Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.247
Filtrar
1.
Nat Commun ; 11(1): 4997, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020472

RESUMO

Despite a deeper molecular understanding, human glioblastoma remains one of the most treatment refractory and fatal cancers. It is known that the presence of macrophages and microglia impact glioblastoma tumorigenesis and prevent durable response. Herein we identify the dual function cytokine IL-33 as an orchestrator of the glioblastoma microenvironment that contributes to tumorigenesis. We find that IL-33 expression in a large subset of human glioma specimens and murine models correlates with increased tumor-associated macrophages/monocytes/microglia. In addition, nuclear and secreted functions of IL-33 regulate chemokines that collectively recruit and activate circulating and resident innate immune cells creating a pro-tumorigenic environment. Conversely, loss of nuclear IL-33 cripples recruitment, dramatically suppresses glioma growth, and increases survival. Our data supports the paradigm that recruitment and activation of immune cells, when instructed appropriately, offer a therapeutic strategy that switches the focus from the cancer cell alone to one that includes the normal host environment.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioma/metabolismo , Glioma/patologia , Interleucina-33/metabolismo , Animais , Neoplasias Encefálicas/mortalidade , Carcinogênese , Núcleo Celular/metabolismo , Citocinas/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioma/mortalidade , Humanos , Inflamação , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos SCID , Microglia , Análise de Sobrevida , Linfócitos T/metabolismo , Linfócitos T/patologia , Microambiente Tumoral/imunologia
2.
Nat Commun ; 11(1): 5424, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110073

RESUMO

Tumor necrosis commonly exists and predicts poor prognoses in many cancers. Although it is thought to result from chronic ischemia, the underlying nature and mechanisms driving the involved cell death remain obscure. Here, we show that necrosis in glioblastoma (GBM) involves neutrophil-triggered ferroptosis. In a hyperactivated transcriptional coactivator with PDZ-binding motif-driven GBM mouse model, neutrophils coincide with necrosis temporally and spatially. Neutrophil depletion dampens necrosis. Neutrophils isolated from mouse brain tumors kill cocultured tumor cells. Mechanistically, neutrophils induce iron-dependent accumulation of lipid peroxides within tumor cells by transferring myeloperoxidase-containing granules into tumor cells. Inhibition or depletion of myeloperoxidase suppresses neutrophil-induced tumor cell cytotoxicity. Intratumoral glutathione peroxidase 4 overexpression or acyl-CoA synthetase long chain family member 4 depletion diminishes necrosis and aggressiveness of tumors. Furthermore, analyses of human GBMs support that neutrophils and ferroptosis are associated with necrosis and predict poor survival. Thus, our study identifies ferroptosis as the underlying nature of necrosis in GBMs and reveals a pro-tumorigenic role of ferroptosis. Together, we propose that certain tumor damage(s) occurring during early tumor progression (i.e. ischemia) recruits neutrophils to the site of tissue damage and thereby results in a positive feedback loop, amplifying GBM necrosis development to its fullest extent.


Assuntos
Ferroptose , Glioblastoma/fisiopatologia , Neutrófilos/imunologia , Animais , Linhagem Celular Tumoral , Coenzima A Ligases/genética , Coenzima A Ligases/imunologia , Progressão da Doença , Feminino , Glioblastoma/genética , Glioblastoma/imunologia , Glioblastoma/patologia , Humanos , Ferro/imunologia , Camundongos , Camundongos Nus , Necrose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/imunologia
3.
Jpn J Clin Oncol ; 50(11): 1231-1245, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-32984905

RESUMO

Treatment and resolution of primary and metastatic brain tumors have long presented a challenge to oncologists. In response to the dismal survival outcomes associated with conventional therapies, various immunotherapy modalities, such as checkpoint inhibitors, vaccine, cellular immunotherapy and viral immunotherapy have been actively explored over the past couple of decades. Although improved patient survival has been more frequently noted in treatment of brain metastases, little progress has been made in improving patient survival in cases of primary brain tumors, specifically glioblastoma, which is the representative primary brain tumor discussed in this review. Herein, we will first overview the findings of recent clinical studies for treatment of primary and metastatic brain tumors with immunotherapeutic interventions. The clinical efficacy of these immunotherapies will be discussed in the context of their ability or inability to overcome inherent characteristics of the tumor as well as restricted antigen presentation and its immunosuppressive microenvironment. Additionally, this review aims to briefly inform clinicians in the field of neuro-oncology on the relevant aspects of the immune system as it pertains to the central nervous system, with special focus on the differing modes of antigen presentation and tumor microenvironment of primary and metastatic brain tumors and the role these differences may play in the efficacy of immunotherapy in eradicating the tumor.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Imunoterapia/tendências , Neoplasias Encefálicas/imunologia , Vacinas Anticâncer/imunologia , Ensaios Clínicos como Assunto , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Microambiente Tumoral/imunologia
4.
Int J Nanomedicine ; 15: 6673-6688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982226

RESUMO

Background: The safe and efficient delivery of chemotherapeutic agents is critical to glioma therapy. However, chemotherapy for glioma is extremely challenging because the blood-brain barrier (BBB) rigorously prevents drugs from reaching the tumor region. Materials and Methods: TfR-T12 peptide-modified PEG-PLA polymer was synthesized to deliver paclitaxel (PTX) for glioma therapy. TfR was significantly expressed on brain capillary endothelial cells and glioma cells; therefore, TfR-T12 peptide-modified micelles can cross the BBB system and target glioma cells. Results: TfR-T12-PEG-PLA/PTX polymeric micelles (TfR-T12-PMs) could be absorbed rapidly by tumor cells, and traversed effectively the BBB monolayers. TfR-T12-PMs can effectively inhibit the proliferation of U87MG cells in vitro, and TfR-T12-PMs loaded with paclitaxel presented better antiglioma effect with prolonged median survival of nude mice-bearing glioma than the unmodified PMs. Conclusion: The TfR-T12-PMs could effectively overcome the BBB barrier and accomplish glioma-targeted drug delivery, thus validating its potential in improving the therapeutic outcome in multiforme.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Glioblastoma/tratamento farmacológico , Micelas , Animais , Antígenos CD , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Peptídeos/química , Polietilenoglicóis/química , Receptores da Transferrina/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 11(1): 4709, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948765

RESUMO

Glioblastoma cancer-stem like cells (GSCs) display marked resistance to ionizing radiation (IR), a standard of care for glioblastoma patients. Mechanisms underpinning radio-resistance of GSCs remain largely unknown. Chromatin state and the accessibility of DNA lesions to DNA repair machineries are crucial for the maintenance of genomic stability. Understanding the functional impact of chromatin remodeling on DNA repair in GSCs may lay the foundation for advancing the efficacy of radio-sensitizing therapies. Here, we present the results of a high-content siRNA microscopy screen, revealing the transcriptional elongation factor SPT6 to be critical for the genomic stability and self-renewal of GSCs. Mechanistically, SPT6 transcriptionally up-regulates BRCA1 and thereby drives an error-free DNA repair in GSCs. SPT6 loss impairs the self-renewal, genomic stability and tumor initiating capacity of GSCs. Collectively, our results provide mechanistic insights into how SPT6 regulates DNA repair and identify SPT6 as a putative therapeutic target in glioblastoma.


Assuntos
Reparo do DNA , Instabilidade Genômica , Glioblastoma/genética , Células-Tronco Neoplásicas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Apoptose , Proteína BRCA1 , Neoplasias Encefálicas/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Inativação Gênica , Glioblastoma/patologia , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/patologia , RNA Interferente Pequeno/genética , Tolerância a Radiação , Radiação Ionizante , Transcriptoma
6.
Nat Commun ; 11(1): 4660, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938908

RESUMO

Intratumor spatial heterogeneity facilitates therapeutic resistance in glioblastoma (GBM). Nonetheless, understanding of GBM heterogeneity is largely limited to the surgically resectable tumor core lesion while the seeds for recurrence reside in the unresectable tumor edge. In this study, stratification of GBM to core and edge demonstrates clinically relevant surgical sequelae. We establish regionally derived models of GBM edge and core that retain their spatial identity in a cell autonomous manner. Upon xenotransplantation, edge-derived cells show a higher capacity for infiltrative growth, while core cells demonstrate core lesions with greater therapy resistance. Investigation of intercellular signaling between these two tumor populations uncovers the paracrine crosstalk from tumor core that promotes malignancy and therapy resistance of edge cells. These phenotypic alterations are initiated by HDAC1 in GBM core cells which subsequently affect edge cells by secreting the soluble form of CD109 protein. Our data reveal the role of intracellular communication between regionally different populations of GBM cells in tumor recurrence.


Assuntos
Antígenos CD/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Histona Desacetilase 1/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Feminino , Proteínas Ligadas por GPI/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Camundongos SCID , Fenilbutiratos/farmacologia , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Anticancer Res ; 40(10): 5801-5806, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988908

RESUMO

BACKGROUND/AIM: Whether adding tumor treating fields (TTF) to the Stupp protocol increases survival for glioblastoma (GBM) patients in routine clinical care remains unknown. PATIENTS AND METHODS: We retrospectively identified adult patients with newly diagnosed GBM (n=104) treated with the Stupp protocol or TTF at our Institution. RESULTS: Thirty-six percent (37/104) of patients received TTF in conjunction with the Stupp protocol and these patients had increased 6-month (p=0.006) and 1-year (p=0.170), but not 2-year survival rates compared to the 67-patients who received Stupp alone. The improvement of survival rate at 6-month was further confirmed by a modified Poisson model (p=0.010). However, we did not observe any improvement in overall survival (OS) with a Cox model. CONCLUSION: While adding TTF to the Stupp protocol appeared to benefit patients with newly diagnosed GBM, this effect was mild and may be largely due to selection bias.


Assuntos
Antineoplásicos Alquilantes/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Alquilantes/efeitos adversos , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/patologia , Terapia Combinada , Dacarbazina/administração & dosagem , Dacarbazina/efeitos adversos , Intervalo Livre de Doença , Feminino , Glioblastoma/epidemiologia , Glioblastoma/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida , Temozolomida/administração & dosagem , Temozolomida/efeitos adversos , Resultado do Tratamento
8.
Clinics (Sao Paulo) ; 75: e1553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32935821

RESUMO

OBJECTIVES: To assess the patterns of failure and prognostic factors in Brazilian patients with glioblastoma multiforme (GBM) treated with radiotherapy (RT) and concurrent and adjuvant temozolomide (TMZ). METHODS: Patients with diagnosed GBM post-resection received postoperative RT. TMZ was administered concurrently at 75 mg/m2/day for 28 consecutive days and adjuvant therapy at 150-200 mg/m2/day for 5 days every 28 days. Radiographic failure was defined as any new T1-enhancing lesion or biopsy-confirmed progressive enhancement inside of the radiation field. When possible, patients with recurrence were salvaged with metronomic TMZ, either in combination with a local treatment or alone (surgery or re-irradiation). Several prognostic factors were evaluated for overall survival (OS). Univariate and multivariate analyses were performed to identify significant factors. A p-value <0.05 was considered significant. RESULTS: This study included 50 patients. The median follow-up time was 21 months. The median RT dose was 60 Gy and all patients received concomitant TMZ. During follow-up, 41 (83.6%) failures were observed, including 34 (83%) in-field, 4 (9.7%) marginal, and 3 (7.3%) distant failures. Metronomic TMZ was used as salvage treatment in 22 (44%) cases and in combination with local treatment in 12 (24%) cases. The median OS and progression-free survival times for the entire cohort were 17 and 9 months, respectively. In univariate analysis, the following factors were significant for better OS: maximal surgical resection (p=0.03), Karnofsky Performance Score (KPS)>70 at diagnosis (p=0.01), metronomic TMZ treatment (p=0.038), recursive partitioning analysis class III (p=0.03), and time to failure >9 months (p=0.0001). In multivariate analysis, the following factors remained significant for better OS: metronomic TMZ (p=0.01) and time to failure >9 months (p=0.0001). CONCLUSION: The median OS of Brazilian patients with GBM treated with RT and TMZ was satisfactory. Although TMZ therapy has become the standard of care for patients with newly diagnosed GBM, the recurrence rate is extremely high. Metronomic TMZ as salvage treatment improved survival in these patients.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/terapia , Quimiorradioterapia/métodos , Glioblastoma/terapia , Recidiva Local de Neoplasia/epidemiologia , Temozolomida/uso terapêutico , Neoplasias Encefálicas/patologia , Brasil/epidemiologia , Quimioterapia Adjuvante , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Masculino , Estudos Retrospectivos , Sobrevida , Resultado do Tratamento
9.
PLoS One ; 15(7): e0236423, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32735611

RESUMO

BACKGROUND: Use of functional MRI (fMRI) in pre-surgical planning is a non-invasive method for pre-operative functional mapping for patients with brain tumors, especially tumors located near eloquent cortex. Currently, this practice predominantly involves task-based fMRI (T-fMRI). Resting state fMRI (RS-fMRI) offers an alternative with several methodological advantages. Here, we compare group-level analyses of RS-fMRI vs. T-fMRI as methods for language localization. PURPOSE: To contrast RS-fMRI vs. T-fMRI as techniques for localization of language function. METHODS: We analyzed data obtained in 35 patients who had both T-fMRI and RS-fMRI scans during the course of pre-surgical evaluation. The RS-fMRI data were analyzed using a previously trained resting-state network classifier. The T-fMRI data were analyzed using conventional techniques. Group-level results obtained by both methods were evaluated in terms of two outcome measures: (1) inter-subject variability of response magnitude and (2) sensitivity/specificity analysis of response topography, taking as ground truth previously reported maps of the language system based on intraoperative cortical mapping as well as meta-analytic maps of language task fMRI responses. RESULTS: Both fMRI methods localized major components of the language system (areas of Broca and Wernicke) although not with equal inter-subject consistency. Word-stem completion T-fMRI strongly activated Broca's area but also several task-general areas not specific to language. RS-fMRI provided a more specific representation of the language system. CONCLUSION: We demonstrate several advantages of classifier-based mapping of language representation in the brain. Language T-fMRI activated task-general (i.e., not language-specific) functional systems in addition to areas of Broca and Wernicke. In contrast, classifier-based analysis of RS-fMRI data generated maps confined to language-specific regions of the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Área de Broca/patologia , Glioblastoma/diagnóstico , Imagem por Ressonância Magnética , Adulto , Idoso , Atenção/fisiologia , Mapeamento Encefálico/métodos , Área de Broca/diagnóstico por imagem , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Lateralidade Funcional/fisiologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Descanso/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Adulto Jovem
10.
Ecotoxicol Environ Saf ; 202: 110940, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800223

RESUMO

Recent evidence indicates that chronic, low-dose exposure to mixtures of pesticides can cause adverse responses in a variety of cells, tissues and organs, although interactions between pesticides circulating in the blood and cancer cells remain largely unexplored. The aim of this study was to investigate the potential of a mixture of four pesticides to induce multidrug resistance against the chemotherapeutic agents cisplatin, 5-fluorouracil and temozolomide in the human U87 glioblastoma cell line, and to explore the molecular mechanisms underlying this resistance. We found that the repeated administration of the pesticide mixture (containing the insecticides chlorpyrifos-ethyl and deltamethrin, the fungicide metiram, and the herbicide glyphosate) induced a strong drug resistance in U87 cells. The resistance was durable and transferred to subsequent cell generations. In addition, we detected a significant over-expression of the ATP-binding cassette (ABC) membrane transporters P-gp/ABCB1 and BRCP/ABCG2 as well as a glutathione-S-transferase (GST)/M1-type cellular detoxification function, known to have important roles in multidrug resistance, thus providing molecular support for the acquired multidrug resistance phenotype and shedding light on the mechanism of resistance. We further determined that there was lower mortality in the resistant brain tumor cells and that the mitochondrial apoptosis pathway was activated at a lower rate after chemotherapy compared to non-resistant control cells. In addition, multidrug-resistant cells were found to have both higher motility and wound-healing properties, suggesting a greater metastatic potential. Our results suggest that the investigation of P-gp, BRCP and GST/M1 multidrug resistance gene expression and/or protein levels in biopsy specimens of brain tumor patients who were at risk of pesticide exposure could be beneficial in determining chemotherapy dose and prolonging patient survival.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Praguicidas/toxicidade , Testes de Toxicidade Crônica , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/farmacologia
11.
Brain Tumor Pathol ; 37(4): 136-144, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32761533

RESUMO

Oncogenic gene fusions have been reported in diffuse gliomas and may serve as potential therapeutic targets. Here, using next-generation sequencing analysis (Illumina TruSight Tumor 170 panel), we analyzed a total of 356 diffuse gliomas collected from 2017 to 2019 to evaluate clinical, pathological, and genetic features of gene fusion. We found 53 cases of glioblastomas harboring the following oncogenic gene fusions: MET (n = 18), EGFR (n = 14), FGFR (n = 12), NTRK (n = 5), RET (n = 2), AKT3 (n = 1), and PDGFRA fusions (n = 1). Gene fusions were consistently observed in both IDH-wildtype and IDH-mutant glioblastomas (8.8% and 9.4%, p = 1.000). PTPRZ1-MET fusion was the only fusion that genetically resembled secondary glioblastomas (i.e., high frequency of IDH mutation, ATRX loss, TP53 mutation, and absence of EGFR amplification), whereas other gene fusion types were similar to primary glioblastomas (i.e., high frequency of IDH-wildtype, TERT mutation, EGFR amplification, and PTEN mutation). In IDH-wildtype glioblastoma patients, multivariable analysis revealed that the PTPRZ1-MET fusion was associated with poor progression-free survival (HR [95% CI]: 5.42 (1.72-17.05), p = 0.004). Additionally, we described two novel cases of CCDC6-RET fusion in glioma. Collectively, our findings indicate that targetable gene fusions are associated with aggressive biological behavior and can aid the clinical treatment strategy for glioma patients.


Assuntos
Neoplasias Encefálicas/genética , Fusão Gênica/genética , Estudos de Associação Genética , Glioblastoma/genética , Glioma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Proteínas do Citoesqueleto/genética , Feminino , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioma/mortalidade , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Proteínas Proto-Oncogênicas c-ret/genética , Taxa de Sobrevida
12.
Nat Commun ; 11(1): 3912, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764562

RESUMO

Immunotherapy has emerged as a promising approach to treat cancer, however, its efficacy in highly malignant brain-tumors, glioblastomas (GBM), is limited. Here, we generate distinct imageable syngeneic mouse GBM-tumor models and utilize RNA-sequencing, CyTOF and correlative immunohistochemistry to assess immune-profiles in these models. We identify immunologically-inert and -active syngeneic-tumor types and show that inert tumors have an immune-suppressive phenotype with numerous exhausted CD8 T cells and resident macrophages; fewer eosinophils and SiglecF+ macrophages. To mimic the clinical-settings of first line of GBM-treatment, we show that tumor-resection invigorates an anti-tumor response via increasing T cells, activated microglia and SiglecF+ macrophages and decreasing resident macrophages. A comparative CyTOF analysis of resected-tumor samples from GBM-patients and mouse GBM-tumors show stark similarities in one of the mouse GBM-tumors tested. These findings guide informed choices for use of GBM models for immunotherapeutic interventions and offer a potential to facilitate immune-therapies in GBM patients.


Assuntos
Neoplasias Encefálicas/imunologia , Glioblastoma/imunologia , Animais , Encéfalo/imunologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Tolerância Imunológica , Imunofenotipagem , Imunoterapia , Isoenxertos , Linfócitos do Interstício Tumoral/classificação , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Microambiente Tumoral/imunologia
13.
J Cancer Res Clin Oncol ; 146(11): 2885-2896, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32779022

RESUMO

PURPOSE: Glioblastoma is the most aggressive form of brain tumors. A better understanding of the molecular mechanisms leading to its evolution is essential for the development of treatments more effective than the available modalities. Here, we aim to identify molecular drivers of glioblastoma development and recurrence by analyzing DNA CpG methylation patterns in sequential samples. METHODS: DNA was isolated from 22 pairs of primary and recurrent formalin-fixed, paraffin-embedded glioblastoma specimens, and subjected to reduced representation bisulfite sequencing. Bioinformatic analyses were conducted to identify differentially methylated sites and pathways, and biostatistics was used to test correlations among clinical and pathological parameters. RESULTS: Differentially methylated pathways likely involved in primary tumor development included those of neuronal differentiation, myelination, metabolic processes, synapse organization and endothelial cell proliferation, while pathways differentially active during glioblastoma recurrence involved those associated with cell processes and differentiation, immune response, Wnt regulation and catecholamine secretion and transport. CONCLUSION: DNA CpG methylation analyses in sequential clinical specimens revealed hypomethylation in certain pathways such as neuronal tissue development and angiogenesis likely involved in early tumor development and growth, while suggested altered regulation in catecholamine secretion and transport, Wnt expression and immune response contributing to glioblastoma recurrence. These pathways merit further investigations and may represent novel therapeutic targets.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilação de DNA/genética , Glioblastoma/genética , Glioblastoma/patologia , Adulto , Idoso , Ilhas de CpG/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Nat Commun ; 11(1): 3669, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699356

RESUMO

Recent characterization of spatiotemporal genomic architecture of IDH-wild-type multifocal glioblastomas (M-GBMs) suggests a clinically unobserved common-ancestor (CA) with a less aggressive phenotype, generating highly genetically divergent malignant gliomas/GBMs in distant brain regions. Using serial MRI/3D-reconstruction, whole-genome sequencing and spectral karyotyping-based single-cell phylogenetic tree building, we show two distinct types of tumor evolution in p53-mutant driven mouse models. Malignant gliomas/GBMs grow as a single mass (Type 1) and multifocal masses (Type 2), respectively, despite both exhibiting loss of Pten/chromosome 19 (chr19) and PI3K/Akt activation with sub-tetraploid/4N genomes. Analysis of early biopsied and multi-segment tumor tissues reveals no evidence of less proliferative diploid/2N lesions in Type 1 tumors. Strikingly, CA-derived relatively quiescent tumor precursors with ancestral diploid/2N genomes and normal Pten/chr19 are observed in the subventricular zone (SVZ), but are distantly segregated from multi focal Type 2 tumors. Importantly, PI3K/Akt inhibition by Rictor/mTORC2 deletion blocks distant dispersal, restricting glioma growth in the SVZ.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Evolução Clonal , Evolução Molecular , Glioblastoma/genética , Animais , Biópsia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Cariotipagem , Imagem por Ressonância Magnética , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Transgênicos , Mutação , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Transdução de Sinais/genética , Análise de Célula Única , Sequenciamento Completo do Genoma
15.
Nat Commun ; 11(1): 3406, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641768

RESUMO

Cancer stem cells are critical for cancer initiation, development, and treatment resistance. Our understanding of these processes, and how they relate to glioblastoma heterogeneity, is limited. To overcome these limitations, we performed single-cell RNA sequencing on 53586 adult glioblastoma cells and 22637 normal human fetal brain cells, and compared the lineage hierarchy of the developing human brain to the transcriptome of cancer cells. We find a conserved neural tri-lineage cancer hierarchy centered around glial progenitor-like cells. We also find that this progenitor population contains the majority of the cancer's cycling cells, and, using RNA velocity, is often the originator of the other cell types. Finally, we show that this hierarchal map can be used to identify therapeutic targets specific to progenitor cancer stem cells. Our analyses show that normal brain development reconciles glioblastoma development, suggests a possible origin for glioblastoma hierarchy, and helps to identify cancer stem cell-specific targets.


Assuntos
Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Glioblastoma/genética , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência de RNA/métodos , Transcriptoma/genética , Adulto , Animais , Antineoplásicos Alquilantes/farmacologia , Encéfalo/embriologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Feminino , Feto , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Análise de Célula Única/métodos , Temozolomida/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
16.
Nat Commun ; 11(1): 3457, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651364

RESUMO

Glioblastoma is a deadly cancer, with no effective therapies. Better understanding and identification of selective targets are urgently needed. We found that advillin (AVIL) is overexpressed in all the glioblastomas we tested including glioblastoma stem/initiating cells, but hardly detectable in non-neoplastic astrocytes, neural stem cells or normal brain. Glioma patients with increased AVIL expression have a worse prognosis. Silencing AVIL nearly eradicated glioblastoma cells in culture, and dramatically inhibited in vivo xenografts in mice, but had no effect on normal control cells. Conversely, overexpressing AVIL promoted cell proliferation and migration, enabled fibroblasts to escape contact inhibition, and transformed immortalized astrocytes, supporting AVIL being a bona fide oncogene. We provide evidence that the tumorigenic effect of AVIL is partly mediated by FOXM1, which regulates LIN28B, whose expression also correlates with clinical prognosis. AVIL regulates the cytoskeleton through modulating F-actin, while mutants disrupting F-actin binding are defective in its tumorigenic capabilities.


Assuntos
Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas dos Microfilamentos/metabolismo , Animais , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Citoesqueleto/metabolismo , Imunofluorescência , Glioblastoma/genética , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/genética , Microscopia Confocal , Reação em Cadeia da Polimerase em Tempo Real
18.
PLoS One ; 15(7): e0234986, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32634135

RESUMO

Glioblastoma is a common, malignant brain tumor whose disease incidence increases with age. Glioblastoma stem-like cells (GSCs) are thought to contribute to cancer therapy resistance and to be responsible for tumor initiation, maintenance, and recurrence. This study utilizes both SNP array and gene expression profiling to better understand GSCs and their relation to malignant disease. Peripheral blood and primary glioblastoma tumor tissue were obtained from patients, the latter of which was used to generate GSCs as well as a CD133pos./CD15pos. subpopulation. The stem cell features of GSCs were confirmed via the immunofluorescent expression of Nestin, SOX2, and CD133. Both tumor tissue and the isolated primary cells shared unique abnormal genomic characteristics, including a gain of chromosome 7 as well as either a partial or complete loss of chromosome 10. Individual genomic differences were also observed, including the loss of chromosome 4 and segmental uniparental disomy of 9p24.3→p21.3 in GSCs. Gene expression profiling revealed 418 genes upregulated in tumor tissue vs. CD133pos./CD15pos. cells and 44 genes upregulated in CD133pos./CD15pos. cells vs. tumor tissue. Pathway analyses demonstrated that upregulated genes in CD133pos./CD15pos. cells are relevant to cell cycle processes and cancerogenesis. In summary, we detected previously undescribed genomic and gene expression differences when comparing tumor tissue and isolated stem-like subpopulations.


Assuntos
Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Antígeno AC133/análise , Separação Celular/métodos , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Antígenos CD15/análise , Polimorfismo de Nucleotídeo Único/genética , Manejo de Espécimes , Regulação para Cima
19.
PLoS One ; 15(7): e0219632, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32706829

RESUMO

INTRODUCTION: Surgical resection and systemic chemotherapy with temozolomide remain the mainstay for treatment of glioblastoma. However, many patients are not candidates for surgical resection given inaccessible tumor location or poor health status. Furthermore, despite being first line treatment, temozolomide has only limited efficacy. METHODS: The development of injectable hydrogel-based carrier systems allows for the delivery of a wide range of chemotherapeutics that can achieve high local concentrations, thus potentially avoiding systemic side effects and wide-spread neurotoxicity. To test this modality in a realistic environment, we developed a diblock copolypeptide hydrogel (DCH) capable of carrying and releasing paclitaxel, a compound that we found to be highly potent against primary gliomasphere cells. RESULTS: The DCH produced minimal tissue reactivity and was well tolerated in the immune-competent mouse brain. Paclitaxel-loaded hydrogel induced less tissue damage, cellular inflammation and reactive astrocytes than cremaphor-taxol (typical taxol-carrier) or hydrogel alone. In a deep subcortical xenograft model of glioblastoma in immunodeficient mice, injection of paclitaxel-loaded hydrogel led to local tumor control and improved survival. However, the tumor cells were highly migratory and were able to eventually escape the area of treatment. CONCLUSIONS: These findings suggest this technology may be ultimately applicable to patients with deep-seated inoperable tumors, but as currently formulated, complete tumor eradication would be highly unlikely. Future studies should focus on targeting the migratory potential of surviving cells.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Glioblastoma/tratamento farmacológico , Hidrogéis/química , Paclitaxel/uso terapêutico , Peptídeos/química , Animais , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral , Sistema Nervoso Central/patologia , Portadores de Fármacos/química , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Paclitaxel/química , Taxa de Sobrevida , Temozolomida/química , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Int J Nanomedicine ; 15: 4677-4689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32669844

RESUMO

Background: Superparamagnetic iron oxide nanoparticles (SPIONs) have displayed multifunctional applications in cancer theranostics following systemic delivery. In an effort to increase the therapeutic potential of local therapies (including focal hyperthermia), nanoparticles can also be administered intratumorally. Therefore, the development of a reliable pharmacokinetic model for the prediction of nanoparticle distribution for both clinically relevant routes of delivery is of high importance. Materials and Methods: The biodistribution of SPIONs (of two different sizes - 130 nm and 60 nm) radiolabeled with zirconium-89 or technetium-99m following intratumoral or intravenous injection was investigated in C57/Bl6 mice bearing subcutaneous GL261 glioblastomas. Based on PET/CT biodistribution data, a novel pharmacokinetic model was established for a better understanding of the pharmacokinetics of the SPIONs after both administration routes. Results: The PET image analysis of the nanoparticles (confirmed by histology) demonstrated the presence of radiolabeled nanoparticles within the glioma site (with low amounts in the liver and spleen) at all investigated time points following intratumoral injection. The mathematical model confirmed the dynamic nanoparticle redistribution in the organism over a period of 72 h with an equilibrium reached after 100 h. Intravenous injection of nanoparticles demonstrated a different distribution pattern with a rapid particle retention in all organs (particularly in liver and spleen) and a subsequent slow release rate. Conclusion: The mathematical model demonstrated good agreement with experimental data derived from tumor mouse models suggesting the value of this tool to predict the real-time pharmacokinetic features of SPIONs in vivo. In the future, it is planned to adapt our model to other nanoparticle formulations to more precisely describe their biodistribution in in vivo model systems.


Assuntos
Compostos Férricos/administração & dosagem , Compostos Férricos/farmacocinética , Glioblastoma/diagnóstico por imagem , Nanopartículas de Magnetita/administração & dosagem , Animais , Feminino , Glioblastoma/patologia , Injeções , Injeções Intravenosas , Nanopartículas de Magnetita/química , Camundongos Endogâmicos C57BL , Modelos Biológicos , Tomografia Computadorizada com Tomografia por Emissão de Pósitrons , Radioisótopos/farmacocinética , Tecnécio/farmacocinética , Nanomedicina Teranóstica/métodos , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto , Zircônio/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA