Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.687
Filtrar
1.
Braz. j. biol ; 84: e252910, 2024. tab, mapas, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1360209

RESUMO

Bemisia tabaci is a species complex that causes damage to its broad range of plant hosts through serious feeding. It transmits plant viruses of different groups to important agricultural crops. Some important cash crops of Pakistan are sugar cane, rice, tobacco and seed oil. It shows high genetic variability and is differentiated as races or biotypes. Biotypes are, biotype Q, biotype B, biotype B2, biotype M, biotype L, biotype A, biotype H, biotype C, biotype K, biotype N, biotype R, biotype E, biotype P, biotype J, biotype S, biotype AN. Although the current report based on the Bayesian study of mitochondrial cytohrome oxidase gene1 (CO1) DNA sequences has classified the different populations of whiteflies into twelve genetic groups which are Mediterranean, Sub-Saharan Africa silverleafing, Indian Ocean, Asia II, Asia I, Australia, New World, Italy, China, Sub-Saharan Africa non-silverleafing, Mediterranean/Asia Minor/Africa and Uganda sweet potato. Begomoviruses is largest group of viruses transmitted by B. tabaci and cause major diseases of crops such as tomato and chili leaf curl disease, cassava mosaic disease; yellow mosaic disease of legumes and cotton leaf curl disease. The main objective of current study is to inculpate knowledge regarding genetic diversity of whitefly in cotton fields across Pakistan via analysis of partial DNA sequence of mitochondrial gene Cytochrom Oxidase I (mtCO1).


Bemisia tabaci é um complexo de espécies que causa danos a uma ampla gama de hospedeiros vegetais por meio de alimentação séria. Ele transmite vírus de plantas de diferentes grupos para importantes safras agrícolas. Algumas safras comerciais importantes do Paquistão são cana-de-açúcar, arroz, tabaco e óleo de semente. Apresenta alta variabilidade genética e é diferenciado em raças ou biótipos. Os biótipos são: biótipo Q, biótipo B, biótipo B2, biótipo M, biótipo L, biótipo A, biótipo H, biótipo C, biótipo K, biótipo N, biótipo R, biótipo E, biótipo P, biótipo J, biótipo S, biótipo AN . Embora o relatório atual baseado no estudo bayesiano das sequências de DNA do gene 1 da oxidase do citocromo mitocondrial (CO1) tenha classificado as diferentes populações de moscas-brancas em doze grupos genéticos, que são Mediterrâneo, África Subsaariana com folha de prata, Oceano Índico, Ásia II, Ásia I, Austrália, Novo Mundo, Itália, China, África Subsaariana sem folha prateada, Batata-doce Mediterrâneo / Ásia Menor / África e Uganda. Os begomovírus são o maior grupo de vírus transmitidos por B. tabaci e causam as principais doenças de culturas, como a doença do cacho do tomate e da pimenta-malagueta, doença do mosaico da mandioca, doença do mosaico amarelo de leguminosas e doença do enrolamento da folha do algodão. O principal objetivo do presente estudo é inculpar conhecimento sobre a diversidade genética da mosca-branca em campos de algodão em todo o Paquistão por meio da análise da sequência parcial de DNA do gene mitocondrial Citocromo Oxidase I (mtCO1).


Assuntos
Variação Genética , Genes Mitocondriais , Begomovirus , Pragas da Agricultura
2.
Life Sci Alliance ; 6(1)2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283702

RESUMO

Most mitochondrial proteins are encoded by nuclear genes, synthetized in the cytosol and targeted into the organelle. To characterize the spatial organization of mitochondrial gene products in zebrafish (Danio rerio), we sequenced RNA from different cellular fractions. Our results confirmed the presence of nuclear-encoded mRNAs in the mitochondrial fraction, which in unperturbed conditions, are mainly transcripts encoding large proteins with specific properties, like transmembrane domains. To further explore the principles of mitochondrial protein compartmentalization in zebrafish, we quantified the transcriptomic changes for each subcellular fraction triggered by the chchd4a -/- mutation, causing the disorders in the mitochondrial protein import. Our results indicate that the proteostatic stress further restricts the population of transcripts on the mitochondrial surface, allowing only the largest and the most evolutionary conserved proteins to be synthetized there. We also show that many nuclear-encoded mitochondrial transcripts translated by the cytosolic ribosomes stay resistant to the global translation shutdown. Thus, vertebrates, in contrast to yeast, are not likely to use localized translation to facilitate synthesis of mitochondrial proteins under proteostatic stress conditions.


Assuntos
Genes Mitocondriais , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética
3.
Gene ; 850: 146925, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36191823

RESUMO

Spiders (Araneae) are the most abundant terrestrial predators and megadiverse on earth. In recent years, the mitochondrial genome of a great diversity of species has been sequenced, mainly for ecological and commercial purposes. These studies have uncovered the existence of a variety of mitochondrial genome rearrangements. However, there is poor genetic information in several taxonomic families of spiders. We have sequenced the complete genome of Phoneutria depilata (Ctenidae) and, based on this, extract the mitogenomes of other ctenid species from published transcriptomes to perform a comparative study among spider species to determine the relationship between the level of mitochondrial rearrangements and its possible relationship with molecular variability in spiders. Complete mitochondrial genomes of eighteen spiders (including eight Ctenidae species) were obtained by two different methodologies (sequencing and transcriptome extraction). Fifty-eight spider mitochondrial genomes were downloaded from the NCBI database for gene order analysis. After verifying the annotation of each mitochondrial gene, a phylogenetic and a gene order analysis from 76 spider mitochondrial genomes were carried out. Our results show a high rate of annotation error in the published spider mitochondrial genomes, which could lead to errors in phylogenetic inference. Moreover, to provide new mitochondrial genomes in spiders by two different methodologies to obtain them, our analysis identifies six different mitochondrial architectures among all spiders. Translocation or tandem duplication random loss (TDRL) events in tRNA genes were identified to explain the evolution of the spider mitochondrial genome. In addition, our findings provide new insights into spider mitochondrial evolution.


Assuntos
Genoma Mitocondrial , Aranhas , Animais , Aranhas/genética , Filogenia , Genes Mitocondriais , RNA de Transferência/genética
4.
Parasitol Int ; 92: 102692, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36341837

RESUMO

Rhabdias fuelleborni was described by Travassos (1926), who identified it in the lungs of Rhinella gr. marina (=Bufo marinus) from São Paulo. Later, Kloss (1971) added new information on the morphology and diagnosis of the species and new data on host and localities. However, its taxonomic status remains uncertain, due in particular to the morphological uniformity of Rhabdias spp., while the original description lacks important morphological data. In the present study, we found and reevaluated the type series of R. fuelleborni, as well as examining fresh material obtained from the type host and type locality, using light and scanning electron microscopy and molecular tools. The type series was deposited by Travassos (1926), and according to museum records the type locality is Paraty, Rio de Janeiro, Brazil. Our morphological and molecular analyses reinforce the taxonomic validity of this species, while molecular phylogeny identified a close relationship between R. fuelleborni and Rhabdias sp.4 and Rhabdias sp. from other studies, and from bufonids. Also R. fuelleborni are sister taxa with R. cf. stenocephala from Leptodactylidae from the northeast of Brazil and R. vencesi from Boophis madagascarariensis, Madagascar, according to mitochondrial COI gene.


Assuntos
Rhabdiasoidea , Animais , Filogenia , Brasil , Genes Mitocondriais , Bufo marinus
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(12): 1424-1428, 2022 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-36453973

RESUMO

As conserved enzymes with important functions, aminoacyl-tRNA synthetase are expressed ubiquitously in cells. These include cytoplasmic aminoacyl-tRNA synthetase, mitochondrial aminoacyl-tRNA synthetase and bifunctional aminoacyl-tRNA synthetase. Mitochondrial aminoacyl-tRNA synthetases catalyze the binding of amino acids with its corresponding tRNA in the mitochondria and participate in the translation of 13 subunits of oxidative phosphorylation enzyme complexes encoded by the mitochondrial genome. Mutations in genes encoding mitochondrial aminoacyl-tRNA synthase may cause a variety of genetic disorders. This review has summarized the clinical characteristics, molecular pathogenesis and treatment of genetic diseases caused by mutations of such genes.


Assuntos
Aminoacil-tRNA Sintetases , Genoma Mitocondrial , Humanos , Aminoacil-RNA de Transferência , Genes Mitocondriais , Aminoacil-tRNA Sintetases/genética , Mitocôndrias/genética
6.
Front Immunol ; 13: 935710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451821

RESUMO

In addition to their role in cellular energy production, mitochondria are increasingly recognized as regulators of the innate immune response of phagocytes. Here, we demonstrate that altering expression levels of the mitochondria-associated enzyme, cytidine monophosphate kinase 2 (CMPK2), disrupts mitochondrial physiology and significantly deregulates the resting immune homeostasis of macrophages. Both CMPK2 silenced and constitutively overexpressing macrophage lines portray mitochondrial stress with marked depolarization of their membrane potential, enhanced reactive oxygen species (ROS), and disturbed architecture culminating in the enhanced expression of the pro-inflammatory genes IL1ß, TNFα, and IL8. Interestingly, the long-term modulation of CMPK2 expression resulted in an increased glycolytic flux of macrophages akin to the altered physiological state of activated M1 macrophages. While infection-induced inflammation for restricting pathogens is regulated, our observation of a total dysregulation of basal inflammation by bidirectional alteration of CMPK2 expression only highlights the critical role of this gene in mitochondria-mediated control of inflammation.


Assuntos
Genes Mitocondriais , Macrófagos , Humanos , Homeostase , Inflamação/genética
7.
BMC Genomics ; 23(1): 738, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324074

RESUMO

BACKGROUND: Mytilidae, also known as marine mussels, are widely distributed in the oceans worldwide. Members of Mytilidae show a tremendous range of ecological adaptions, from the species distributed in freshwater to those that inhabit in deep-sea. Mitochondria play an important role in energy metabolism, which might contribute to the adaptation of Mytilidae to different environments. In addition, some bivalve species are thought to lack the mitochondrial protein-coding gene ATP synthase F0 subunit 8. Increasing studies indicated that the absence of atp8 may be caused by annotation difficulties for atp8 gene is characterized by highly divergent, variable length. RESULTS: In this study, the complete mitochondrial genomes of three marine mussels (Xenostrobus securis, Bathymodiolus puteoserpentis, Gigantidas vrijenhoeki) were newly assembled, with the lengths of 14,972 bp, 20,482, and 17,786 bp, respectively. We annotated atp8 in the sequences that we assembled and the sequences lacking atp8. The newly annotated atp8 sequences all have one predicted transmembrane domain, a similar hydropathy profile, as well as the C-terminal region with positively charged amino acids. Furthermore, we reconstructed the phylogenetic trees and performed positive selection analysis. The results showed that the deep-sea bathymodiolines experienced more relaxed evolutionary constraints. And signatures of positive selection were detected in nad4 of Limnoperna fortunei, which may contribute to the survival and/or thriving of this species in freshwater. CONCLUSIONS: Our analysis supported that atp8 may not be missing in the Mytilidae. And our results provided evidence that the mitochondrial genes may contribute to the adaptation of Mytilidae to different environments.


Assuntos
Genoma Mitocondrial , Mytilidae , Animais , Mytilidae/genética , Filogenia , Genes Mitocondriais , ATPases Mitocondriais Próton-Translocadoras/genética , Genômica/métodos
8.
Free Radic Biol Med ; 193(Pt 1): 430-436, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36341940

RESUMO

The early-onset Parkinson's disease protein DJ-1 is a multifunctional protein that plays a protective role against ischemia and reperfusion (I/R) injury and oxidative stress. Despite lacking a canonical RNA-binding domain DJ-1 exhibits RNA-binding activity and multiple transcripts have been identified. However, no functional characterization has been provided to date. Here, we have investigated the DJ-1-interacting transcripts, as well as the role of DJ-1 RNA-binding activity during ischemia and reperfusion. Among the identified DJ-1-interacting transcripts, we have distinguished a significant enrichment of mRNAs encoding mitochondrial proteins. The effects of DJ-1 depletion on mitochondrial protein expression and mitochondrial morphology were investigated using a CRISPR/Cas9 generated DJ-1 knockout (DJ-1KO) cell model. DJ-1 depletion resulted in increased MTND2 protein expression in resting cells; however, after exposure to I/R, MTND2 levels were significantly reduced with respect to wild type cells. Increased mitochondrial fission was consistently found in DJ-1KO cells after I/R exposure. MTND2 transcript binding to DJ-1 was increased during ischemia. Our results indicate that the RNA-binding activity of DJ-1 shield mitochondrial transcripts from oxidative damage.


Assuntos
Genes Mitocondriais , Traumatismo por Reperfusão , Humanos , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Estresse Oxidativo/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Reperfusão , Isquemia/metabolismo , RNA/metabolismo
9.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36292984

RESUMO

Mitochondrial DNA changes can contribute to both an increased and decreased likelihood of cancer. This process is complex and not fully understood. Polymorphisms and mutations, especially those of the missense type, can affect mitochondrial functions, particularly if the conservative domain of the protein is concerned. This study aimed to identify the possible relationships between brain gliomas and the occurrence of specific mitochondrial DNA polymorphisms and mutations in respiratory complexes III, IV and V. The investigated material included blood and tumour material collected from 30 Caucasian patients diagnosed with WHO grade II, III or IV glioma. The mitochondrial genetic variants were investigated across the mitochondrial genome using next-generation sequencing (MiSeq/FGx system-Illumina). The study investigated, in silico, the effects of missense mutations on the biochemical properties, structure and functioning of the encoded protein, as well as their potential harmfulness. The A14793G (MTCYB), A15758G, (MT-CYB), A15218G (MT-CYB), G7444A (MT-CO1) polymorphisms, and the T15663C (MT-CYB) and G8959A (ATP6) mutations were assessed in silico as harmful alterations that could be involved in oncogenesis. The G8959A (E145K) ATP6 missense mutation has not been described in the literature so far. In light of these results, further research into the role of mtDNA changes in brain tumours should be conducted.


Assuntos
Neoplasias Encefálicas , Genoma Mitocondrial , Humanos , DNA Mitocondrial/genética , Mitocôndrias/genética , Genes Mitocondriais , Mutação , Neoplasias Encefálicas/genética
10.
Front Endocrinol (Lausanne) ; 13: 953631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313763

RESUMO

Objectives: Mitochondrial DNA (mtDNA) plays an important role in the pathogenesis of diabetes. Variants in mtDNA have been reported in diabetes, but studies on the whole mtDNA variants were limited. Our study aims to explore the association of whole mtDNA variants with diabetes and diabetic kidney disease (DKD). Methods: The whole mitochondrial genome was screened by next-generation sequencing in cohort 1 consisting of 50 early-onset diabetes (EOD) patients with a maternally inherited diabetes (MID) family history. A total of 42 variants possibly associated with mitochondrial diseases were identified according to the filtering strategy. These variants were sequenced in cohort 2 consisting of 90 EOD patients with MID. The association between the clinical phenotype and these variants was analyzed. Then, these variants were genotyped in cohort 3 consisting of 1,571 type 2 diabetes mellitus patients and 496 subjects with normal glucose tolerance (NGT) to analyze the association between variants with diabetes and DKD. Results: Patients with variants in the non-coding region had a higher percentage of obesity and levels of fasting insulin (62.1% vs. 24.6%, P = 0.001; 80.0% vs. 26.5% P < 0.001). The patients with the variants in rRNA had a higher prevalence of obesity (71.4% vs. 30.3%, P = 0.007), and the patients with the variants in mitochondrial complex I had a higher percentage of the upper tertile of FINS (64.3% vs. 34.3%, P = 0.049). Among 20 homogeneous variants successfully captured, two known variants (m.A3943G, m.A10005G) associated with other mitochondrial diseases were only in the diabetic group, but not in the NGT group, which perhaps indicated its possible association with diabetes. The prevalence of DKD was significantly higher in the group with the 20 variants than those without these variants (18.7% vs. 14.6%, P = 0.049) in the participants with diabetes of cohort 3. Conclusion: MtDNA variants are associated with MID and DKD, and our findings advance our understanding of mtDNA in diabetes and DKD. It will have important implications for the individual therapy of mitochondrial diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Doenças Mitocondriais , Humanos , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/genética , Genes Mitocondriais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Obesidade/genética
11.
PLoS One ; 17(10): e0275621, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282866

RESUMO

Mitochondrial activity in cancer cells has been central to cancer research since Otto Warburg first published his thesis on the topic in 1956. Although Warburg proposed that oxidative phosphorylation in the tricarboxylic acid (TCA) cycle was perturbed in cancer, later research has shown that oxidative phosphorylation is activated in most cancers, including prostate cancer (PCa). However, more detailed knowledge on mitochondrial metabolism and metabolic pathways in cancers is still lacking. In this study we expand our previously developed method for analyzing functional homologous proteins (FunHoP), which can provide a more detailed view of metabolic pathways. FunHoP uses results from differential expression analysis of RNA-Seq data to improve pathway analysis. By adding information on subcellular localization based on experimental data and computational predictions we can use FunHoP to differentiate between mitochondrial and non-mitochondrial processes in cancerous and normal prostate cell lines. Our results show that mitochondrial pathways are upregulated in PCa and that splitting metabolic pathways into mitochondrial and non-mitochondrial counterparts using FunHoP adds to the interpretation of the metabolic properties of PCa cells.


Assuntos
Genes Mitocondriais , Neoplasias da Próstata , Masculino , Humanos , Regulação para Cima , Linhagem Celular Tumoral , Fosforilação Oxidativa , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ácidos Tricarboxílicos
12.
Genes (Basel) ; 13(10)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36292766

RESUMO

Anoplophora glabripennis (Motschulsky, 1854) and Demonax pseudonotabilis Gressitt & Rondon, 1970 are two commonly found longicorn beetles from China. However, the lack of sufficient molecular data hinders the understanding of their evolution and phylogenetic relationships with other species of Cerambycidae. This study sequenced and assembled the complete mitochondrial genomes of the two species using the next-generation sequencing method. The mitogenomes of A. glabripennis and D. pseudonotabilis are 15,622 bp and 15,527 bp in length, respectively. The mitochondrial gene content and gene order of A. glabripennis and D. pseudonotabilis are highly conserved with other sequenced longicorn beetles. The calculation of nonsynonymous (Ka) and synonymous (Ks) substitution rates in PCGs indicated the existence of purifying selection in the two longicorn beetles. The phylogenetic analysis was conducted using the protein-coding gene sequences from available mitogenomes of Cerambycidae. The two species sequenced in this study are, respectively, grouped with their relatives from the same subfamily. The monophyly of Cerambycinae, Dorcasominae, Lamiinae, and Necydalinae was well-supported, whereas Lepturinae, Prioninae, and Spondylidinae were recovered as paraphyletic.


Assuntos
Besouros , Genoma Mitocondrial , Animais , Besouros/genética , Filogenia , Genes Mitocondriais , China
13.
BMC Ecol Evol ; 22(1): 119, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271324

RESUMO

BACKGROUND: Phylogenetic analyses for plant pathogenic fungi explore many questions on diversities, relationships, origins, and divergences of populations from different sources such as species, host, and geography. This information is highly valuable, especially from a large global sampling, to understand the evolutionary paths of the pathogens worldwide. Monilinia fructicola and M. laxa are two important fungal pathogens of stone fruits that cause the widespread disease commonly known as brown rot. Three nuclear genes (Calmodulin, SDHA, TEF1α) and three mitochondrial genes (Cytochrome_b, NAD2, and NAD5) of the two pathogen species from a worldwide collection including five different countries from four different continents were studied in this work. RESULTS: Both Maximum Likelihood and Bayesian approaches were applied to the data sets, and in addition, Maximum Parsimony based approaches were used for the regions having indel polymorphisms. Calmodulin, SDHA, NAD2, and NAD5 regions were found phylogenetically informative and utilized for phylogenetics of Monilinia species for the first time. Each gene region presented a set of haplotypes except Cytochrome_b, which was monomorphic. According to this large collection of two Monilinia species around the world, M. fructicola showed more diversity than M. laxa, a result that should be carefully considered, as M. fructicola is known to be a quarantine pathogen. Moreover, the other two mitochondrial genes (NAD2 and NAD5) did not have any substitution type mutations but presented an intron indel polymorphism indicating the contribution of introns as well as mobile introns to the fungal diversity and evolution. Based on the concatenated gene sets, nuclear DNA carries higher mutations and uncovers more phylogenetic clusters in comparison to the mitochondrial DNA-based data for these fungal species. CONCLUSIONS: This study provides the most comprehensive knowledge on the phylogenetics of both nuclear and mitochondrial genes of two prominent brown rot pathogens, M. fructicola and M. laxa. Based on the regions used in this study, the nuclear genes resolved phylogenetic branching better than the mitochondrial genes and discovered new phylogenetic lineages for these species.


Assuntos
Genes Mitocondriais , Doenças das Plantas , Filogenia , Doenças das Plantas/microbiologia , Genes Mitocondriais/genética , Calmodulina/genética , Teorema de Bayes , DNA Mitocondrial/genética , Citocromos
14.
Genes (Basel) ; 13(10)2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36292672

RESUMO

Due to the limitations of taxon sampling and differences in results from the available data, the phylogenetic relationships of the Myriapoda remain contentious. Therefore, we try to reconstruct and analyze the phylogenetic relationships within the Myriapoda by examining mitochondrial genomes (the mitogenome). In this study, typical circular mitogenomes of Mecistocephalus marmoratus and Scolopendra subspinipes were sequenced by Sanger sequencing; they were 15,279 bp and 14,637 bp in length, respectively, and a control region and 37 typical mitochondrial genes were annotated in the sequences. The results showed that all 13 PCGs started with ATN codons and ended with TAR codons or a single T; what is interesting is that the gene orders of M. marmoratus have been extensively rearranged compared with most Myriapoda. Thus, we propose a simple duplication/loss model to explain the extensively rearranged genes of M. marmoratus, hoping to provide insights into mitogenome rearrangement events in Myriapoda. In addition, our mitogenomic phylogenetic analyses showed that the main myriapod groups are monophyletic and supported the combination of the Pauropoda and Diplopoda to form the Dignatha. Within the Chilopoda, we suggest that Scutigeromorpha is a sister group to the Lithobiomorpha, Geophilomorpha, and Scolopendromorpha. We also identified a close relationship between the Lithobiomorpha and Geophilomorpha. The results also indicate that the mitogenome can be used as an effective mechanism to understand the phylogenetic relationships within Myriapoda.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Filogenia , Genes Mitocondriais , Quilópodes , Códon
15.
Parasitol Res ; 121(12): 3427-3442, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36194272

RESUMO

This study determines the occurrence and molecular characterisation of Monogenea from three commercially important Australian fish: Australian sardine Sardinops sagax (Jenyns), Australian anchovy Engraulis australis (White), and eastern school whiting Sillago flindersi McKay. Earlier studies have provided only morphological species identification, whereas this study combines both morphological and molecular methods. A total of 247 fish across 3 species, sourced from the New South Wales and Victorian coasts, were examined for Monogenea. A total of 187 monogenean parasites were recovered from the gills. The overall prevalence, mean intensity, and mean abundance were 34%, 2.23, and 0.78, respectively. The parasites were initially classified morphologically as three species across two families. Family Mazocraeidae was represented by Mazocraes australis Timi et al. J Parasitol 85:28-32, 1999, and family Microcotylidae by Polylabris sillaginae (Woolcock, Parasitology 28:79-91, 1936) Dillon, Hargis, and Harrises, 1983 and P. australiensis Hayward, 1996. Molecular identification of parasites was conducted through sequencing of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The fish hosts in the present study were also barcoded (mitochondrial cox1 gene) to confirm specific identities. There was no comparable cox1 sequence available in GenBank for the parasites found in the present study. However, the phylogenetic tree clustered the monogenean species identified in this study according to their familial groups of Mazocraeidae and Microcotylidae. The presence of M. australis on E. australis and S. sagax was confirmed in this study. Polylabris australiensis was only found on S. sagax but Si. flindersi was found to be a host for both Polylabris species. This study is the first to explore the mitochondrial cox1 genes of these three-monogenean species. These findings will serve as a foundation for future monogenean research in Australian waters and elsewhere.


Assuntos
Doenças dos Peixes , Trematódeos , Animais , Filogenia , Austrália , Brânquias/parasitologia , Genes Mitocondriais , Peixes/parasitologia , Doenças dos Peixes/parasitologia
16.
Mol Biol Evol ; 39(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36288802

RESUMO

Mitochondrial (mt) and nuclear-encoded proteins are integrated in aerobic respiration, requiring co-functionality among gene products from fundamentally different genomes. Different evolutionary rates, inheritance mechanisms, and selection pressures set the stage for incompatibilities between interacting products of the two genomes. The mitonuclear coevolution hypothesis posits that incompatibilities may be avoided if evolution in one genome selects for complementary changes in interacting genes encoded by the other genome. Nuclear compensation, in which deleterious mtDNA changes are offset by compensatory nuclear changes, is often invoked as the primary mechanism for mitonuclear coevolution. Yet, direct evidence supporting nuclear compensation is rare. Here, we used data from 58 mammalian species representing eight orders to show strong correlations between evolutionary rates of mt and nuclear-encoded mt-targeted (N-mt) proteins, but not between mt and non-mt-targeted nuclear proteins, providing strong support for mitonuclear coevolution across mammals. N-mt genes with direct mt interactions also showed the strongest correlations. Although most N-mt genes had elevated dN/dS ratios compared to mt genes (as predicted under nuclear compensation), N-mt sites in close contact with mt proteins were not overrepresented for signs of positive selection compared to noncontact N-mt sites (contrary to predictions of nuclear compensation). Furthermore, temporal patterns of N-mt and mt amino acid substitutions did not support predictions of nuclear compensation, even in positively selected, functionally important residues with direct mitonuclear contacts. Overall, our results strongly support mitonuclear coevolution across ∼170 million years of mammalian evolution but fail to support nuclear compensation as the major mode of mitonuclear coevolution.


Assuntos
DNA Mitocondrial , Genes Mitocondriais , Animais , DNA Mitocondrial/genética , Mamíferos/genética , Núcleo Celular/genética , Proteínas Mitocondriais/genética , Genômica
17.
Mol Biol Rep ; 49(12): 12269-12273, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264418

RESUMO

BACKGROUND: Caryophylliidae is one of the most diverse scleractinian families, however it was recovered as polyphyletic in multiple molecular studies. Recently, the mitochondrial gene order was proposed as a character for a taxonomic revision of the family. Here we describe the first mitogenome of the caryophylliid genus Crispatotrochus, whose phylogenetic position remains uncertain. METHODS AND RESULTS: The complete mitochondrial genomes of Crispatotrochus rubescens and Crispatotrochus rugosus were sequenced, assembled, and annotated. The two mitogenomes are identical and circular, have a length of 16,536 bp, a GC content of 35.9%, and contain 13 protein-coding genes, 2 ribosomal RNAs and 2 transfer RNAs. Both species have a transposition of a three gene block - cob, nad2, and nad6 - similarly to a group of caryophylliid genera that were recovered as monophyletic, including the type genus (Caryophyllia) of the family. The phylogenetic analyses recovered Crispatotrochus within the clade that presents the gene rearrangement and specifically as sister taxa of the genus Caryophyllia, a result consistent with previous studies and the similar gross morphology of the two genera. CONCLUSIONS: We determined the mitochondrial genomes of the genus Crispatotrochus to investigate their relations within Scleractinia. Results from this study provide insights on the phylogenetic position of the genus and corroborate that the mitochondrial gene order could be used as taxonomic character for the family Caryophylliidae.


Assuntos
Antozoários , Genoma Mitocondrial , Animais , Antozoários/genética , Ordem dos Genes , Genes Mitocondriais , Genoma Mitocondrial/genética , Filogenia
18.
Stem Cell Res ; 64: 102920, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36137325

RESUMO

We used a non-integrative self-replicating RNA vector to establish four iPSC lines: two iPSC lines from a young male carrying the mutation m.9185 T>C in the mitochondrial gene MT-ATP6 (present at virtual homoplasmic level), and two iPSC lines from his healthy mother (carrying the mutation in only about 4 % of mtDNA copies). All iPSC lines exhibited pluripotency characteristics, were capable to give rise to cells of the three germ layers in vitro, and presented a normal karyotype. The derived iPSC lines retained the MT-ATP6 mutation at levels similar to those observed in the parental fibroblasts.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Feminino , Masculino , Genes Mitocondriais , RNA , Mães , DNA Mitocondrial/genética , Mutação/genética , ATPases Mitocondriais Próton-Translocadoras/genética
19.
J Fish Biol ; 101(5): 1225-1234, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36054289

RESUMO

Minnows of the genus Phoxinus are common and an often highly abundant fish species in Palearctic freshwater habitats. Phoxinus species have a complex evolutionary history, phylogenetic relationships are not well understood and there are a number of unresolved taxonomic problems. There are currently 23 different mitochondrial genetic lineages identified in the genus Phoxinus, 13 of which are recognized as valid species. The taxonomic status of these lineages requires resolution, including the degree to which they can interbreed. Suitable nuclear molecular markers for studies of population divergence and interbreeding between morphotypes and mitochondrial lineages are lacking for Phoxinus species. Therefore, the authors developed a set of microsatellite markers using genomic information from Phoxinus lumaireul and tested their suitability for this and two related species, Phoxinus krkae and Phoxinus marsilii. Out of 16 microsatellite candidate loci isolated, 12 were found to be in Hardy-Weinberg equilibrium when tested on two P. lumaireul senso lato populations. Seven loci amplified across the three species, enabling the study of intraspecific genetic diversity and population structure within P. marsilii and P. krkae. The markers were able to clearly resolve differences among the three tested species, including the recently described P. krkae, and are therefore suitable for the detection of introgression and hybridization among populations consisting of mixtures of two or more of P. lumaireul s. l., P. marsilii and P. krkae.


Assuntos
Cyprinidae , Cipriniformes , Animais , Filogenia , Cipriniformes/genética , Repetições de Microssatélites , Cyprinidae/genética , Genes Mitocondriais
20.
F1000Res ; 11: 169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128561

RESUMO

Background: The standardization and mechanism of action of  Caesalpinia sappan as an anticancer agent are still lacking. This study aimed to understand the mechanism of action of  C,sappan extract as an anticancer agent. Methods: This study was conducted using the A549 lung cancer cell line to understand the mechanism of action of  C. sappan extract as an anticancer agent. The cytotoxicity activity, cell cycle progression, apoptosis, protein-related apoptosis (i.e., BCL-2and BAX protein) assays, and RNA sequencing were performed level were measured. Moreover, the antioxidant activity, total flavonoids, and phenolics of C.sappan were also assessed. Results: C.sappan has strong antioxidant activity (22.14 ± 0.93 ppm) total flavonoid content of (529.3 ± 4.56 mgQE/g), and phenolics content of (923.37 ± 5 mgGAE/g). The C.sappan ethanol extract inhibited cancer cell growth and arrested at G0/G1 phase of cell cycle, inducing apoptosis by increasing BAX/BCL-2 protein ratio in A549 lung cancer cell line. Furthermore, results from RNA sequencing analysis showed that C.sappan ethanol extract caused downregulation of genes acting on mitochondrial function including adenosine triphosphate (ATP) production and respiration. Conclusions: This study demonstrated that C.sappan has the ability to inhibit cancer cell growth by inducing apoptosis and mitochondrial dysfunction in A549 cells.


Assuntos
Antineoplásicos , Caesalpinia , Neoplasias Pulmonares , Células A549 , Trifosfato de Adenosina , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Etanol , Flavonoides/farmacologia , Genes Mitocondriais , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Extratos Vegetais/farmacologia , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...