Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36.515
Filtrar
1.
Sci Rep ; 14(1): 15123, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956272

RESUMO

The OVATE gene family plays an important role in regulating the development of plant organs and resisting stress, but its expression characteristics and functions in sorghum have not been revealed. In this study, we identified 26 OVATE genes in the sorghum BTx623 genome, which were divided into four groups and distributed unevenly across 9 chromosomes. Evolutionary analysis showed that after differentiation between sorghum and Arabidopsis, the OVATE gene family may have experienced unique expansion events, and all OVATE family members were negatively selected. Transcriptome sequencing and RT-qPCR results showed that OVATE genes in sorghum showed diverse expression characteristics, such as gene SORBl_3001G468900 and SORBl_3009G173400 were significantly expressed in seeds, while SORBI_3005G042700 and SORBI_3002G417700 were only highly expressed in L1. Meantime, in the promoter region, a large number of hormone-associated cis-acting elements were identified, and these results suggest that members of the OVATE gene family may be involved in regulating specific development of sorghum leaves and seeds. This study improves the understanding of the OVATE gene family of sorghum and provides important clues for further exploration of the function of the OVATE gene family.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Folhas de Planta , Proteínas de Plantas , Sementes , Sorghum , Sorghum/genética , Sorghum/metabolismo , Sementes/genética , Sementes/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Filogenia , Perfilação da Expressão Gênica , Evolução Molecular , Regiões Promotoras Genéticas , Cromossomos de Plantas/genética , Genes de Plantas
2.
BMC Plant Biol ; 24(1): 626, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961401

RESUMO

BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.


Assuntos
Calmodulina , Flores , Frutas , Passiflora , Filogenia , Proteínas de Plantas , Passiflora/genética , Passiflora/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genes de Plantas , Perfilação da Expressão Gênica
3.
BMC Genomics ; 25(1): 671, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970011

RESUMO

BACKGROUND: The dirigent (DIR) genes encode proteins that act as crucial regulators of plant lignin biosynthesis. In Solanaceae species, members of the DIR gene family are intricately related to plant growth and development, playing a key role in responding to various biotic and abiotic stresses. It will be of great application significance to analyze the DIR gene family and expression profile under various pathogen stresses in Solanaceae species. RESULTS: A total of 57 tobacco NtDIRs and 33 potato StDIRs were identified based on their respective genome sequences. Phylogenetic analysis of DIR genes in tobacco, potato, eggplant and Arabidopsis thaliana revealed three distinct subgroups (DIR-a, DIR-b/d and DIR-e). Gene structure and conserved motif analysis showed that a high degree of conservation in both exon/intron organization and protein motifs among tobacco and potato DIR genes, especially within members of the same subfamily. Total 8 pairs of tandem duplication genes (3 pairs in tobacco, 5 pairs in potato) and 13 pairs of segmental duplication genes (6 pairs in tobacco, 7 pairs in potato) were identified based on the analysis of gene duplication events. Cis-regulatory elements of the DIR promoters participated in hormone response, stress responses, circadian control, endosperm expression, and meristem expression. Transcriptomic data analysis under biotic stress revealed diverse response patterns among DIR gene family members to pathogens, indicating their functional divergence. After 96 h post-inoculation with Ralstonia solanacearum L. (Ras), tobacco seedlings exhibited typical symptoms of tobacco bacterial wilt. The qRT-PCR analysis of 11 selected NtDIR genes displayed differential expression pattern in response to the bacterial pathogen Ras infection. Using line 392278 of potato as material, typical symptoms of potato late blight manifested on the seedling leaves under Phytophthora infestans infection. The qRT-PCR analysis of 5 selected StDIR genes showed up-regulation in response to pathogen infection. Notably, three clustered genes (NtDIR2, NtDIR4, StDIR3) exhibited a robust response to pathogen infection, highlighting their essential roles in disease resistance. CONCLUSION: The genome-wide identification, evolutionary analysis, and expression profiling of DIR genes in response to various pathogen infection in tobacco and potato have provided valuable insights into the roles of these genes under various stress conditions. Our results could provide a basis for further functional analysis of the DIR gene family under pathogen infection conditions.


Assuntos
Evolução Molecular , Família Multigênica , Nicotiana , Filogenia , Proteínas de Plantas , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Nicotiana/genética , Nicotiana/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Estresse Fisiológico/genética , Regiões Promotoras Genéticas , Duplicação Gênica , Ralstonia solanacearum , Genes de Plantas
4.
PLoS One ; 19(7): e0303436, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985786

RESUMO

Maize (Zea mays L.) C-type cytoplasmic male sterility (CMS-C) is a highly used CMS system for maize commercial hybrid seed production. Rf4 is the major dominant restorer gene for CMS-C. Inbreds were recently discovered which contain the restoring Rf4 allele yet are unable to restore fertility due to the lack of an additional gene required for Rf4's restoration. To find this additional gene, QTL mapping and positional cloning were performed using an inbred that contained Rf4 but was incapable of restoring CMS-C. The QTL was mapped to a 738-kb interval on chromosome 2, which contains a Pentatricopeptide Repeat (PPR) gene cluster. Allele content comparisons of the inbreds identified three potential candidate genes responsible for fertility restoration in CMS-C. Complementation via transformation of these three candidate genes showed that PPR153 (Zm00001eb114660) is required for Rf4 to restore fertility to tassels. The PPR153 sequence is present in B73 genome, but it is not capable of restoring CMS-C without Rf4. Analysis using NAM lines revealed that Rf4 requires the presence of PPR153 to restore CMS-C in diverse germplasms. This research uncovers a major CMS-C genetic restoration pathway and can be used for identifying inbreds suitable for maize hybrid production with CMS-C cytoplasm.


Assuntos
Infertilidade das Plantas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Infertilidade das Plantas/genética , Citoplasma/metabolismo , Citoplasma/genética , Mapeamento Cromossômico , Genes de Plantas , Proteínas de Plantas/genética , Alelos
5.
BMC Plant Biol ; 24(1): 635, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971717

RESUMO

Excessive phosphorus (P) levels can disrupt nutrient balance in plants, adversely affecting growth. The molecular responses of Pennisetum species to high phosphorus stress remain poorly understood. This study examined two Pennisetum species, Pennisetum americanum × Pennisetum purpureum and Pennisetum americanum, under varying P concentrations (200, 600 and 1000 µmol·L- 1 KH2PO4) to elucidate transcriptomic alterations under high-P conditions. Our findings revealed that P. americanum exhibited stronger adaption to high-P stress compared to P. americanum× P. purpureum. Both species showed an increase in plant height and leaf P content under elevated P levels, with P. americanum demonstrating greater height and higher P content than P. americanum× P. purpureum. Transcriptomic analysis identified significant up- and down-regulation of key genes (e.g. SAUR, GH3, AHP, PIF4, PYL, GST, GPX, GSR, CAT, SOD1, CHS, ANR, P5CS and PsbO) involved in plant hormone signal transduction, glutathione metabolism, peroxisomes, flavonoid biosynthesis, amino acid biosynthesis and photosynthesis pathways. Compared with P. americanum× P. purpureum, P. americanum has more key genes in the KEGG pathway, and some genes have higher expression levels. These results contribute valuable insights into the molecular mechanisms governing high-P stress in Pennisetum species and offer implications for broader plant stress research.


Assuntos
Perfilação da Expressão Gênica , Pennisetum , Fósforo , Folhas de Planta , Estresse Fisiológico , Pennisetum/genética , Pennisetum/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fósforo/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Genes de Plantas
6.
BMC Plant Biol ; 24(1): 639, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971732

RESUMO

BACKGROUND: Alkaloids, important secondary metabolites produced by plants, play a crucial role in responding to environmental stress. Heuchera micrantha, a well-known plant used in landscaping, has the ability to purify air, and absorb toxic and radioactive substances, showing strong environmental adaptability. However, there is still limited understanding of the accumulation characteristics and metabolic mechanism of alkaloids in H. micrantha. RESULTS: In this study, four distinct varieties of H. micrantha were used to investigate the accumulation and metabolic traits of alkaloids in its leaves. We conducted a combined analysis of the plant's metabolome and transcriptome. Our analysis identified 44 alkaloids metabolites in the leaves of the four H. micrantha varieties, with 26 showing different levels of accumulation among the groups. The HT and JQ varieties exhibited higher accumulation of differential alkaloid metabolites compared to YH and HY. We annotated the differential alkaloid metabolites to 22 metabolic pathways, including several alkaloid metabolism. Transcriptome data revealed 5064 differentially expressed genes involved in these metabolic pathways. Multivariate analysis showed that four key metabolites (N-hydroxytryptamine, L-tyramine, tryptamine, and 2-phenylethylamine) and three candidate genes (Cluster-15488.116815, Cluster-15488.146268, and Cluster-15488.173297) that merit further investigation. CONCLUSIONS: This study provided preliminarily insight into the molecular mechanism of the biosynthesis of alkaloids in H. micrantha. However, further analysis is required to elucidate the specific regulatory mechanisms of the candidate gene involved in the synthesis of key alkaloid metabolites. In summary, our findings provide important information about how alkaloid metabolites build up and the metabolic pathways involved in H. micrantha varieties. This gives us a good starting point for future research on the regulation mechanism, and development, and utilization of alkaloids in H. micrantha.


Assuntos
Alcaloides , Metaboloma , Folhas de Planta , Transcriptoma , Alcaloides/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/genética , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Caryophyllales/genética , Caryophyllales/metabolismo , Perfilação da Expressão Gênica
7.
Methods Mol Biol ; 2830: 13-23, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977564

RESUMO

Wild progenitors of Triticeae crops generally have long dormancy periods. Domesticated crops inherited these longer dormancy alleles from their wild progenitors, which have since been modified and selected during cultivation and utilization by humans. Thus, allelic combinations at different seed dormancy loci are currently represented in Triticeae germplasm preserved in seed repositories and gene banks as accessions and materials of breeding programs. Methods to evaluate seed dormancy are key to explore, analyze, and exploit optimal alleles in dormancy genes. Recent developments in genomics have accelerated the identification and analysis of seed dormancy loci in Triticeae species. Transgenic experiments have been conducted to validate if candidate genes affect seed dormancy and more recently have yielded an array of mutations derived from genome editing for practical applications. The information gathered on these seed dormancy loci provides a deeper knowledge of germplasm diversity and offers strategies to control seed dormancy in breeding programs in Triticeae crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Dormência de Plantas , Sementes , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Alelos , Produtos Agrícolas/genética , Genes de Plantas , Plantas Geneticamente Modificadas/genética , Edição de Genes/métodos
8.
Methods Mol Biol ; 2830: 107-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977572

RESUMO

Seed dormancy is an important agronomic trait in cereal crops. Throughout the domestication of cereals, seed dormancy has been reduced to obtain uniform germination. However, grain crops must retain moderate levels of seed dormancy to prevent problems such as preharvest sprouting in wheat (Triticum aestivum) and barley (Hordeum vulgare). To produce modern cultivars with the appropriate seed dormancy levels, it is important to identify the genes responsible for seed dormancy. With recent advances in sequencing technology, several causal genes for seed dormancy quantitative trait loci (QTLs) have been identified in barley and wheat. Here, we present a method to identify causal genes for seed dormancy QTLs in barley, a method that is also applicable to other cereals.


Assuntos
Mapeamento Cromossômico , Clonagem Molecular , Hordeum , Dormência de Plantas , Locos de Características Quantitativas , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Dormência de Plantas/genética , Mapeamento Cromossômico/métodos , Clonagem Molecular/métodos , Genes de Plantas , Sementes/genética , Sementes/crescimento & desenvolvimento , Cromossomos de Plantas/genética
9.
Methods Mol Biol ; 2830: 131-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977574

RESUMO

Seed dormancy genes typically suppress germination and cell division. Therefore, overexpressing these genes can negatively affect tissue culture, interfering with the generation of transgenic plants and thus hampering the analysis of gene function. Transient expression in target cells is a useful approach for studying the function of seed dormancy genes. Here, we describe a protocol for transiently expressing genes related to seed dormancy in the scutellum of immature wheat (Triticum aestivum) embryos to analyze their effects on germination.


Assuntos
Regulação da Expressão Gênica de Plantas , Germinação , Dormência de Plantas , Sementes , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , Dormência de Plantas/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Germinação/genética , Biolística/métodos , Plantas Geneticamente Modificadas/genética , Genes de Plantas , Expressão Gênica/genética
10.
Methods Mol Biol ; 2830: 149-161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977576

RESUMO

Transgenesis technologies, such as overexpression or RNA interference-mediated suppression, have often been used to alter the activity of target genes. More recently developed targeted genome modification methods using customizable endonucleases allow for the regulation or knockout mutation of target genes without the necessity of integrating recombinant DNA. Such approaches make it possible to create novel alleles of target genes, thereby significantly contributing to crop improvement. Among these technologies, the Cas9 endonuclease-based method is widely applied to several crops, including barley (Hordeum vulgare). In this chapter, we describe an Agrobacterium-based approach to the targeted modification of grain dormancy genes in barley using RNA-guided Cas9 nuclease.


Assuntos
Sistemas CRISPR-Cas , Hordeum , Dormência de Plantas , Hordeum/genética , Dormência de Plantas/genética , Plantas Geneticamente Modificadas/genética , Edição de Genes/métodos , Agrobacterium/genética , RNA Guia de Sistemas CRISPR-Cas/genética , Genes de Plantas
11.
Methods Mol Biol ; 2830: 137-148, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38977575

RESUMO

Knockout mutants provide definitive information about the functions of genes related to agronomic traits, including seed dormancy. However, it takes many years to produce knockout mutants using conventional techniques in polyploid plants such as hexaploid wheat. Genome editing with sequence-specific nucleases is a promising approach for obtaining knockout mutations in all targeted homoeologs of wheat simultaneously. Here, we describe a procedure to produce a triple recessive mutant in wheat via genome editing. This protocol covers the evaluation of gRNA and Agrobacterium-mediated transformation to obtain edited wheat seedlings.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Inativação de Genes , Dormência de Plantas , Triticum , Triticum/genética , Edição de Genes/métodos , Dormência de Plantas/genética , Técnicas de Inativação de Genes/métodos , Mutação , Plantas Geneticamente Modificadas/genética , Genoma de Planta , RNA Guia de Sistemas CRISPR-Cas/genética , Sementes/genética , Genes de Plantas , Agrobacterium/genética , Plântula/genética
12.
BMC Plant Biol ; 24(1): 663, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992596

RESUMO

BACKGROUND: The Bric-a-Brac/Tramtrack/Broad Complex (BTB) gene family plays essential roles in various biological processes in plants. These genes encode proteins that contain a conserved BTB domain, which is involved in protein-protein interactions and regulation of gene expression. However, there is no systematic reports on the BTB gene family in G.max. RESULTS: In total, 122 soybean BTB genes were identified, which were classified into four groups based on the phylogenetic analysis. Gene structures analysis indicated that the number of exon-intron in GmBTBs ranges from 0 to18. Cis-element analysis revealed that most GmBTB genes contained cis-elements related to an abiotic stress response. In addition, qRT-PCR analyses indicated that most GmBTBs are significantly up-regulated under salinity, drought, and nitrate stresses. They suggested their potential for targeted improvement of soybean response to multiple abiotic stresses and nitrate availability. CONCLUSION: These results provide valuable information for identifying the members of the GmBTB gene family in soybean and could provide a functional characterization of GmBTB genes in further research.


Assuntos
Glycine max , Família Multigênica , Filogenia , Proteínas de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Genes de Plantas , Genoma de Planta , Perfilação da Expressão Gênica
13.
Theor Appl Genet ; 137(8): 183, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002016

RESUMO

KEY MESSAGE: The exploration and dissection of a set of QTLs and candidate genes for gray leaf spot disease resistance using two fully assembled parental genomes may help expedite maize resistance breeding. The fungal disease of maize known as gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is a significant concern in China, Southern Africa, and the USA. Resistance to GLS is governed by multiple genes with an additive effect and is influenced by both genotype and environment. The most effective way to reduce the cost of production is to develop resistant hybrids. In this study, we utilized the IBM Syn 10 Doubled Haploid (IBM Syn10 DH) population to identify quantitative trait loci (QTLs) associated with resistance to gray leaf spot (GLS) in multiple locations. Analysis of seven distinct environments revealed a total of 58 QTLs, 49 of which formed 12 discrete clusters distributed across chromosomes 1, 2, 3, 4, 8 and 10. By comparing these findings with published research, we identified colocalized QTLs or GWAS loci within eleven clustering intervals. By integrating transcriptome data with genomic structural variations between parental individuals, we identified a total of 110 genes that exhibit both robust disparities in gene expression and structural alterations. Further analysis revealed 19 potential candidate genes encoding conserved resistance gene domains, including putative leucine-rich repeat receptors, NLP transcription factors, fucosyltransferases, and putative xyloglucan galactosyltransferases. Our results provide a valuable resource and linked loci for GLS marker resistance selection breeding in maize.


Assuntos
Cercospora , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Cercospora/genética , Melhoramento Vegetal , Fenótipo , Haploidia , Genótipo , Genes de Plantas
14.
BMC Plant Biol ; 24(1): 636, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971734

RESUMO

BACKGROUND: The monocot chimeric jacalins (MCJ) proteins, which contain a jacalin-related lectin (JRL) domain and a dirigent domain (DIR), are specific to Poaceae. MCJ gene family is reported to play an important role in growth, development and stress response. However, their roles in maize have not been thoroughly investigated. RESULTS: In this study, eight MCJ genes in the maize genome (designated as ZmMCJs) were identified, which displayed unequal distribution across four chromosomes. Phylogenetic relationships between the ZmMCJs were evident through the identification of highly conserved motifs and gene structures. Analysis of transcriptome data revealed distinct expression patterns among the ZmMCJ genes, leading to their classification into four different modules, which were subsequently validated using RT-qPCR. Protein structures of the same module are found to be relatively similar. Subcellular localization experiments indicated that the ZmMCJs are mainly located on the cell membrane. Additionally, hemagglutination and inhibition experiments show that only part of the ZmMCJs protein has lectin activity, which is mediated by the JRL structure, and belongs to the mannose-binding type. The cis-acting elements in the promoter region of ZmMCJ genes predicted their involvement response to phytohormones, such as abscisic acid and jasmonic acid. This suggests that ZmMCJ genes may play a significant role in both biotic and abiotic stress responses. CONCLUSIONS: Overall, this study adds new insights into our understanding of the gene-protein architecture, evolutionary characteristics, expression profiles, and potential functions of MCJ genes in maize.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Zea mays , Zea mays/genética , Zea mays/fisiologia , Proteínas de Plantas/genética , Quimera , Filogenia , Genoma de Planta , Reação em Cadeia da Polimerase , Cromossomos
15.
Plant Dis ; 108(7): 2197-2205, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956749

RESUMO

Rust disease is a common plant disease that can cause wilting, slow growth of plant leaves, and even affect the growth and development of plants. Orchardgrass (Dactylis glomerata L.) is native to temperate regions of Europe, which has been introduced as a superior forage grass in temperate regions worldwide. Orchardgrass has rich genetic diversity and is widely distributed in the world, which may contain rust resistance genes not found in other crops. Therefore, we collected a total of 333 orchardgrass accessions from different regions around the world. Through a genome-wide association study (GWAS) analysis conducted in four different environments, 91 genes that overlap or are adjacent to significant single nucleotide polymorphisms (SNPs) were identified as potential rust disease resistance genes. Combining transcriptome data from susceptible (PI292589) and resistant (PI251814) accessions, the GWAS candidate gene DG5C04160.1 encoding glutathione S-transferase (GST) was found to be important for orchardgrass rust (Puccinia graminis) resistance. Interestingly, by comparing the number of GST gene family members in seven species, it was found that orchardgrass has the most GST gene family members, containing 119 GST genes. Among them, 23 GST genes showed significant differential expression after inoculation with the rust pathogen in resistant and susceptible accessions; 82% of the genes still showed significantly increased expression 14 days after inoculation in resistant accessions, while the expression level significantly decreased in susceptible accessions. These results indicate that GST genes play an important role in orchardgrass resistance to rust (P. graminis) stress by encoding GST to reduce its oxidative stress response.


Assuntos
Dactylis , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Puccinia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Puccinia/genética , Puccinia/fisiologia , Dactylis/genética , Dactylis/microbiologia , Perfilação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Glutationa Transferase/genética , Genes de Plantas/genética , Transcriptoma , Basidiomycota/fisiologia , Basidiomycota/genética
16.
Plant Cell Rep ; 43(7): 189, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38960996

RESUMO

KEY MESSAGE: QTL mapping combined with genome-wide association studies, revealed a potential candidate gene for  resistance to northern leaf blight in the tropical CATETO-related maize line YML226, providing a basis for marker-assisted selection of maize varieties Northern leaf blight (NLB) is a foliar disease that can cause severe yield losses in maize. Identifying and utilizing NLB-resistant genes is the most effective way to prevent and control this disease. In this study, five important inbred lines of maize were used as parental lines to construct a multi-parent population for the identification of NLB-resistant loci. QTL mapping and GWAS analysis revealed that QTL qtl_YML226_1, which had the largest phenotypic variance explanation (PVE) of 9.28%, and SNP 5-49,193,921 were co-located in the CATETO-related line YML226. This locus was associated with the candidate gene Zm00001d014471, which encodes a pentatricopeptide repeat (PPR) protein. In the coding region of Zm00001d014471, YML226 had more specific SNPs than the other parental lines. qRT-PCR showed that the relative expressions of Zm00001d014471 in inoculated and uninoculated leaves of YML226 were significantly higher, indicating that the expression of the candidate gene was correlated with NLB resistance. The analysis showed that the higher expression level in YML226 might be caused by SNP mutations. This study identified NLB resistance candidate loci and genes in the tropical maize inbred line YML226 derived from the CATETO germplasm, thereby providing a theoretical basis for using modern marker-assisted breeding techniques to select genetic resources resistant to NLB.


Assuntos
Mapeamento Cromossômico , Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Genes de Plantas , Fenótipo , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Sci Rep ; 14(1): 16458, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013915

RESUMO

Rice blast disease is the most devastating disease constraining crop productivity. Vertical resistance to blast disease is widely studied despite its instability. Clusters of genes or QTLs conferring blast resistance that offer durable horizontal resistance are important in resistance breeding. In this study, we aimed to refine the reported QTLs and identify stable meta-QTLs (MQTLs) associated with rice blast resistance. A total of 435 QTLs were used to project 71 MQTLs across all the rice chromosomes. As many as 199 putative rice blast resistance genes were identified within 53 MQTL regions. The genes included 48 characterized resistance gene analogs and related proteins, such as NBS-LRR type, LRR receptor-like kinase, NB-ARC domain, pathogenesis-related TF/ERF domain, elicitor-induced defense and proteins involved in defense signaling. MQTL regions with clusters of RGA were also identified. Fifteen highly significant MQTLs included 29 candidate genes and genes characterized for blast resistance, such as Piz, Nbs-Pi9, pi55-1, pi55-2, Pi3/Pi5-1, Pi3/Pi5-2, Pikh, Pi54, Pik/Pikm/Pikp, Pb1 and Pb2. Furthermore, the candidate genes (42) were associated with differential expression (in silico) in compatible and incompatible reactions upon disease infection. Moreover, nearly half of the genes within the MQTL regions were orthologous to those in O. sativa indica, Z. mays and A. thaliana, which confirmed their significance. The peak markers within three significant MQTLs differentiated blast-resistant and susceptible lines and serve as potential surrogates for the selection of blast-resistant lines. These MQTLs are potential candidates for durable and broad-spectrum rice blast resistance and could be utilized in blast resistance breeding.


Assuntos
Resistência à Doença , Redes Reguladoras de Genes , Oryza , Doenças das Plantas , Locos de Características Quantitativas , Oryza/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Cromossomos de Plantas/genética , Mapeamento Cromossômico , Genes de Plantas
18.
Theor Appl Genet ; 137(8): 190, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043952

RESUMO

KEY MESSAGE: Extensive and comprehensive phenotypic data from a maize RIL population under both low- and normal-Pi treatments were used to conduct QTL mapping. Additionally, we integrated parental resequencing data from the RIL population, GWAS results, and transcriptome data to identify candidate genes associated with low-Pi stress in maize. Phosphorus (Pi) is one of the essential nutrients that greatly affect the maize yield. However, the genes underlying the QTL controlling maize low-Pi response remain largely unknown. In this study, a total of 38 traits at both seedling and maturity stages were evaluated under low- and normal-Pi conditions using a RIL population constructed from X178 (tolerant) and 9782 (sensitive), and most traits varied significantly between low- and normal-Pi treatments. Twenty-nine QTLs specific to low-Pi conditions were identified after excluding those with common intervals under both low- and normal-Pi conditions. Furthermore, 45 additional QTLs were identified based on the index value ((Trait_under_LowPi-Trait_under_NormalPi)/Trait_under_NormalPi) of each trait. These 74 QTLs collectively were classified as Pi-dependent QTLs. Additionally, 39 Pi-dependent QTLs were clustered in nine HotspotQTLs. The Pi-dependent QTL interval contained 19,613 unique genes, 6,999 of which exhibited sequence differences with non-synonymous mutation sites between X178 and 9782. Combined with in silico GWAS results, 277 consistent candidate genes were identified, with 124 genes located within the HotspotQTL intervals. The transcriptome analysis revealed that 21 genes, including the Pi transporter ZmPT7 and the strigolactones pathway-related gene ZmPDR1, exhibited consistent low-Pi stress response patterns across various maize inbred lines or tissues. It is noteworthy that ZmPDR1 in maize roots can be sharply up-regulated by low-Pi stress, suggesting its potential importance as a candidate gene for responding to low-Pi stress through the strigolactones pathway.


Assuntos
Mapeamento Cromossômico , Fósforo , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Mapeamento Cromossômico/métodos , Fósforo/metabolismo , Fenótipo , Sequenciamento de Nucleotídeos em Larga Escala , Genes de Plantas , Genoma de Planta , Regulação da Expressão Gênica de Plantas , Simulação por Computador
19.
BMC Plant Biol ; 24(1): 696, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044142

RESUMO

BACKGROUND: Phosphorus (P) deficiency, a major nutrient stress, greatly hinders plant growth. Phosphate (Pi) uptake in plant roots relies on PHT1 family transporters. However, melon (Cucumis melo L.) lacks comprehensive identification and characterization of PHT1 genes, particularly their response patterns under diverse stresses. RESULTS: This study identified and analyzed seven putative CmPHT1 genes on chromosomes 3, 4, 5, 6, and 7 using the melon genome. Phylogenetic analysis revealed shared motifs, domain compositions, and evolutionary relationships among genes with close histories. Exon number varied from 1 to 3. Collinearity analysis suggested segmental and tandem duplications as the primary mechanisms for CmPHT1 gene family expansion. CmPHT1;4 and CmPHT1;5 emerged as a tandemly duplicated pair. Analysis of cis-elements in CmPHT1 promoters identified 14 functional categories, including putative PHR1-binding sites (P1BS) in CmPHT1;4, CmPHT1;6, and CmPHT1;7. We identified that three WRKY transcription factors regulated CmPHT1;5 expression by binding to its W-box element. Notably, CmPHT1 promoters harbored cis-elements responsive to hormones and abiotic factors. Different stresses regulated CmPHT1 expression differently, suggesting that the adjusted expression patterns might contribute to plant adaptation. CONCLUSIONS: This study unveils the characteristics, evolutionary diversity, and stress responsiveness of CmPHT1 genes in melon. These findings lay the foundation for in-depth investigations into their functional mechanisms in Cucurbitaceae crops.


Assuntos
Cucumis melo , Regulação da Expressão Gênica de Plantas , Fosfatos , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Cucumis melo/genética , Cucumis melo/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Genes de Plantas , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Transporte Biológico/genética
20.
BMC Plant Biol ; 24(1): 699, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044149

RESUMO

BACKGROUND: Proteins harboring the SPX domain are crucial for the regulation of phosphate (Pi) homeostasis in plants. This study aimed to identify and analyze the entire SPX gene family within the cucumber genome. RESULTS: The cucumber genome encompassed 16 SPX domain-containing genes, which were distributed across six chromosomes and categorized into four distinct subfamilies: SPX, SPX-MFS, SPX-EXS and SPX-RING, based on their structure characteristics. Additionally, gene duplications and synteny analysis were conducted for CsSPXs, revealing that their promoter regions were enriched with a variety of hormone-responsive, biotic/abiotic stress and typical P1BS-related elements. Tissue expression profiling of CsSPX genes revealed that certain members were specifically expressed in particular organs, suggesting essential roles in cucumber growth and development. Under low Pi stress, CsSPX1 and CsSPX2 exhibited a particularly strong response to Pi starvation. It was observed that the cucumber cultivar Xintaimici displayed greater tolerance to low Pi compared to black-spined cucumber under low Pi stress conditions. Protein interaction networks for the 16 CsSPX proteins were predicted, and yeast two-hybrid assay revealed that CsPHR1 interacted with CsSPX2, CsSPX3, CsSPX4 and CsSPX5, implying their involvement in the Pi signaling pathway in conjunction with CsPHR1. CONCLUSION: This research lays the foundation for further exploration of the function of the CsSPX genes in response to low Pi stress and for elucidating the underlying mechanism.


Assuntos
Cucumis sativus , Família Multigênica , Fósforo , Proteínas de Plantas , Cucumis sativus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fósforo/metabolismo , Fósforo/deficiência , Genoma de Planta , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA