Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.613
Filtrar
1.
Biotechnol J ; 19(7): e2300577, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987216

RESUMO

Microbial strain improvement through adaptive laboratory evolution (ALE) has been a key strategy in biotechnology for enhancing desired phenotypic traits. In this Biotech Method paper, we present an accelerated ALE (aALE) workflow and its successful implementation in evolving Cupriavidus necator H16 for enhanced tolerance toward elevated glycerol concentrations. The method involves the deliberate induction of genetic diversity through controlled exposure to divalent metal cations, enabling the rapid identification of improved variants. Through this approach, we observed the emergence of robust variants capable of growing in high glycerol concentration environments, demonstrating the efficacy of our aALE workflow. When cultivated in 10% v/v glycerol, the adapted variant Mn-C2-B11, selected through aALE, achieved a final OD600 value of 56.0 and a dry cell weight of 15.2 g L-1, compared to the wild type (WT) strain's final OD600 of 39.1 and dry cell weight of 8.4 g L-1. At an even higher glycerol concentration of 15% v/v, Mn-C2-B11 reached a final OD600 of 48.9 and a dry cell weight of 12.7 g L-1, in contrast to the WT strain's final OD600 of 9.0 and dry cell weight of 3.1 g L-1. Higher glycerol consumption by Mn-C2-B11 was also confirmed by high-performance liquid chromatography (HPLC) analysis. This adapted variant consumed 34.5 times more glycerol compared to the WT strain at 10% v/v glycerol. Our method offers several advantages over other reported ALE approaches, including its independence from genetically modified strains, specialized genetic tools, and potentially carcinogenic DNA-modifying agents. By utilizing divalent metal cations as mutagens, we offer a safer, more efficient, and cost-effective alternative for expansion of genetic diversity. With its ability to foster rapid microbial evolution, aALE serves as a valuable addition to the ALE toolbox, holding significant promise for the advancement of microbial strain engineering and bioprocess optimization.


Assuntos
Cupriavidus necator , Glicerol , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Glicerol/metabolismo , Glicerol/química , Cátions Bivalentes , Evolução Molecular Direcionada/métodos
2.
Appl Microbiol Biotechnol ; 108(1): 419, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012392

RESUMO

Waste glycerol is produced in excess by several industries, such as during biodiesel production. In this work, the metabolic versatility of anaerobic sludge was explored towards waste glycerol valorization. By applying different environmental (methanogenic and sulfate-reducing) conditions, three distinct microbial cultures were obtained from the same inoculum (anaerobic granular sludge), with high microbial specialization, within three different phyla (Thermodesulfobacteriota, Euryarchaeota and Pseudomonadota). The cultures are capable of glycerol conversion through different pathways: (i) glycerol conversion to methane by a bacterium closely related to Solidesulfovibrio alcoholivorans (99.8% 16S rRNA gene identity), in syntrophic relationship with Methanofollis liminatans (98.8% identity), (ii) fermentation to propionate by Propionivibrio pelophilus strain asp66 (98.6% identity), with a propionate yield of 0.88 mmol mmol-1 (0.71 mg mg-1) and a propionate purity of 80-97% and (iii) acetate production coupled to sulfate reduction by Desulfolutivibrio sulfoxidireducens (98.3% identity). In conclusion, starting from the same inoculum, we could drive the metabolic and functional potential of the microbiota towards the formation of several valuable products that can be used in industrial applications or as energy carriers. KEY POINTS: Versatility of anaerobic cultures was explored for waste glycerol valorization Different environmental conditions lead to metabolic specialization Biocommodities such as propionate, acetate and methane were produced.


Assuntos
Fermentação , Glicerol , Metano , RNA Ribossômico 16S , Esgotos , Glicerol/metabolismo , Esgotos/microbiologia , Anaerobiose , RNA Ribossômico 16S/genética , Metano/metabolismo , Filogenia , Sulfatos/metabolismo , Propionatos/metabolismo , Biocombustíveis , Acetatos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética
3.
Microb Cell Fact ; 23(1): 205, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044245

RESUMO

BACKGROUND: (R,R)-2,3-butanediol (BDO) is employed in a variety of applications and is gaining prominence due to its unique physicochemical features. The use of glycerol as a carbon source for 2,3-BDO production in Klebsiella pneumoniae has been limited, since 1,3-propanediol (PDO) is generated during glycerol fermentation. RESULTS: In this study, the inactivation of the budC gene in K. pneumoniae increased the production rate of (R,R)-2,3-BDO from 21.92 ± 2.10 to 92.05 ± 1.20%. The major isomer form of K. pneumoniae (meso-2,3-BDO) was shifted to (R,R)-2,3-BDO. The purity of (R,R)-2,3-BDO was examined by agitation speed, and 98.54% of (R,R)-2,3-BDO was obtained at 500 rpm. However, as the cultivation period got longer, the purity of (R,R)-2,3-BDO declined. For this problem, a two-step agitation speed control strategy (adjusted from 500 to 400 rpm after 24 h) and over-expression of the dhaD gene involved in (R,R)-2,3-BDO biosynthesis were used. Nevertheless, the purity of (R,R)-2,3-BDO still gradually decreased over time. Finally, when pure glycerol was replaced with crude glycerol, the titer of 89.47 g/L of (R,R)-2,3-BDO (1.69 g/L of meso-2,3-BDO), productivity of 1.24 g/L/h, and yield of 0.35 g/g consumed crude glycerol was achieved while maintaining a purity of 98% or higher. CONCLUSIONS: This study is meaningful in that it demonstrated the highest production and productivity among studies in that produced (R,R)-2,3-BDO with a high purity in Klebsiella sp. strains. In addition, to the best of our knowledge, this is the first study to produce (R,R)-2,3-BDO using glycerol as the sole carbon source.


Assuntos
Butileno Glicóis , Fermentação , Glicerol , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Glicerol/metabolismo , Butileno Glicóis/metabolismo , Engenharia Metabólica/métodos , Oxirredução , Estereoisomerismo , Propilenoglicóis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
4.
Sci Rep ; 14(1): 15788, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982099

RESUMO

Cryopreservation of human corneal stroma-derived mesenchymal stromal cells (hCS-MSCs) with dimethylsulfoxide (DMSO) as a cryoprotective agent (CPA) has not been previously compared to that with glycerol under standard conditions. The hCS-MSCs were hereby cryopreserved with both compounds using a freezing rate of 1 °C/minute. The CPAs were tested by different concentrations in complete Minimum Essential Medium (MEM) approved for good manufacturing practice, and a medium frequently used in cell laboratory culturing-Dulbecco's modified eagle serum. The hCS-MSCs were isolated from cadaveric human corneas obtained from the Norwegian Eye Bank, and immunophenotypically characterized by flow cytometry before and after cryopreservation. The survival rate, the cellular adhesion, proliferation and cell surface coverage after cryopreservation of hCS-MSCs has been studied. The hCS-MSCs were immunofluorescent stained and examined for their morphology microscopically. The results showed that cryopreservation of hCS-MSCs in MEM with 10% glycerol gives a higher proliferation rate compared to other cryopreserving media tested. Based on the results, hCS-MSCs can safely be cryopreserved using glycerol instead of the traditional use of DMSO.


Assuntos
Proliferação de Células , Sobrevivência Celular , Substância Própria , Criopreservação , Crioprotetores , Células-Tronco Mesenquimais , Humanos , Crioprotetores/farmacologia , Células-Tronco Mesenquimais/citologia , Criopreservação/métodos , Substância Própria/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glicerol/farmacologia , Dimetil Sulfóxido/farmacologia , Células Cultivadas , Adesão Celular/efeitos dos fármacos
5.
Bioresour Technol ; 406: 131063, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964512

RESUMO

Responsible use of natural resources and waste reduction are key concepts in bioeconomy. This study demonstrates that agro-food derived-biomasses from the Italian food industry, such as crude glycerol and cheese whey permeate (CWP), can be combined in a high-density fed-batch culture to produce a recombinant ß-galactosidase from Marinomonas sp. ef1 (M-ßGal). In a small-scale process (1.5 L) using 250 mL of crude glycerol and 300 mL of lactose-rich CWP, approximately 2000 kU of recombinant M-ßGal were successfully produced along with 30 g of galactose accumulated in the culture medium. The purified M-ßGal exhibited high hydrolysis efficiency in lactose-rich matrices, with hydrolysis yields of 82 % in skimmed milk at 4 °C and 94 % in CWP at 50 °C, highlighting its biotechnological potential. This approach demonstrates the effective use of crude glycerol and CWP in sustainable and cost-effective high-density Escherichia coli cultures, potentially applicable to recombinant production of various proteins.


Assuntos
Biotecnologia , Queijo , Escherichia coli , Glicerol , Soro do Leite , beta-Galactosidase , Glicerol/metabolismo , beta-Galactosidase/metabolismo , Escherichia coli/metabolismo , Biotecnologia/métodos , Proteínas Recombinantes/metabolismo , Hidrólise , Técnicas de Cultura Celular por Lotes , Lactose/metabolismo
6.
ACS Nano ; 18(29): 18963-18979, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39004822

RESUMO

Intraperitoneal co-delivery of chemotherapeutic drugs (CDs) and immune checkpoint inhibitors (ICIs) brings hope to improve treatment outcomes in patients with peritoneal metastasis from ovarian cancer (OC). However, current intraperitoneal drug delivery systems face issues such as rapid drug clearance from lymphatic drainage, heterogeneous drug distribution, and uncontrolled release of therapeutic agents into the peritoneal cavity. Herein, we developed an injectable nanohydrogel by combining carboxymethyl chitosan (CMCS) with bioadhesive nanoparticles (BNPs) based on polylactic acid-hyperbranched polyglycerol. This system enables the codelivery of CD and ICI into the intraperitoneal space to extend drug retention. The nanohydrogel is formed by cross-linking of aldehyde groups on BNPs with amine groups on CMCS via reversible Schiff base bonds, with CD and ICI loaded separately into BNPs and CMCS network. BNP/CMCS nanohydrogel maintained the activity of the biomolecules and released drugs in a sustained manner over a 7 day period. The adhesive property, through the formation of Schiff bases with peritoneal tissues, confers BNPs with an extended residence time in the peritoneal cavity after being released from the nanohydrogel. In a mouse model, BNP/CMCS nanohydrogel loaded with paclitaxel (PTX) and anti-PD-1 antibodies (αPD-1) significantly suppressed peritoneal metastasis of OC compared to all other tested groups. In addition, no systemic toxicity of nanohydrogel-loaded PTX and αPD-1 was observed during the treatment, which supports potential translational applications of this delivery system.


Assuntos
Quitosana , Sistemas de Liberação de Medicamentos , Hidrogéis , Inibidores de Checkpoint Imunológico , Nanocompostos , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Hidrogéis/química , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/patologia , Camundongos , Quitosana/química , Quitosana/análogos & derivados , Feminino , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/administração & dosagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Nanocompostos/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Glicerol/química , Glicerol/análogos & derivados , Linhagem Celular Tumoral , Polímeros/química , Poliésteres
7.
Biophys Chem ; 312: 107286, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38964115

RESUMO

1H-1H nuclear cross-relaxation experiments have been carried out with lysozyme in variable glycerol viscosity to study intramolecular motion, self-diffusion, and isotropic rigid-body rotational tumbling at 298 K, pH 3.8. Dynamics of intramolecular 1H-1H cross-relaxation rates, the increase in internuclear spatial distances, and lateral and rotational diffusion coefficients all show fractional viscosity dependence with a power law exponent κ in the 0.17-0.83 range. The diffusion coefficient of glycerol Ds with the bulk viscosity itself is non-Stokesian, having a fractional viscosity dependence on the medium viscosity (Ds âˆ¼ Î·-κ, κ ≈ 0.71). The concurrence and close similarity of the fractional viscosity dependence of glycerol diffusion on the one hand, and diffusion and intramolecular cross-relaxation rates of the protein on the other lead to infer that relaxation of glycerol slaves protein relaxations. Glycerol-transformed native lysozyme to a quasi-native state does not affect the conclusion that both global and internal fluctuations are slaved to glycerol relaxation.


Assuntos
Glicerol , Muramidase , Muramidase/química , Muramidase/metabolismo , Glicerol/química , Viscosidade , Espectroscopia de Prótons por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Difusão , Animais , Galinhas
8.
PLoS Pathog ; 20(7): e1012362, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976759

RESUMO

Filamentous cell growth is a vital property of fungal pathogens. The mechanisms of filamentation in the emerging multidrug-resistant fungal pathogen Candida auris are poorly understood. Here, we show that exposure of C. auris to glycerol triggers a rod-like filamentation-competent (RL-FC) phenotype, which forms elongated filamentous cells after a prolonged culture period. Whole-genome sequencing analysis reveals that all RL-FC isolates harbor a mutation in the C2H2 zinc finger transcription factor-encoding gene GFC1 (Gfc1 variants). Deletion of GFC1 leads to an RL-FC phenotype similar to that observed in Gfc1 variants. We further demonstrate that GFC1 mutation causes enhanced fatty acid ß-oxidation metabolism and thereby promotes RL-FC/filamentous growth. This regulation is achieved through a Multiple Carbon source Utilizer (Mcu1)-dependent mechanism. Interestingly, both the evolved RL-FC isolates and the gfc1Δ mutant exhibit an enhanced ability to colonize the skin. Our results reveal that glycerol-mediated GFC1 mutations are beneficial during C. auris skin colonization and infection.


Assuntos
Candida auris , Candidíase , Proteínas Fúngicas , Mutação , Candidíase/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida auris/genética , Candida auris/metabolismo , Camundongos , Animais , Glicerol/metabolismo , Adaptação Fisiológica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação Fúngica da Expressão Gênica , Humanos
9.
ACS Synth Biol ; 13(7): 2177-2187, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38968698

RESUMO

Transcription factor (TF)-based biosensors have arisen as powerful tools in the advancement of metabolic engineering. However, with the emergence of numerous bioproduction targets, the variety of applicable TF-based biosensors remains severely limited. In this study, we investigated and engineered an 1,2-propanediol (1,2-PD)-responsive transcription activator, PocR, from Salmonella typhimurium to enrich the current biosensor repertoire. Heterologous characterization of PocR in E. coli revealed a significantly limited operational range and dynamic range, primarily attributed to the leaky binding between PocR and its corresponding promoters in the absence of the 1,2-PD inducer. Promiscuity characterization uncovered the minor responsiveness of PocR toward glycerol and 1,2-butanediol (1,2-BD). Using AlphaFold-predicted structure and protein mutagenesis, we preliminarily explored the underlying mechanism of PocR. Based on the investigated mechanism, we engineered a PcoR-F46R/G105D variant with an altered inducer specificity to glycerol, as well as a PocR-ARE (Q107A/S192R/A203E) variant with nearly a 4-fold higher dynamic range (6.7-fold activation) and a 20-fold wider operational range (0-20 mM 1,2-PD). Finally, we successfully converted PocR to a repressor through promoter engineering. Integrating the activation and repression functions established a versatile 1,2-PD-induced bifunctional regulation system based on PocR-ARE. Our work showcases the exploration and exploitation of an underexplored type of transcriptional activator capable of recruiting RNA polymerase. It also expands the biosensor toolbox by providing a 1,2-PD-responsive bifunctional regulator and glycerol-responsive activator.


Assuntos
Técnicas Biossensoriais , Escherichia coli , Engenharia Metabólica , Propilenoglicol , Salmonella typhimurium , Fatores de Transcrição , Técnicas Biossensoriais/métodos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Propilenoglicol/metabolismo , Engenharia Metabólica/métodos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicerol/metabolismo , Regiões Promotoras Genéticas/genética
10.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894053

RESUMO

The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity. This study investigated the development of a novel, flexible, surface electrode based on a MXene/polydimethylsiloxane (PDMS)/glycerol composite. MXenes offer the benefit of featuring highly conductive transition metals with metallic properties, including a group of carbides, nitrides, and carbonitrides, while PDMS exhibits inherent biostability, flexibility, and biocompatibility. Among the various MXene-based electrode compositions prepared in this work, those composed of 15% and 20% MXene content were further evaluated for their potential in electrophysiological sensing applications. The samples underwent a range of characterization techniques, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), as well as mechanical and bio-signal sensing from the skin. The experimental findings indicated that the compositions demonstrated favorable bulk impedances of 280 and 111 Ω, along with conductivities of 0.462 and 1.533 mS/cm, respectively. Additionally, they displayed promising electrochemical stability, featuring charge storage densities of 0.665 mC/cm2 and 1.99 mC/cm2, respectively. By conducting mechanical tests, Young's moduli were determined to be 2.61 MPa and 2.18 MPa, respectively. The composite samples exhibited elongation of 139% and 144%, respectively. Thus, MXene-based bioelectrodes show promising potential for flexible and wearable electronics and bio-signal sensing applications.


Assuntos
Eletrodos , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Dimetilpolisiloxanos/química , Espectroscopia Dielétrica , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Impedância Elétrica , Glicerol/química , Fenômenos Eletrofisiológicos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
11.
Phys Chem Chem Phys ; 26(26): 18244-18255, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904333

RESUMO

Natural deep eutectic solvents (NADESs) comprised of osmolytes are of interest as potential biomolecular (cryo)protectants. However, the way these solvents influence the structure and dynamics of biomolecules as well as the role of water remains poorly understood. We carried out principal component analysis of various secondary structure elements of ubiquitin in water and a betaine : glycerol : water (1 : 2 : ζ; ζ = 0, 1, 2, 5, 10, 20, 45) NADES, from molecular dynamics trajectories, to gain insight into the protein dynamics as it undergoes a transition from a highly viscous anhydrous to an aqueous environment. A crossover of the protein's essential dynamics at ζ ∼ 5, induced by solvent-shell coupled fluctuations, is observed, indicating that ubiquitin might (re)fold in the NADES upon water addition at ζ > ∼5. Further, in contrast to water, the anhydrous NADES preserves ubiquitin's essential modes at high temperatures explaining the protein's seemingly enhanced thermal stability.


Assuntos
Simulação de Dinâmica Molecular , Solventes , Ubiquitina , Água , Ubiquitina/química , Água/química , Solventes/química , Glicerol/química , Betaína/química , Análise de Componente Principal , Estrutura Secundária de Proteína
12.
Int J Biol Macromol ; 273(Pt 1): 132836, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834127

RESUMO

The polyurethane (PU) foams can be functionally tailored by modifying the formulation with different additives. One such additive is melamine (MA) formaldehyde resin for improving their flame-retardant properties. In this work, the glycerol-modified (GMF), sodium alginate (SGMF)- and lignosulfonate-modified melamine formaldehyde (LGMF) were prepared and used as flame retardants reacting with isocyanate to prepare the corresponding rigid polyurethane foams (GMF-PU, SGMF-PU and LGMF-PU). The thermomechanical properties and flame-retardant properties of the foams were characterized. The results showed that the specific compression strength of GMF-PU, SGMF-PU and LGMF-PU increased substantially compared to the foams from physical addition of MA, sodium alginate and lignosulfonate, all of which were greater than that of the foam without any flame retardant (PPU). Meanwhile, the cell wall of the foam pores became thicker and the closed pore ratio increased. The sodium alginate and lignosulfonate played a key role in enhancing foam thermal stability. The limiting oxygen index values and cone calorimetry results indicated the flame-retardant efficiency of GMF-PU, SGMF-PU and LGMF-PU was significantly enhanced relative to PPU. Meanwhile, the heat and smoke release results indicated sodium alginate and lignosulfonate could reduce the amount of smoke generation to different degrees during the combustion of the foam.


Assuntos
Alginatos , Retardadores de Chama , Lignina , Poliuretanos , Triazinas , Triazinas/química , Poliuretanos/química , Retardadores de Chama/análise , Lignina/química , Lignina/análogos & derivados , Alginatos/química , Resinas Sintéticas/química , Glicerol/química , Temperatura , Formaldeído/química , Formaldeído/análise
13.
Int J Biol Macromol ; 273(Pt 2): 132956, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848838

RESUMO

Free-standing films have been obtained by drop-casting cellulose-glycerol mixtures (up to 50 wt% glycerol) dissolved in trifluoroacetic acid and trifluoroacetic anhydride (TFA:TFAA, 2:1, v:v). A comprehensive examination of the optical, structural, mechanical, thermal, hydrodynamic, barrier, migration, greaseproof, and biodegradation characteristics of the films was conducted. The resulting cellulose-glycerol blends exhibited an amorphous molecular structure and a reinforced H-bond network, as evidenced by X-ray diffraction analysis and infrared spectroscopy, respectively. The inclusion of glycerol exerted a plasticizing influence on the mechanical properties of the films, while keeping their transparency. Hydrodynamic and barrier properties were assessed through water uptake and water vapor/oxygen transmission rates, respectively, and obtained values were consistent with those of other cellulose-based materials. Furthermore, overall migration levels were below European regulation limits, as stated by using Tenax® as a dry food simulant. In addition, these bioplastics demonstrated good greaseproof performance, particularly at high glycerol content, and potential as packaging materials for bakery products. Biodegradability assessments were carried out by measuring the biological oxygen demand in seawater and high biodegradation rates induced by glycerol were observed.


Assuntos
Celulose , Embalagem de Alimentos , Glicerol , Embalagem de Alimentos/métodos , Glicerol/química , Celulose/química , Plásticos/química , Plastificantes/química , Vapor , Água/química , Biodegradação Ambiental , Plásticos Biodegradáveis/química
14.
Int J Biol Macromol ; 273(Pt 1): 132952, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38848830

RESUMO

This work focuses on the potential of agar from the seaweed Gracilaria fisheri to modify the properties of starch foam. The effects of different ratios of glycerol and agar on the properties of starch foams were investigated. All formulations used in this study produced easy-to-handle, smooth, single-use foam trays with no visible cracks. The addition of agar slightly affected the off-white color of the foam but red and yellow color values significantly decreased with increments of agar content. As the agar content was increased, the foam became less dense. A foam produced at a glycerol:agar ratio of 3:7 exhibited the highest values of flexural stress at maximum load (3.23 MPa), modulus (194.46 MPa) and hardness (97.50), and the highest temperature at maximum weight loss (Tmax) (337 °C). Therefore, starch foam modified with agar from Gracilaria fisheri showed suitable physical, mechanical and thermal properties for food packaging, and could possibly be used in the place of expanded polystyrene (EPS) foam.


Assuntos
Ágar , Gracilaria , Amido , Ágar/química , Amido/química , Gracilaria/química , Alga Marinha/química , Temperatura , Glicerol/química , Glicerol/farmacologia , Embalagem de Alimentos/métodos
15.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930996

RESUMO

The strain Gluconobacter oxydans LMG 1385 was used for the bioconversion of crude glycerol to dihydroxyacetone. The suitability of fed-batch cultures for the production of dihydroxyacetone was determined, and the influence of the pH of the culture medium and the initial concentration of glycerol on maximizing the concentration of dihydroxyacetone and on the yield and speed of obtaining dihydroxyacetone by bioconversion was examined. The feeding strategy of the substrate (crude glycerol) during the process was based on measuring the dissolved oxygen tension of the culture medium. The highest concentration of dihydroxyacetone PK = 175.8 g·L-1 and the highest yield YP/Sw = 94.3% were obtained when the initial concentration of crude glycerol was S0 = 70.0 g·L-1 and the pH of the substrate was maintained during the process at level 5.0.


Assuntos
Técnicas de Cultura Celular por Lotes , Meios de Cultura , Di-Hidroxiacetona , Gluconobacter oxydans , Glicerol , Gluconobacter oxydans/metabolismo , Di-Hidroxiacetona/metabolismo , Di-Hidroxiacetona/biossíntese , Glicerol/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Fermentação
16.
J Oleo Sci ; 73(7): 1027-1033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945921

RESUMO

This paper reports a novel α-gel formulation technology referred to as polymer complexed lamella (PCL) that uses hydroxypropyl methyl cellulose (HPMC) and glycerol. The PCL method suppressed lipid crystallization even after drying. This effect was maximized by the addition of HPMC and glycerol at high temperature. HPMC and lipids coexisted when mixed at high temperature, which decreased the mobility of HPMC, an effect that was enhanced by the strong interaction of glycerol with HPMC. These results indicate that mixing of HPMC with glycerol directly regulates the lipid structure and suppresses crystallization. PCL also maintained the effect of occlusion related to the moisturization of skin, even if the membrane was repeatedly bent such as in facial expressions.


Assuntos
Cristalização , Géis , Glicerol , Derivados da Hipromelose , Derivados da Hipromelose/química , Glicerol/química , Géis/química , Dessecação/métodos , Temperatura Alta , Lipídeos/química , Polímeros/química
17.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927107

RESUMO

Alterations in mitochondrial function have been linked to a variety of cellular and organismal stress responses including apoptosis, aging, neurodegeneration and tumorigenesis. However, adaptation to mitochondrial dysfunction can occur through the activation of survival pathways, whose mechanisms are still poorly understood. The yeast Saccharomyces cerevisiae is an invaluable model organism for studying how mitochondrial dysfunction can affect stress response and adaptation processes. In this study, we analyzed and compared in the absence and in the presence of osmostress wild-type cells with two models of cells lacking mitochondrial DNA: ethidium bromide-treated cells (ρ0) and cells lacking the mitochondrial pyrimidine nucleotide transporter RIM2 (ΔRIM2). Our results revealed that the lack of mitochondrial DNA provides an advantage in the kinetics of stress response. Additionally, wild-type cells exhibited higher osmosensitivity in the presence of respiratory metabolism. Mitochondrial mutants showed increased glycerol levels, required in the short-term response of yeast osmoadaptation, and prolonged oxidative stress. The involvement of the mitochondrial retrograde signaling in osmoadaptation has been previously demonstrated. The expression of CIT2, encoding the peroxisomal isoform of citrate synthase and whose up-regulation is prototypical of RTG pathway activation, appeared to be increased in the mutants. Interestingly, selected TCA cycle genes, CIT1 and ACO1, whose expression depends on RTG signaling upon stress, showed a different regulation in ρ0 and ΔRIM2 cells. These data suggest that osmoadaptation can occur through different mechanisms in the presence of mitochondrial defects and will allow us to gain insight into the relationships among metabolism, mitochondria-mediated stress response, and cell adaptation.


Assuntos
DNA Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Adaptação Fisiológica/genética , Estresse Oxidativo/genética , Glicerol/metabolismo , Etídio/metabolismo
18.
Neurosurg Rev ; 47(1): 289, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907766

RESUMO

BACKGROUND: Both stereotactic radiosurgery (SRS) and percutaneous glycerol rhizotomy are excellent options to treat TN in patients unable to proceed with microvascular decompression. However, the influence of prior SRS on pain outcomes following rhizotomy is not well understood. METHODS: We retrospectively reviewed all patients undergoing percutaneous rhizotomy at our institution from 2011 to 2022. Only patients undergoing percutaneous glycerol rhizotomy following SRS (SRS-rhizotomy) or those undergoing primary glycerol rhizotomy were considered. We collected basic demographic, clinical, and pain characteristics for each patient. Additionally, we characterized pain presentation and perioperative complications. Immediate failure of procedure was defined as presence of TN pain symptoms within 1-week of surgery, and short-term failure was defined as presence of TN pain symptoms within 3-months of surgery. A multivariate logistic regression model was used to evaluate the relationship of a history SRS and failure of procedure following percutaneous glycerol rhizotomy. RESULTS: Of all patients reviewed, 30 had a history of SRS prior to glycerol rhizotomy whereas 371 underwent primary percutaneous glycerol rhizotomy. Patients with a history of SRS were more likely to endorse V3 pain symptoms, p = 0.01. Additionally, patients with a history of SRS demonstrated higher preoperative BNI pain scores, p = 0.01. Patients with a history of SRS were more likely to endorse preoperative numbness, p < 0.0001. A history of SRS was independently associated with immediate failure [OR = 5.44 (2.06-13.8), p < 0.001] and short-term failure of glycerol rhizotomy [OR = 2.41 (1.07-5.53), p = 0.03]. Additionally, increasing age was found to be associated with lower odds of short-term failure of glycerol rhizotomy [OR = 0.98 (0.97-1.00), p = 0.01] CONCLUSIONS: A history of SRS may increase the risk of immediate and short-term failure following percutaneous glycerol rhizotomy. These results may be of use to patients who are poor surgical candidates and require multiple noninvasive/minimally invasive options to effectively manage their pain.


Assuntos
Glicerol , Radiocirurgia , Rizotomia , Falha de Tratamento , Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/cirurgia , Rizotomia/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Radiocirurgia/métodos , Estudos Retrospectivos , Adulto , Resultado do Tratamento
19.
Nat Commun ; 15(1): 5256, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898040

RESUMO

Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs). The enzyme, which we name GMGT synthase (Gms), catalyzes the formation of a C(sp3)-C(sp3) linkage between the two isoprenoid chains of glycerol dialkyl glycerol tetraethers (GDGTs). This conclusion is supported by heterologous expression of gene gms from a GMGT-producing species in a methanogen, as well as demonstration of in vitro activity using purified Gms enzyme. Additionally, we show that genes encoding putative Gms homologs are present in obligate anaerobic archaea and in metagenomes obtained from oxygen-deficient environments, and appear to be absent in metagenomes from oxic settings.


Assuntos
Archaea , Oxigênio , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Archaea/genética , Archaea/metabolismo , Archaea/enzimologia , Oxigênio/metabolismo , Anaerobiose , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Glicerol/metabolismo , Metagenoma , Filogenia
20.
Environ Sci Pollut Res Int ; 31(27): 39760-39773, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833053

RESUMO

The hydrothermal liquefaction (HTL) of composite household waste (CHW) was investigated at different temperatures in the range of 240-360 °C, residence times in the range of 30-90 min, and co-solvent ratios of 2-8 ml/g, by utilising ethanol, glycerol, and produced aqueous phase as liquefaction solvents. Maximum biocrude yield of 46.19% was obtained at 340 °C and 75 min, with aqueous phase recirculation ratio (RR) of 5 ml/g. The chemical solvents such as glycerol and ethanol yielded a biocrude percentage of 45.18% and 42.16% at a ratio of 6 ml/g and 8 ml/g, respectively, for 340 °C and 75 min. The usage of co-solvents as hydrothermal medium increased the biocrude yield by 35.30% and decreased the formation of solid residue and gaseous products by 19.82% and 18.74% respectively. Also, the solid residue and biocrude obtained from co-solvent HTL possessed higher carbon and hydrogen content, thus having a H/C ratio and HHV that is 1.01 and 1.23 times higher than that of water as hydrothermal medium. Among the co-solvents, HTL with aqueous phase recirculation resulted in higher carbon and energy recovery percentages of 9.36% and 9.78% for solid residue and 52.09% and 56.75% for biocrude respectively. Further qualitatively, co-solvent HTL in the presence of obtained aqueous phase yielded 33.43% higher fraction of hydrocarbons than the pure water HTL and 7.70-17.01% higher hydrocarbons when compared with ethanol and glycerol HTL respectively. Nitrogen containing compounds, such as phenols and furfurals, for biocrudes obtained from all HTL processes, were found to be present in the range of 8.30-14.40%.


Assuntos
Solventes , Solventes/química , Glicerol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA