Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.940
Filtrar
1.
Chemosphere ; 262: 127785, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182149

RESUMO

Although glyphosate is widely used for weed pest control, it might have negative side effects on natural enemies. Wolf spiders are one of the most representative predators found on soybean crops in Uruguay, preying on a wide variety of potential pests. However, the sublethal effects that pesticides might have on this group have been poorly explored for South American species. Herein, we explored the sublethal effects of glyphosate on the functional response of the wolf spider Hogna cf. bivittata against three potential pest insects, namely ant (Acromyrmex sp.), caterpillar (Anticarsia gemmatalis), and cricket (Miogryllus sp.). We contaminated residually adult females of the species Hogna cf. bivittata with glyphosate (Roundup®) and compared their functional response against non-contaminated spiders. We did not observe any mortality during the study. We found that overall Hogna cf. bivittata showed a functional response type II against crickets and caterpillars but no functional response to ants. Contaminated spiders killed less ants and caterpillars in comparison to the control group, probably as a consequence of the irritating effects of glyphosate. We did not observe differences in functional response to crickets at the evaluated densities, probably as a consequence of the low capture rate against this prey. Although glyphosate does not specifically target spiders, it might have negative sublethal effects on native predators such as Hogna cf. bivittata. Further studies should explore effect of glyphosate on other native predators from South American crops.


Assuntos
Glicina/análogos & derivados , Praguicidas/toxicidade , Aranhas/efeitos dos fármacos , Animais , Formigas , Produtos Agrícolas , Feminino , Glicina/toxicidade , Gryllidae , Mariposas , Comportamento Predatório/efeitos dos fármacos , Uruguai
2.
Chemosphere ; 262: 128408, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182150

RESUMO

The safety of creating fish farms in agricultural settings was evaluated by growing Piaractus mesopotamicus in a pond, while crops where cultivated in a nearby field under a pesticide application regime typical of the Pampa region. Atrazine, glyphosate and its metabolite, aminomethylphosphonic acid (AMPA), were detected in the water of the pond at concentrations ranging between 92 and 118 µg/L for atrazine, 12 and 221 µg/L for glyphosate and 21 and 117 µg/L for AMPA. Atrazine and malathion were detected in fish muscles at concentrations ranging between 70 and 105 µg/kg for atrazine and 8.6 and 23.7 µg/kg for malathion. Compared to fish raised in a pisciculture, fish from the agricultural pond presented reduced values of pack cell volume, hemoglobin, mean corpuscular hemoglobin and mean corpuscular hemoglobin concentration, together with significantly greater cholinesterase activity in both plasma and liver and reduced glutathione-S-transferase activity in the liver. A comet assay also demonstrated that P. mesopotamicus from the agricultural pond presented a significantly greater level of DNA damage in both erythrocytes and gill cells. Overall, the present study demonstrates that pisciculture ponds established in an agricultural setting may receive pesticides applied to nearby cultures and that these pesticides may be taken up by the fish and affect their physiology and health. The accumulation of pesticides residues in fish flesh may also present a risk to human consumers and should be closely controlled.


Assuntos
Aquicultura , Agricultura , Animais , Atrazina , Colinesterases , Monitoramento Ambiental , Fazendas , Peixes , Glicina/análogos & derivados , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Tanques/química , Poluentes Químicos da Água/análise
3.
Chemosphere ; 262: 128327, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182089

RESUMO

The globally used herbicide glyphosate and its metabolite aminomethylphosphonic acid (AMPA) have not yet been reported to occur in the marine environment, presumably due to a lack of suitable analytical methods. In this study, we developed two new methods for the analysis of glyphosate and AMPA in seawater: a small-scale method, which includes an SPE cleanup step that minimizes salt-matrix effects during LC-MS/MS analysis, and a large-scale method that employs an additional SPE preconcentration step. Different SPE materials were evaluated for their suitability to enrich glyphosate and AMPA from saltwater and a molecularly imprinted polymer was selected. Both methods were validated in ultrapure water and environmental seawater. Achieved limits of detection with the small-scale method were 6 and 8 ng/L for glyphosate and AMPA, while the large-scale method achieved 0.12 and 0.22 ng/L, respectively. The small-scale method was used to analyze environmental samples from the Warnow Estuary in Germany. Glyphosate and AMPA could be successfully detected in the samples, but could not be measured beyond the saline estuary due to dilution and degradation effects. A set of samples from the western Baltic Sea was analyzed with the large-scale method. Glyphosate and AMPA could be detected in all Baltic Sea samples, especially at stations close to estuaries. To the best of our knowledge, this is the first report on the occurrence of glyphosate and AMPA in seawater.


Assuntos
Monitoramento Ambiental/métodos , Glicina/análogos & derivados , Herbicidas/análise , Organofosfonatos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Cromatografia Líquida/métodos , Estuários , Alemanha , Glicina/análise , Limite de Detecção , Oceanos e Mares , Espectrometria de Massas em Tandem/métodos
4.
Food Chem ; 340: 127923, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32889212

RESUMO

Identification of glycomacropeptide (GMP) and ß-lactoglobulin (ß-lg) present in cheese whey is difficult on SDS-PAGE due to their close proximity during electrophoresis and poor sensitivity of commonly used staining dye 'coomassie brilliant blue' (CBB) towards GMP. A simple method has been developed for the detection of GMP and ß-lg by staining acrylamide gel after tricine SDS-PAGE using cationic 'stains all' dye. After staining and destaining major whey proteins, viz. ɑ-lactalbumin (ɑ-la) and ß-lg appear red while GMP stains blue. The method can be used for the identification of these macromolecules in cheese whey and the detection of adulteration of milk with rennet whey.


Assuntos
Caseínas/análise , Eletroforese em Gel de Poliacrilamida/métodos , Contaminação de Alimentos/análise , Lactoglobulinas/análise , Fragmentos de Peptídeos/análise , Animais , Caseínas/química , Quimosina/análise , Glicina/análogos & derivados , Lactoglobulinas/química , Leite/química , Fragmentos de Peptídeos/química , Corantes de Rosanilina
5.
Chemosphere ; 263: 127979, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32841877

RESUMO

Glyphosate (PMG) has been the most widely used herbicide in the world, and its environmental mobility and fate are mainly controlled by interactions with mineral surfaces. In soil systems, kaolinite is typically associated with humic acids (HAs) in the form of mineral-HA complexes, and hence it is crucial to characterize the molecular-scale interactions that occur between PMG and kaolinite and kaolinite-HA complexes. Batch experiments, Fourier transform infrared spectrum (FTIR) and X-ray photoelectron spectroscopy (XPS), isothermal titration calorimetry (ITC), and molecular dynamics (MD) simulations were performed to decipher the molecular interactions between PMG and kaolinite and kaolinite-HA composites. Our results reveal that kaolinite-HA composites adsorb higher concentrations of PMG than does kaolinite alone, likely due to more adsorption sites existed on kaolinite-HA than on kaolinite. FTIR and XPS analysis reveal that the carboxyl, phosphonyl and amino groups of PMG interacted with kaolinite and kaolinite-humic acid via Hydrogen bonds. The ITC results and interaction energy calculations indicate that the adsorption of PMG onto the kaolinite-HA is more energetically favorable relative to that onto kaolinite. MD simulations suggest that the PMG molecule adsorbs parallel to the surface of kaolinite and the composites through hydrogen bonding. Humic acid increases the adsorption of PMG through the creation of H-bond networks between PMG, the kaolinite surface, and humic acid. The results from this study improve our molecular-level understanding of the interactions between PMG and two important components of soil systems, and hence yield valuable information for characterizing the fate and behavior of PMG in soil environments.


Assuntos
Glicina/análogos & derivados , Herbicidas/química , Substâncias Húmicas , Caulim/química , Adsorção , Calorimetria , Glicina/química , Concentração de Íons de Hidrogênio , Minerais/química , Simulação de Dinâmica Molecular , Espectroscopia Fotoeletrônica , Solo , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Food Chem ; 338: 128133, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33091994

RESUMO

Glyphosate (GLYP) was the most widely used broad-spectrum herbicide in the world. Herein, a gold nanoparticle (AuNP) probe dual-functionalized with anti-GLYP antibody and double-stranded oligonucleotides was synthesized. An AuNP-based bio-barcode immuno-PCR (AuNP-BB-iPCR) based on the probe was developed for sensitive detection of GLYP in food samples without high-cost and time-consuming experiments. GLYP detection was accomplished with a linear range from 61.1 pg g-1 to 31.3 ng g-1 and a detection limit of 4.5 pg g-1 which was 7 orders of magnitude lower than that of conventional ELISA (70 µg g-1) developed using the same antibody. The recoveries of GLYP from soybean, cole and maize samples were 99.8%, 102.6% and 103.7%, respectively, and all relative standard deviation values were below 12.9%. The assay time (including food samples preparation) of AuNP-BB-iPCR was 4 h. The proposed AuNP-BB-iPCR exhibits potential for sensitive detection of GLYP in foodstuffs and environment.


Assuntos
Glicina/análogos & derivados , Ouro/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Reação em Cadeia da Polimerase/métodos , Glicina/análise , Glicina/química , Humanos
7.
Water Res ; 188: 116573, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152590

RESUMO

When an invasive wetland grass degrades a Ramsar wetland and Important Bird Area, decisive management action is called for. To limit the extent and spread of European Phragmites australis, the Ontario government began the first, large-scale application of glyphosate (Roundup CustomⓇ) over standing water to control an invasive species in Canadian history. Between 2016 and 2018, over 1000 ha of marsh were treated. To assess the concentration, movement and longevity of this herbicide in treated marshes, we measured the concentration of glyphosate, its primary breakdown product aminomethylphosphonic acid (AMPA), and the alcohol ethoxylate-based adjuvant AquasurfⓇ in water and sediments in areas of the highest exposure and up to 150 m into adjacent bays. The maximum observed concentration of glyphosate in water was 0.320 mg/L, occurring within 24 hr of application. The maximum glyphosate concentration in sediment was 0.250 mg/kg, occurring within about 30 days of application. AMPA was detectable in water and sediment, indicating microbial breakdown of glyphosate in the marsh, but at low concentrations (maxwater = 0.025 mg/L, maxsed = 0.012 mg/kg). The maximum distance from the point of application that glyphosate was detected in the water was 100 m, while AMPA was detectable only at the edge of where glyphosate was applied (0 m). Concentrations in water returned to pre-treatment levels (0.005 mg/kg) for over one year but less than two years. Concentrations of alcohol ethoxylates were variable in space and time, following a pattern that could not be attributed to AquasurfⓇ use. The direct, over-water application of Roundup CustomⓇ with AquasurfⓇ to control invasive P. australis did not reach concentrations deemed to pose toxicological concern to aquatic biota by the Canadian Council of Ministers of the Environment.


Assuntos
Herbicidas , Poluentes Químicos da Água , Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas/análise , Ontário , Organofosfonatos , Plantas , Água , Poluentes Químicos da Água/análise
8.
Food Chem ; 339: 128024, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152860

RESUMO

The aim of this study was to increase the baked flavour of low-acrylamide potato products. Strecker aldehydes and pyrazines make an important contribution to the flavour of potato products and are formed alongside acrylamide in the Maillard reaction. However, the Maillard reaction can be directed in favour of aroma formation by selecting appropriate precursors and intermediates based on the fundamental chemistry involved. Selected precursors were added to potato dough prior to baking. Addition of glycine and alanine together doubled high impact pyrazines and addition of 2,3-pentanedione or 3,4-hexanedione also promoted the formation of key trisubstituted pyrazines. Quantitative descriptive profiling of sensory attributes indicated that baked flavour was increased most when both Strecker aldehydes and pyrazines were increased together. This work shows that it is possible to enhance baked flavour in low-acrylamide products by adding a specifically targeted combination of amino acids and key intermediates, without increasing acrylamide concentration.


Assuntos
Acrilamida/análise , Culinária , Solanum tuberosum/química , Paladar , Aldeídos/química , Glicina/química , Reação de Maillard , Odorantes
9.
Ecotoxicol Environ Saf ; 207: 111225, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916526

RESUMO

Hormesis is a favorable response to low level exposures to substance or to adverse conditions. This phenomenon has become a target to achieve greater crop productivity. This review aimed to address the physiological mechanisms for the induction of hormesis in plants. Some herbicides present a hormetic dose response. Among them, those with active ingredients glyphosate, 2,4-D and paraquat. The application of glyphosate as a hormesis promoter is therefore showing promess . Glyphosate has prominent role in shikimic acid pathway, decreasing lignin synthesis resulting in improved growth and productivity of several crops. Further studies are still needed to estimate optimal doses for other herbicides of crops or agricultural interest. Biostimulants are also important, since they promote effects on secondary metabolic pathways and production of reactive oxygen species (ROS). When ROS are produced, hydrogen peroxide act as a signaling molecule that promote cell walls malleability allowing inward water transport causing cell expansion. . Plants'ability to overcome several abiotic stress conditions is desirable to avoid losses in crop productivity and economic losses. This review compiles information on how hormesis in plants can be used to achieve new production levels.


Assuntos
Hormese/fisiologia , Fenômenos Fisiológicos Vegetais , Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Glicina/análogos & derivados , Herbicidas/farmacologia , Hormese/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo
10.
Plant Dis ; 105(1): 31-33, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32748725

RESUMO

Soybean cyst nematode (Heterodera glycines, SCN) is the most harmful pathogen of soybean (Glycine max (L.) Merr.) worldwide. In 2016, a new soybean-parasitic cyst nematode, Heterodera sojae (the white soybean cyst nematode) was found parasitizing the roots of soybean plants in Korea. To investigate the distribution and population density of H. sojae, 943 soil samples were collected from soybean fields in all nine provinces in Korea in 2017 to 2018. Cyst nematodes were detected in 343 samples (36.4%) from eight of the nine provinces, except the island of Jeju province. Among the 343 samples, H. glycines was found in 227 samples (66.2%), H. sojae in 95 samples (27.7%), and 21 samples (6.1%) were infested with both H. sojae and H. glycines. Wide distribution of H. sojae in soybean fields indicates that H. sojae is an important cyst nematode species parasitizing soybean together with H. glycines.


Assuntos
Cistos , Soja , Animais , Glicina , Doenças das Plantas , República da Coreia
11.
Sci Total Environ ; 750: 141422, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858290

RESUMO

Glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. They were launched as a safe solution for weed control, but recently, an increasing number of studies have shown the existence of GBH residues and highlighted the associated risks they pose throughout ecosystems. Conventional agricultural practices often include the use of GBHs, and the use of glyphosate-resistant genetically modified crops is largely based on the application of glyphosate, which increases the likelihood of its residues ending up in animal feed. These residues persist throughout the digestive process of production animals and accumulate in their excretion products. The poultry industry, in particular, is rapidly growing, and excreted products are used as plant fertilizers in line with circular food economy practices. We studied the potential effects of unintentional glyphosate contamination on an agronomically important forage grass, meadow fescue (Festuca pratensis) and a horticulturally important strawberry (Fragaria x vescana) using glyphosate residues containing poultry manure as a plant fertilizer in a common garden experiment. Glyphosate in the manure decreased plant growth in both species and vegetative reproduction in F. x vescana. Furthermore, our results indicate that glyphosate residues in organic fertilizers might have indirect effects on sexual reproduction in F. pratensis and herbivory in F. x vescana because they positively correlate with plant size. Our results highlight that glyphosate can be unintentionally spread via organic fertilizer, counteracting its ability to promote plant growth.


Assuntos
Fertilizantes , Herbicidas , Animais , Produtos Agrícolas/genética , Ecossistema , Glicina/análogos & derivados , Herbicidas/toxicidade , Esterco , Plantas Geneticamente Modificadas
12.
Environ Sci Pollut Res Int ; 28(2): 1983-1991, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32862350

RESUMO

Our experiment was conducted during the seasons of 2018 and 2019 on 10-year-old "Anna" apple trees (Malus domestica L. Borkh) planted at 4 × 4 m apart in a clay soil under drench irrigation. Sixty uniform trees were selected and subjected to the same cultural practices during both seasons. Apple trees were sprayed three times as follows: before flowering, during full bloom, and 1 month later with the following treatments: control (water only); tryptophan at 25, 50, and 100 ppm; glycine at 25, 50, and 100 ppm; and their combinations, 25 ppm tryptophan + 25 ppm glycine, 50 ppm tryptophan + 50 ppm glycine, and 100 ppm tryptophan + 100 ppm glycine. The results demonstrated that the foliar spraying of "Anna" apple trees with glycine and tryptophan at 25, 50, and 100 ppm and their combinations significantly increased shoot length and diameter, leaf area, total chlorophyll, percentages of fruit set and yield, fruit physical and chemical characteristics, and leaf mineral composition of N, P, K, Ca, Fe, Zn, Mn, and B, whereas it reduced the fruit drop percentage in both seasons in comparison with control. Better results were obtained from the concentrations of 50 and 100 ppm which were more effective in both seasons in comparison with the concentration of 25 ppm. Moreover, the combination of 50 ppm glycine 50 ppm tryptophan was the best treatment and provided the highest results in both experimental seasons in comparison with the other applied treatments and control.


Assuntos
Malus , Fertilizantes , Frutas , Glicina , Nitrogênio , Triptofano
13.
Ecotoxicol Environ Saf ; 207: 111599, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33254424

RESUMO

Given the essential role of arbuscular mycorrhizal fungi (AMF) in soil systems and agriculture, their use as biological indicators has risen in all fields of microbiology research. However, AMF sensitivity to chemical pesticides is poorly understood in field conditions, and not explored in ecotoxicology protocols. Hence, the goal of this study was to evaluate the effects of different concentrations of glyphosate (Roundup®) and diuron+paraquat (Gramocil®) on the germination of spores of Gigaspora albida and Rhizophagus clarus in a tropical artificial soil. This study was conducted in 2019 at the Soil Ecology and Ecotoxicology Laboratory of the Universidade do Estado de Santa Catarina. The nominal concentrations of glyphosate were 0, 10, 50, 100, 250, 500, 750 and 1000 mg a.i. kg-1. For diuron+paraquat, the concentrations tested were 0, 10 + 20, 50 + 100, 100 + 200, 250 + 500, 500 + 1000, 750 + 1500 and 1000 + 2000 mg a.i. kg-1. Glyphosate did not alter germination of G. albida, but germination inhibition of R. clarus spores was of 30.8% at 1000 mg kg-1. Diuron+paraquat inhibited by 8.0% germination of G. albida, but only at the highest concentration tested. On the other hand, effects on R. clarus were detected at 50 + 100 mg kg-1 concentration and above, and inhibition was as high as 57.7% at the highest concentration evaluated. These results suggest distinct response mechanisms of Rhizophagus and Gigaspora when exposed to herbicides, with the former being more sensitive than the later.


Assuntos
Fungos/fisiologia , Herbicidas/toxicidade , Poluentes do Solo/toxicidade , Esporos Fúngicos/efeitos dos fármacos , Agricultura , Diurona , Ecotoxicologia , Glomeromycota/fisiologia , Glicina/análogos & derivados , Micorrizas/fisiologia , Paraquat , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo
14.
Cell ; 184(1): 64-75.e11, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33275900

RESUMO

Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Assuntos
Substituição de Aminoácidos , /virologia , /patogenicidade , Glicoproteína da Espícula de Coronavírus/genética , Ácido Aspártico/análise , Ácido Aspártico/genética , Genoma Viral , Glicina/análise , Glicina/genética , Humanos , Mutação , Reino Unido/epidemiologia , Virulência , Sequenciamento Completo do Genoma
15.
Sci Total Environ ; 756: 143993, 2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33310222

RESUMO

Wetland biofilms were exposed to the herbicide glyphosate via in situ field exposures and controlled microcosm experiments to measure bioconcentration and metabolism of glyphosate by biofilm organisms. Concentrations of glyphosate in biofilms were two to four orders of magnitude higher than the surrounding water, bioconcentration factors averaged 835 and 199 L·kg-1 in field- and lab-exposed biofilms, respectively. Glyphosate in water where it had been detected in biofilms at field-exposed sites ranged from below detection (<1 µg·L-1) up to 130 µg·L-1. Bioconcentration of glyphosate in biofilms was inversely proportional to concentrations in the surrounding water, and the retention kinetics were similar to both adsorption and enzymatic models. Microorganisms present in both the water and biofilms metabolized glyphosate to its primary breakdown product aminomethyl phosphonic acid (AMPA), with increased rates of breakdown in and around the biofilms. Photosynthetic efficiency of the algae within the biofilms was not affected by 24 h controlled glyphosate exposures. Our results demonstrate the role of biofilms in improving wetland water quality by removing contaminants like glyphosate, but also as a potential exposure route to higher trophic levels via consumption. Due to bioconcentration of pesticides, exposure risk to organisms consuming or living in biofilms may be much higher than indicated by concentrations in ambient water samples.


Assuntos
Herbicidas , Poluentes Químicos da Água , Bioacumulação , Biofilmes , Glicina/análogos & derivados , Herbicidas/análise , Poluentes Químicos da Água/análise , Áreas Alagadas
16.
Life Sci ; 264: 118684, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129877

RESUMO

AIMS: Fracture site is regionally hypoxic resulting from vasculature disruption. HIF-1αplays an essential role in fracture repair. This study aims to investigate the influence of FG4592 on the femur fracture of SD rats and the proliferation, migration of BMSCs. MATERIALS AND METHODS: After the femoral fracture model was established, computed tomography imaging and histological analyses were used to quantify bone healing and the expression of CD90, HIF-1α, VEGF were observed by means of immunohistochemistry method on Day 10 and Day 20. In addition, CCK-8 assay, transwell, flow cytometric analysis, laser confocal microscopy assay, western blot and rT-PCR were performed to text the proliferation and migration of BMSCs using FG4592. KEY FINDINGS: In vivo, FG4592 facilitated the repair of bone fracture by increasing the number of BMSCs and cartilage formation. In vitro, FG4592 markedly improved the proliferation, migration of BMSCs via upregulation of intracellular Ca2+, NO and concomitant decrease of ROS. Gene silencing of HIF-1α resulted in the opposite phenomenon in BMSCs with the treatment of FG4592. SIGNIFICANCE: The transplantation of BMSCs is the most promising candidate for the treatment of fracture non-union. We illustrated that FG4592 promoted the proliferation, migration of BMSCs via the HIF/Ca2+/NO/ROS pathway and further accelerated fracture healing. These results provide a deeper understanding for the mechanism of HIF in promoting fracture healing.


Assuntos
Fraturas do Colo Femoral/metabolismo , Glicina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/uso terapêutico , Transplante de Células-Tronco Mesenquimais/métodos , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células da Medula Óssea/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Fraturas do Colo Femoral/diagnóstico por imagem , Fraturas do Colo Femoral/terapia , Consolidação da Fratura/efeitos dos fármacos , Consolidação da Fratura/fisiologia , Glicina/farmacologia , Glicina/uso terapêutico , Isoquinolinas/farmacologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Aquat Toxicol ; 230: 105687, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33264693

RESUMO

Glyphosate is an herbicidal active substance (AS) entering in the composition of a large diversity of pesticide products (glyphosate-based herbicides; GBH) used in modern intensive agriculture. This compound has a favorable environmental safety profile but was suspected to induce deleterious effects in aquatic organisms, with a potential effect of some associated co-formulants. This study aimed to assess the impact of direct and chronic exposure to glyphosate on the health status of rainbow trout, Oncorhynchus mykiss. A total of 36 genitors were exposed daily for 10 months to a dose of glyphosate representative of environmental concentrations (around 1 µg L-1) using the AS alone or two GBHs formulations (i.e. Roundup Innovert® and Viaglif Jardin®) and findings were compared to an unexposed control group (n=12). The effects of chemical exposure on the reproductive capacities, hemato-immunologic functions, energetic metabolism, oxidative stress and specific biomarkers of exposure were analyzed over a period of 4 months covering spawning. A limited mortality between 15% and 30% specific to the spawning occurred under all conditions. No differences were observed in reproduction parameters i.e. mean weights, relative fertility and fecundity. Red blood cell count, hematocrit index, mean corpuscular volume and white blood cell counts were similar for all the sampling dates. Significant changes were observed two months before spawning with a 70% decrease of the proportion of macrophages in trout exposed to Viaglif only and a reduction of 35% of the phagocytic activity in fish exposed to the two GBHs. Trends towards lower levels of expression of tumor necrosis factor-α (between 38% and 66%) were detected one month after the spawning for all contaminated conditions but without being statistically significant. Biomarkers of exposure, i.e. acetylcholine esterase and carbonic anhydrase activities, were not impacted and none of the chemical contaminants disturbed the oxidative stress or metabolism parameters measured. These results suggest that a 10 months exposure of rainbow trout to a concentration of 1 µg L-1 of glyphosate administered using the pure active substance or two GBHs did not significantly modify their global health including during the spawning period. The immunological disturbances observed will need to be further explored because they could have a major impact in response to infectious stress.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Glicina/toxicidade , Oncorhynchus mykiss/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos
18.
Environ Pollut ; 269: 116186, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33302084

RESUMO

Residues of glyphosate (GLY) are widely detected in aquatic systems, raising potential environmental threats and public health concerns, but the mechanism underlying GLY-induced hepatotoxicity in fish has not been fully elucidated yet. This study was designed to explore the hepatotoxic mechanism using juvenile common carp exposed to GLY for 45 d, and plasma and liver samples were collected at 15 d, 30 d, and 45 d to analyze the assays. First, GLY-induced hepatic damage was confirmed by serum liver damage biomarker and hepatic histopathological analysis. Next, changes in oxidative stress biomarkers, gene expression levels of pro- and anti-inflammatory cytokines, and lipid metabolism-related parameters in collected samples were analyzed to clarify their roles in GLY-induced hepatic damage. Data showed that oxidative stress was an early event during GLY exposure, followed by hepatic inflammatory response. Lipid metabolism disorder was a late event during GLY exposure, as evidenced by overproduced hepatic free fatty acids, enhanced lipogenesis-related gene expression levels, reduced lipolysis-related gene expression levels, and resultant hepatic lipid accumulation. Collectively, these findings demonstrate that GLY induces hepatotoxicity in fish through involvement of oxidative stress, inflammatory response, and lipid metabolism disorder, which are intimately interrelated with each other during GLY exposure.


Assuntos
Carpas , Doença Hepática Induzida por Substâncias e Drogas , Transtornos do Metabolismo dos Lipídeos , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glicina/análogos & derivados , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Fígado/metabolismo , Estresse Oxidativo
19.
Environ Sci Pollut Res Int ; 28(3): 2655-2668, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33164125

RESUMO

Glyphosate (N-[phosphonomethyl]glycine) is one of the most popular herbicides now used in agricultural practice. The aim of this paper was to discuss the research progress and innovations in recent years on the mitigation of glyphosate (GLY) from aqueous media by adsorption. The ecotoxicology of GLY was discussed in the domain of its chronic and sub-chronic toxicity, genotoxicity, reproductive toxicity, and carcinogenicity, and potential risks of food contamination were discussed. It was observed that polymers and resins are the best class of adsorbents for GLY adsorption from aqueous media. GLY adsorption was best fit to either Freundlich or Langmuir isotherm depending on the nature of the adsorbent. The pseudo-second-order kinetics was also the best fit for modelling the kinetics of GLY adsorption. A review of the thermodynamics revealed that GLY adsorption was usually spontaneous and exothermic. Research trends and knowledge gaps are in the area of chemical mobility in environmental systems (especially in the presence of other chemical species), the use of heavy metal-laden adsorbent and molecular modelling. Furthermore, it was observed that the ecotoxicology of GLY still has some contentious areas where there is no conclusive stance.


Assuntos
Ecotoxicologia , Poluentes Químicos da Água , Adsorção , Glicina/análogos & derivados , Concentração de Íons de Hidrogênio , Cinética , Termodinâmica , Poluentes Químicos da Água/análise
20.
Nat Commun ; 11(1): 6164, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268780

RESUMO

Familial hemiplegic migraine is an episodic neurological disorder characterized by transient sensory and motor symptoms and signs. Mutations of the ion pump α2-Na/K ATPase cause familial hemiplegic migraine, but the mechanisms by which α2-Na/K ATPase mutations lead to the migraine phenotype remain incompletely understood. Here, we show that mice in which α2-Na/K ATPase is conditionally deleted in astrocytes display episodic paralysis. Functional neuroimaging reveals that conditional α2-Na/K ATPase knockout triggers spontaneous cortical spreading depression events that are associated with EEG low voltage activity events, which correlate with transient motor impairment in these mice. Transcriptomic and metabolomic analyses show that α2-Na/K ATPase loss alters metabolic gene expression with consequent serine and glycine elevation in the brain. A serine- and glycine-free diet rescues the transient motor impairment in conditional α2-Na/K ATPase knockout mice. Together, our findings define a metabolic mechanism regulated by astrocytic α2-Na/K ATPase that triggers episodic motor paralysis in mice.


Assuntos
Astrócitos/metabolismo , Ataxia/genética , Metaboloma/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/genética , Transcriptoma , Animais , Astrócitos/patologia , Ataxia/metabolismo , Ataxia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Neuroimagem Funcional , Glicina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Enxaqueca com Aura/metabolismo , Enxaqueca com Aura/patologia , Teste de Desempenho do Rota-Rod , Serina/metabolismo , ATPase Trocadora de Sódio-Potássio/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA