) and T-I in S. miltiorrhiza hairy root. KAR1-induced increase of T-I was suppressed by NO-specific scavenger (cPTIO) and NOS inhibitors (PBITU); JA synthesis inhibitor (SHAM) and JA synthesis inhibitor (PrGall), which indicated that NO and JA play essential roles in KAR1-induced T-I. NO inhibitors inhibited KAR1-induced generation of NO and JA, suggesting NO was located upstream of JA signal pathway. NO-induced T-I production was inhibited by SHAM and PrGall, implying JA participated in transmitting signal NO to T-I accumulation. In other words, NO mediated the KAR1-induced T-I production through a JA-dependent signaling pathway. The results helped us understand the signal transduction mechanism involved in KAR1-induced T-I production and provided helpful information for the production of S. miltiorrhiza hairy root.


Assuntos
Ciclopentanos/metabolismo , Diterpenos de Abietano/biossíntese , Furanos/farmacologia , Óxido Nítrico/metabolismo , Oxilipinas/metabolismo , Piranos/farmacologia , Salvia miltiorrhiza/efeitos dos fármacos , Salvia miltiorrhiza/metabolismo , Fumaça , Análise de Variância , Furanos/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Piranos/isolamento & purificação , Salvia miltiorrhiza/genética , Transdução de Sinais/efeitos dos fármacos , Fumaça/análise
13.
Phytother Res ; 33(6): 1736-1747, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31006910

RESUMO

Glioblastoma multiforme (GBM) is a highly aggressive type of brain tumour. Patients with GBM respond poorly to chemotherapy and have poor survival outcomes. Neuron-glial antigen 2 (NG2), also known as chondroitin sulphate proteoglycan 4 (CSPG4), has been shown to contribute to critical processes, such as cell survival, proliferation, and chemotherapy resistance, during glioma progression. In this study, we found that furanodienone (FUR), a diene-type sesquiterpene isolated from the rhizomes of Rhizoma curcumae, exhibited a potential cytotoxic effect on temozolomide (TMZ)-resistant GBM cells in vitro by inhibiting CSPG4 and related signalling pathways. Studies investigating the mechanism demonstrated that FUR suppressed CSPG4-Akt-ERK signalling, inflammatory responses, and cytokine levels but activated caspase-dependent pathways and mitochondrial dysfunction. Furthermore, an immunofluorescence assay and a dual-luciferase reporter assay revealed that inhibition of EGR1-mediated transcription might have contributed to the FUR-dependent blockade of CSPG4 signalling and glioma cell survival. These results established a link between FUR-induced CSPG4 inhibition and the suppression of EGR1-dependent transcription. Attenuation of ERK1/2 and cytokine signalling might have generated the EGR1-dependent negative feedback loop of the CSPG4 pathway during FUR-induced apoptosis. These findings suggested that FUR could be a therapeutic candidate for the treatment of malignant glioma via targeting CSPG4 signalling.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Furanos/farmacologia , Glioblastoma/tratamento farmacológico , Sesquiterpenos/farmacologia , Temozolomida/uso terapêutico , Adulto , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Proteoglicanas de Sulfatos de Condroitina/genética , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Furanos/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sesquiterpenos/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Temozolomida/administração & dosagem , Transcrição Genética/efeitos dos fármacos
14.
Chemosphere ; 228: 139-148, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029959

RESUMO

Lipophilic phycotoxins are secondary metabolites produced by phytoplanktonic species. They accumulate in filtering shellfish and can cause human intoxications. Humans can be exposed to combinations of several phycotoxins. The toxicological effects of phycotoxin mixtures on human health are largely unknown. Published data on phycotoxin co-exposure show that okadaic acid (OA) is simultaneously found with pectenetoxin-2 (PTX-2), 13-desmethylspirolide C (also known as SPX-1), or yessotoxin (YTX). Therefore, the aim of this study was to examine the effects of three binary mixtures, OA/PTX-2, OA/SPX-1 and OA/YTX on human intestinal Caco-2 cells. A multi-parametric approach for cytotoxicity determination was applied using a high-content analysis platform, including markers for cell viability, oxidative stress, inflammation, and DNA damage. Mixtures effects were analyzed using two additivity mathematical models. Our assays revealed that OA induced cytotoxicity, DNA strand breaks and interleukin 8 release. PTX-2 slightly induced DNA strand breaks, whereas SPX-1 and YTX did not affect the investigated endpoints. The combination of OA with another toxin resulted in reduced toxicity at low concentrations, suggesting antagonistic effects, but in increased effects at higher concentrations, suggesting additive or synergistic effects. Taken together, our results demonstrated that the cytotoxic effects of binary mixtures of lipophilic phycotoxins could not be predicted by additivity mathematical models. In conclusion, the present data suggest that combined effects of phycotoxins may occur which might have the potential to impact on risk assessment of these compounds.


Assuntos
Células CACO-2/efeitos dos fármacos , Combinação de Medicamentos , Interações de Medicamentos , Toxinas Marinhas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Furanos/farmacologia , Humanos , Inflamação , Intestinos/citologia , Toxinas Marinhas/análise , Ácido Okadáico/análise , Ácido Okadáico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxocinas/farmacologia , Piranos/farmacologia , Frutos do Mar/análise , Frutos do Mar/toxicidade , Compostos de Espiro/farmacologia
15.
Chem Biol Interact ; 307: 51-57, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31026422

RESUMO

Nasopharyngeal carcinoma (NPC) is a head and neck epithelial malignancy with high prevalence and represents a significant disease burden. Eudesmin is a natural lignin that has been reported to exhibit antitumor effect on lung cancer. However, the effect of eudesmin on NPC has not been investigated. The aim of the present study was to evaluate the role of eudesmin in NPC and to explore the underlying mechanism. The NPC cell lines CNE-1 and HONE-1 were treated with eudesmin for 48 h. Cell viability was measured using MTT assay. Cell apoptosis was detected using flow cytometry. The expression levels of enhancer of zeste homolog 2 (EZH2), Akt, and p-Akt were measured using Western blot analysis. We found that eudesmin inhibited cell viability and induced cell apoptosis of NPC cell lines in a dose-dependent manner. Eudesmin suppressed the expression of EZH2 and blocked the activation of Akt signaling pathway. Inhibition of Akt signaling pathway caused significant decrease in EZH2 expression. Moreover, knockdown of EZH2 attenuated the effects of Akt overexpression on cell viability and apoptosis in NPC cells. In conclusion, eudesmin exhibited antitumor activity via downregulating EZH2 expression through the inhibition of Akt signaling pathway. Eudesmin could be developed as a new pharmacologic approach for NPC treatment.


Assuntos
Antineoplásicos/farmacologia , Regulação para Baixo/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Furanos/farmacologia , Lignanas/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Furanos/química , Humanos , Lignanas/química , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
BMC Cancer ; 19(1): 299, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943918

RESUMO

BACKGROUND: Most tumor cells show aberrantly activated Akt which leads to increased cell survival and resistance to cancer radiotherapy. Therefore, targeting Akt can be a promising strategy for radiosensitization. Here, we explore the impact of the Akt inhibitor MK-2206 alone and in combination with the dual PI3K and mTOR inhibitor PI-103 on the radiation sensitivity of glioblastoma cells. In addition, we examine migration of drug-treated cells. METHODS: Using single-cell tracking and wound healing migration tests, colony-forming assay, Western blotting, flow cytometry and electrorotation we examined the effects of MK-2206 and PI-103 and/or irradiation on the migration, radiation sensitivity, expression of several marker proteins, DNA damage, cell cycle progression and the plasma membrane properties in two glioblastoma (DK-MG and SNB19) cell lines, previously shown to differ markedly in their migratory behavior and response to PI3K/mTOR inhibition. RESULTS: We found that MK-2206 strongly reduces the migration of DK-MG but only moderately reduces the migration of SNB19 cells. Surprisingly, MK-2206 did not cause radiosensitization, but even increased colony-forming ability after irradiation. Moreover, MK-2206 did not enhance the radiosensitizing effect of PI-103. The results appear to contradict the strong depletion of p-Akt in MK-2206-treated cells. Possible reasons for the radioresistance of MK-2206-treated cells could be unaltered or in case of SNB19 cells even increased levels of p-mTOR and p-S6, as compared to the reduced expression of these proteins in PI-103-treated samples. We also found that MK-2206 did not enhance IR-induced DNA damage, neither did it cause cell cycle distortion, nor apoptosis nor excessive autophagy. CONCLUSIONS: Our study provides proof that MK-2206 can effectively inhibit the expression of Akt in two glioblastoma cell lines. However, due to an aberrant activation of mTOR in response to Akt inhibition in PTEN mutated cells, the therapeutic window needs to be carefully defined, or a combination of Akt and mTOR inhibitors should be considered.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Radiossensibilizantes/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Dano ao DNA , Furanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Mutação , PTEN Fosfo-Hidrolase/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Análise de Célula Única , Serina-Treonina Quinases TOR/metabolismo
17.
Phytochemistry ; 163: 187-194, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31014820

RESUMO

Smoke derived karrikinolide and trimethylbutenolide exerted neuroprotective effects against monoamine oxidase and acetylcholinesterase. Synthesis of potent analogs was achieved. Sulphur substitution in the bicyclic ring structure of KAR1 displayed the most encouraging activity returning IC50 values of 13.75 ±â€¯0.001 µM and 0.03 ±â€¯0.02 µM for monoamine oxidase A and B and 0.08 ±â€¯0.006 µM for acetylcholinesterase. Neuroprotective butenolides may be particularly useful in the treatment of depressive disorders, Alzheimer's and Parkinson's diseases.


Assuntos
4-Butirolactona/análogos & derivados , Transtorno Depressivo/tratamento farmacológico , Furanos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Piranos/farmacologia , 4-Butirolactona/síntese química , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Acetilcolinesterase/metabolismo , Relação Dose-Resposta a Droga , Furanos/síntese química , Furanos/química , Humanos , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Piranos/síntese química , Piranos/química , Relação Estrutura-Atividade
18.
Fish Shellfish Immunol ; 88: 91-101, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30817993

RESUMO

Bacteria respond to host immunity for their proliferation and survival by cell-cell communications such as biofilm formation, bioluminescence, and secreting virulence factors. In the biofilm form, bacteria are more resistant to various antimicrobial treatments and withstand the host's immune system. The approaches of deciphering biofilm formation for treating bacterial infections are therefore highly desirable. Recently, we have reported that the ethanolic extract of the red seaweed Gracilaria fisheri (G. fisheri) enhanced immune activities and inhibited growth of the luminescent bacteria Vibrio harveyi in shrimp. We undertook the present research study in order to evaluate and compare the effectiveness of the ethanolic extract from G. fisheri and furanone, a known biofilm inhibitor, in inhibiting the formation of clinically important Vibrio biofilms. The results showed that sub-lethal concentrations of both the ethanolic extracts (5, 10 and 100 µg ml-1) and furanone (5 µM) inhibited biofilm formation by V. harveyi and Vibrio parahaemolyticus and also light production (luminescence) in V. harveyi. It is known that V. harveyi mediated light production via autoinducer AI-2 pathway, we further determined whether the inhibitory effect of the extract was involved the AI-2 signaling. The bioluminescence assay was conducted in an AI-2 deletion mutant V. harveyi. Supplementation of the AI-2 containing media with the extract or furanone impaired the light production in the mutant V. harveyi suggesting that the extract interfered AI-2 mediated light production similar to furanone. In vivo challenge study showed that the low concentrations (Sub MICs) of the ethanolic extract and furanone decreased bacterial adhesion and colonization in the surfaces of stomach lumen, down-regulated expression of a virulence factor, and protected shrimp against mortality from V. harveyi and V. parahaemolyticus infection. In conclusion, the present results suggest a potential application of the low concentrations of the ethanolic extract of G. fisheri as an efficient approach for treating biofilm-associated Vibrio diseases in aquacultures.


Assuntos
Furanos/farmacologia , Gracilaria/química , Penaeidae/microbiologia , Vibrio/efeitos dos fármacos , Animais , Aquicultura , Biofilmes/efeitos dos fármacos , Luminescência , Extratos Vegetais/farmacologia , Vibrio parahaemolyticus/efeitos dos fármacos
19.
Pediatr Surg Int ; 35(6): 723-728, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30891641

RESUMO

PURPOSE: Arctigenin has been shown to have anti-tumor effects in various types of cancers. This study was conducted to verify these effects in the human-derived hepatoblastoma cell line, HUH-6 clone 5 (hereinafter, HUH-6). METHODS: Arctigenin was added to cultured HUH-6 cells, and cellular activity was evaluated by MTS assay. To determine the relationship between reduced cellular activity and apoptosis, we measured the activities of caspase 3/7, 8, and 9 and conducted flow cytometry with Annexin V/PI staining. RESULTS: The MTS assay revealed that cellular activity decreased after arctigenin treatment in a concentration-dependent manner (IC50 = 4 µM). To investigate apoptosis induction, activity assays of caspase 3/7, 8, and 9 were performed. While caspase 3/7 and 8 exhibited high activity, caspase 9 showed no activity. Thus, apoptosis induction may have involved the action of tumor necrosis factor receptor 1 (TNFR1). Flow cytometry conducted with Annexin V/PI staining revealed the occurrence of early apoptosis. CONCLUSION: We found that arctigenin has anti-tumor effects in HUH-6 cells in a concentration-dependent manner. Arctigenin may have exerted its anti-tumor effect by inducing apoptosis via TNFR1, which recruits Complex IIa to activate caspase 8 and 3/7. These results may be useful for developing therapeutic agents for hepatoblastoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Furanos/farmacologia , Hepatoblastoma/patologia , Lignanas/farmacologia , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Células Cultivadas , Humanos
20.
Mol Med Rep ; 19(5): 3642-3648, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896794

RESUMO

Retinoblastoma is an intraocular malignant tumor that may severely affect vision and represents a life­threatening disease in children. Arctigenin (ATG) is an active compound that exhibits numerous pharmacological activities, which is isolated from the seeds of greater burdock (Arctium lappa Linnaeus), a plant used in traditional Chinese herbal medicine. The present study aimed to investigate the effects of ATG on cancer progression by analyzing the retinoblastoma cell line Y79. ATG exhibited a significant inhibitory effect on the viability of Y79 cells in a dose­dependent manner. Furthermore, treatment with ATG promoted apoptosis, and increased the protein expression levels of B­cell lymphoma 2 (BCL­2)­associated X protein and decreased the protein expression levels of BCL­2. Cell migration was suppressed following treatment with ATG, as assessed by Transwell migration assay. Furthermore, the protein expression levels of jagged­1 (JAG1) were decreased, and various factors involved in the Notch signaling pathway, including the Notch intracellular domain (NICD), transcription factor HES (HES)5 and HES1 were downregulated following treatment with ATG. The decreased expression levels of JAG1 were restored in response to JAG1 overexpression, alongside increases in the protein expression levels of NICD, HES5 and HES1. Furthermore, overexpression of JAG1 partly restored the cell viability and migration suppressed following treatment with ATG. In addition, ATG­induced apoptosis was reduced by JAG1 overexpression. Collectively, the present results suggested that ATG may serve as an antitumor compound by suppressing the proliferation and migration of retinoblastoma cells, inducing apoptosis, downregulating the protein expression levels of JAG1, and decreasing the activity of the Notch signaling pathway.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Furanos/farmacologia , Proteína Jagged-1/metabolismo , Lignanas/farmacologia , Retinoblastoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteína Jagged-1/genética , Receptores Notch/metabolismo , Retinoblastoma/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA