Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176.516
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1422869, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948514

RESUMO

Objectives: Obesity impairs bone marrow (BM) glucose metabolism. Adult BM constitutes mostly of adipocytes that respond to changes in energy metabolism by modulating their morphology and number. Here we evaluated whether diet or exercise intervention could improve the high-fat diet (HFD) associated impairment in BM glucose uptake (BMGU) and whether this associates with the morphology of BM adipocytes (BMAds) in rats. Methods: Eight-week-old male Sprague-Dawley rats were fed ad libitum either HFD or chow diet for 24 weeks. Additionally after 12 weeks, HFD-fed rats switched either to chow diet, voluntary intermittent running exercise, or both for another 12 weeks. BMAd morphology was assessed by perilipin-1 immunofluorescence staining in formalin-fixed paraffin-embedded tibial sections. Insulin-stimulated sternal and humeral BMGU were measured using [18F]FDG-PET/CT. Tibial microarchitecture and mineral density were measured with microCT. Results: HFD rats had significantly higher whole-body fat percentage compared to the chow group (17% vs 13%, respectively; p = 0.004) and larger median size of BMAds in the proximal tibia (815 µm2 vs 592 µm2, respectively; p = 0.03) but not in the distal tibia. Switch to chow diet combined with running exercise normalized whole-body fat percentage (p < 0.001) but not the BMAd size. At 32 weeks of age, there was no significant difference in insulin-stimulated BMGU between the study groups. However, BMGU was significantly higher in sternum compared to humerus (p < 0.001) and higher in 8-week-old compared to 32-week-old rats (p < 0.001). BMAd size in proximal tibia correlated positively with whole-body fat percentage (r = 0.48, p = 0.005) and negatively with humeral BMGU (r = -0.63, p = 0.02). HFD significantly reduced trabecular number (p < 0.001) compared to the chow group. Switch to chow diet reversed this as the trabecular number was significantly higher (p = 0.008) than in the HFD group. Conclusion: In this study we showed that insulin-stimulated BMGU is age- and site-dependent. BMGU was not affected by the study interventions. HFD increased whole-body fat percentage and the size of BMAds in proximal tibia. Switching from HFD to a chow diet and running exercise improved glucose homeostasis and normalized the HFD-induced increase in body fat but not the hypertrophy of BMAds.


Assuntos
Adiposidade , Medula Óssea , Dieta Hiperlipídica , Glucose , Obesidade , Condicionamento Físico Animal , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Dieta Hiperlipídica/efeitos adversos , Medula Óssea/metabolismo , Glucose/metabolismo , Obesidade/metabolismo , Adipócitos/metabolismo
2.
Yale J Biol Med ; 97(2): 153-164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947101

RESUMO

The blood-brain barrier (BBB) prevents the use of many drugs for the treatment of neurological disorders. Recently, nitrogen-doped carbon dots (NCDs) have emerged as promising nanocarriers to cross BBB. The primary focus of our study was to evaluate the effectiveness of NCDs for the symptomatic treatment of Alzheimer's disease (AD). In this study, we developed and characterized NCDs bound to rutin, a flavonoid with known benefits for AD. Despite its benefits, the transportation of rutin via NCDs for AD therapy has not been explored previously. We characterized the particles using FTIR and UV-visible spectroscopy followed by atomic force microscopy. Once the design was optimized and validated, we performed in vivo testing via a hemolytic assay to optimize the dosage. Preliminary in vitro testing was performed in AlCl3-induced rat models of AD whereby a single dose of 10 mg/kg NCDs-rutin was administered intraperitoneally. Interestingly, this single dose of 10 mg/kg NCDs-rutin produced the same behavioral effects as 50 mg/kg rutin administered intraperitoneally for 1 month. Similarly, histological and biomarker profiles (SOD2 and TLR4) also presented significant protective effects of NCDs-rutin against neuronal loss, inflammation, and oxidative stress. Hence, NCDs-rutin are a promising approach for the treatment of neurological diseases.


Assuntos
Doença de Alzheimer , Carbono , Glucose , Nitrogênio , Rutina , Rutina/farmacologia , Rutina/química , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Carbono/química , Carbono/farmacologia , Nitrogênio/química , Ratos , Glucose/metabolismo , Masculino , Pontos Quânticos/química , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Humanos
3.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950317

RESUMO

Glucose plays a key role in shaping pancreatic ß cell function. Thus, deciphering the mechanisms by which this nutrient stimulates ß cells holds therapeutic promise for combating ß cell failure in type 2 diabetes (T2D). ß Cells respond to hyperglycemia in part by rewiring their mRNA metabolism, yet the mechanisms governing these changes remain poorly understood. Here, we identify a requirement for the RNA-binding protein PCBP2 in maintaining ß cell function basally and during sustained hyperglycemic challenge. PCBP2 was induced in primary mouse islets incubated with elevated glucose and was required to adapt insulin secretion. Transcriptomic analysis of primary Pcbp2-deficient ß cells revealed impacts on basal and glucose-regulated mRNAs encoding core components of the insulin secretory pathway. Accordingly, Pcbp2-deficient ß cells exhibited defects in calcium flux, insulin granule ultrastructure and exocytosis, and the amplification pathway of insulin secretion. Further, PCBP2 was induced by glucose in primary human islets, was downregulated in islets from T2D donors, and impacted genes commonly altered in islets from donors with T2D and linked to single-nucleotide polymorphisms associated with T2D. Thus, these findings establish a paradigm for PCBP2 in governing basal and glucose-adaptive gene programs critical for shaping the functional state of ß cells.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Células Secretoras de Insulina , Insulina , Proteínas de Ligação a RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Humanos , Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Insulina/metabolismo , Secreção de Insulina , Camundongos Knockout , Masculino , Adaptação Fisiológica
4.
Sci Rep ; 14(1): 15177, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956174

RESUMO

Human activities associated with large-scale farms and the monocultures expose honey bees to one type of food. Moreover, there is an ongoing decline of plant species producing pollen and nectar in Europe. A poorly balanced diet affects a number of processes occurring in a bee's body. The fat body and hemolymph are the tissues that participate in all of them. Therefore, the aim of our study was to determine the effect of hazel, pine, rapeseed, buckwheat, phacelia and goldenrod pollen on the morphological parameters of fat body trophocytes, the diameters of cell nuclei in oenocytes and the concentrations of compounds involved in energy metabolism (glucose, glycogen, triglycerides and protein). In the cage tests, the bees were fed from the first day of life with sugar candy (control group) or candy with a 10% addition of one of the 6 pollen types. Hemolymph and fat body from various locations were collected from 1-, 7- and 14-day-old workers. Pollen produced by plant species such as hazel and pine increased glucose concentrations in the bee tissues, especially in the hemolymph. It can therefore be concluded that they are valuable sources of energy (in the form of simple carbohydrates) which are quickly used by bees. Pollen from plants blooming in the summer and autumn increased the concentrations of proteins, glycogen and triglycerides in the fat body, especially that from the third tergite. The accumulation of these compounds was associated with an increased the length and width of trophocytes as well as with enhanced metabolic activity, which was evidenced in the increasing diameter of oenocyte cell nuclei. It seems a balanced multi-pollen diet is more valuable for bees, but it is important to understand the effects of the particular pollen types in the context of a mono-diet. In the future, this will make it possible to produce mixtures that can ensure homeostasis in the apian body.


Assuntos
Metabolismo Energético , Corpo Adiposo , Hemolinfa , Pólen , Abelhas/metabolismo , Abelhas/fisiologia , Animais , Pólen/metabolismo , Hemolinfa/metabolismo , Corpo Adiposo/metabolismo , Glicogênio/metabolismo , Glucose/metabolismo
5.
Anal Chim Acta ; 1316: 342852, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969409

RESUMO

BACKGROUND: With the advent of personalized medical approaches, precise and tailored treatments are expected to become widely accepted for the prevention and treatment of diabetes. Paper-based colorimetric sensors that function in combination with smartphones have been rapidly developed in recent years because it does not require additional equipment and is inexpensive and easy to perform. In this study, we developed a portable, low-cost, and wearable sweat-glucose detection device for in situ detection. RESULTS: The sensor adopted an integrated biomimetic nanoenzyme of glucose oxidase (GOx) encapsulated in copper 1, 4-benzenedicarboxylate (CuBDC) (GOx@CuBDC) through a biomimetic mineralization process. CuBDC exhibited a peroxide-like effect, cascade catalytic effect with the encapsulated GOx, and increased the enzyme stability. GOx@CuBDC and 3,3,5,5-tetramethylbenzidine were combined to form a hybrid membrane that achieved single-step paper-based glucose detection. SIGNIFICANCE AND NOVELTY: This GOx@CuBDC-based colorimetric glucose sensor was used to quantitatively analyze the sweat-glucose concentration with smartphone readings. The sensor exhibited a good linear relationship over the concentration range of 40-900 µM and a limit of detection of 20.7 µM (S/N = 3). Moreover, the sensor performed well in situ monitoring and in evaluating variations based on the consumption of foods with different glycemic indices. Therefore, the fabricated wearable sweat-glucose sensors exhibited optimal practical application performance.


Assuntos
Técnicas Biossensoriais , Colorimetria , Cobre , Glucose Oxidase , Glucose , Smartphone , Suor , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Cobre/química , Suor/química , Humanos , Glucose/análise , Dispositivos Eletrônicos Vestíveis , Limite de Detecção , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo
6.
Anal Chim Acta ; 1316: 342882, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969418

RESUMO

BACKGROUND: Transition metal phosphides with properties similar to platinum metal have received increasing attention for the non-enzymatic detection of glucose. However, the requirement of highly corrosive reagent during sample pretreatment would impose a potential risk to the human body, limiting their practical applications. RESULTS: In this study, we report a self-powered microfluidic device for the non-enzymatic detection of glucose using nickel phosphide (Ni2P) hybrid as the catalyst. The Ni2P hybrid is synthesized by pyrolysis of metal-organic framework (MOF)-based precursor and in-situ phosphating process, showing two linear detection ranges (1 µM-1 mM, 1 mM-6 mM) toward glucose with the detection limit of 0.32 µM. The good performance of Ni2P hybrid for glucose is attributed to the synergistic effect of Ni2P active sites and N-doped porous carbon matrix. The microchip is integrated with a NaOH-loaded paper pad and a capillary-based micropump, enabling the automatic NaOH redissolution and delivery of sample solution into the detection chamber. Under the optimized condition, the Ni2P hybrid-based microchip realized the detection of glucose in a user-friendly way. Besides, the feasibility of using this microchip for glucose detection in real serum samples has also been validated. SIGNIFICANCE: This article presents a facile fabrication method utilizing a MOF template to synthesize a Ni2P hybrid catalyst. By leveraging the synergy between the Ni2P active sites and the N-doped carbon matrix, an exceptional electrochemical detection performance for glucose has been achieved. Additionally, a self-powered chip device has been developed for convenient glucose detection based on the pre-established high pH environment on the chip.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Níquel , Níquel/química , Técnicas Eletroquímicas/instrumentação , Humanos , Glucose/análise , Fosfinas/química , Estruturas Metalorgânicas/química , Limite de Detecção , Dispositivos Lab-On-A-Chip , Glicemia/análise , Catálise
7.
Int Ophthalmol ; 44(1): 316, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969958

RESUMO

BACKGROUND: Diabetic cataract (DC) is a common complication of diabetes and its etiology and progression are multi-factorial. In this study, the roles of specific protein 1 (SP1) and fibroblast growth factor 7 (FGF7) in DC development were explored. METHODS: DC cell model was established by treating SRA01/04 cells with high glucose (HG). MTT assay was conducted to evaluate cell viability. Transwell assay and wound-healing assay were performed to assess cell migration and invasion. Western blot assay and qRT-PCR assay were conducted to measure the expression of N-cadherin, E-cadherin, Collagen I, Fibronectin, SP1 and FGF7 expression. CHIP assay and dual-luciferase reporter assay were conducted to analyze the combination between FGF7 and SP1. RESULTS: FGF7 was upregulated in DC patients and HG-induced SRA01/04 cells. HG treatment promoted SRA01/04 cell viability, migration, invasion and epithelial-mesenchymal transition (EMT), while FGF7 knockdown abated the effects. Transcription factor SP1 activated the transcription level of FGF7 and SP1 overexpression aggravated HG-induced SRA01/04 cell injury. SP1 silencing repressed HG-induced SRA01/04 cell viability, migration, invasion and EMT, but these effects were ameliorated by upregulating FGF7. Additionally, SP1 knockdown inhibited the PI3K/AKT pathway by regulating the transcription level of FGF7. CONCLUSION: Transcription factor SP1 activated the transcription level of FGF7 and the PI3K/AKT pathway to regulate HG-induced SRA01/04 cell viability, migration, invasion and EMT.


Assuntos
Movimento Celular , Sobrevivência Celular , Células Epiteliais , Transição Epitelial-Mesenquimal , Fator 7 de Crescimento de Fibroblastos , Glucose , Cristalino , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator de Transcrição Sp1 , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp1/genética , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Glucose/farmacologia , Células Epiteliais/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Fator 7 de Crescimento de Fibroblastos/genética , Fator 7 de Crescimento de Fibroblastos/farmacologia , Cristalino/metabolismo , Cristalino/citologia , Catarata/metabolismo , Células Cultivadas , Regulação da Expressão Gênica
8.
Mol Biol Rep ; 51(1): 788, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970704

RESUMO

Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/ß-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/ß-catenin signaling.


Assuntos
Glicólise , Neoplasias , Via de Sinalização Wnt , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , beta Catenina/metabolismo , Efeito Warburg em Oncologia , Animais , Glucose/metabolismo
9.
Adipocyte ; 13(1): 2374062, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38953241

RESUMO

Obesity is associated with a low-grade chronic inflammatory process characterized by higher circulating TNFα levels, thus contributing to insulin resistance. This study evaluated the effect of silybin, the main bioactive component of silymarin, which has anti-inflammatory properties, on TNFα levels and its impact on glucose uptake in the adipocyte cell line 3T3-L1 challenged with two different inflammatory stimuli, TNFα or lipopolysaccharide (LPS). Silybin's pre-treatment effect was evaluated in adipocytes pre-incubated with silybin (30 or 80 µM) before challenging with the inflammatory stimuli (TNFα or LPS). For the post-treatment effect, the adipocytes were first challenged with the inflammatory stimuli and then post-treated with silybin. After treatments, TNFα production, glucose uptake, and GLUT4 protein expression were determined. Both inflammatory stimuli increased TNFα secretion, diminished GLUT4 expression, and significantly decreased glucose uptake. Silybin 30 µM only reduced TNFα secretion after the LPS challenge. Silybin 80 µM as post-treatment or pre-treatment decreased TNFα levels, improving glucose uptake. However, glucose uptake enhancement induced by silybin did not depend on GLUT4 protein expression. These results show that silybin importantly reduced TNFα levels and upregulates glucose uptake, independently of GLUT4 protein expression.


Assuntos
Células 3T3-L1 , Adipócitos , Glucose , Lipopolissacarídeos , Silibina , Fator de Necrose Tumoral alfa , Animais , Silibina/farmacologia , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Glucose/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Silimarina/farmacologia
10.
Front Cell Infect Microbiol ; 14: 1414188, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979511

RESUMO

In Escherichia coli, the disaccharide trehalose can be metabolized as a carbon source or be accumulated as an osmoprotectant under osmotic stress. In hypertonic environments, E. coli accumulates trehalose in the cell by synthesis from glucose mediated by the cytosolic enzymes OtsA and OtsB. Trehalose in the periplasm can be hydrolyzed into glucose by the periplasmic trehalase TreA. We have previously shown that a treA mutant of extraintestinal E. coli strain BEN2908 displayed increased resistance to osmotic stress by 0.6 M urea, and reduced production of type 1 fimbriae, reduced invasion of avian fibroblasts, and decreased bladder colonization in a murine model of urinary tract infection. Since loss of TreA likely results in higher periplasmic trehalose concentrations, we wondered if deletion of otsA and otsB genes, which would lead to decreased internal trehalose concentrations, would reduce resistance to stress by 0.6 M urea and promote type 1 fimbriae production. The BEN2908ΔotsBA mutant was sensitive to osmotic stress by urea, but displayed an even more pronounced reduction in production of type 1 fimbriae, with the consequent reduction in adhesion/invasion of avian fibroblasts and reduced bladder colonization in the murine urinary tract. The BEN2908ΔtreAotsBA mutant also showed a reduction in production of type 1 fimbriae, but in contrast to the ΔotsBA mutant, resisted better than the wild type in the presence of urea. We hypothesize that, in BEN2908, resistance to stress by urea would depend on the levels of periplasmic trehalose, but type 1 fimbriae production would be influenced by the levels of cytosolic trehalose.


Assuntos
Fímbrias Bacterianas , Osmorregulação , Trealose , Bexiga Urinária , Infecções Urinárias , Animais , Trealose/metabolismo , Camundongos , Bexiga Urinária/microbiologia , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/genética , Modelos Animais de Doenças , Feminino , Pressão Osmótica , Escherichia coli Extraintestinal Patogênica/metabolismo , Escherichia coli Extraintestinal Patogênica/genética , Ureia/metabolismo , Trealase/metabolismo , Trealase/genética , Deleção de Genes , Glucose/metabolismo
11.
Int J Nanomedicine ; 19: 6643-6658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38979532

RESUMO

Purpose: Nanovesicles (NVs) derived from bone mesenchymal stem cells (BMSCs) as drug delivery systems are considered an effective therapeutic strategy for diabetes. However, its mechanism of action remains unclear. Here, we evaluated the efficacy and molecular mechanism of BMSC-derived NVs carrying the curcumin analog H8 (H8-BMSCs-NVs) on hepatic glucose and lipid metabolism in type 2 diabetes (T2D). Subjects and Methods: Mouse BMSCs were isolated by collagenase digestion and H8-BMSCs-NVs were prepared by microvesicle extrusion. The effects of H8-BMSCs-NVs on hepatic glucose and lipid metabolism were observed in a T2D mouse model and a HepG2 cell insulin resistance model. To evaluate changes in potential signaling pathways, the PI3K/AKT/AMPK signaling pathway and expression levels of G6P and PEPCK were assessed by Western blotting. Results: H8-BMSCs-NVs effectively improved lipid accumulation in liver tissues and restored liver dysfunction in T2D mice. Meanwhile, H8-BMSCs-NVs effectively inhibited intracellular lipid accumulation in the insulin resistance models of HepG2 cells. Mechanistic studies showed that H8-BMSCs-NVs activated the PI3K/AKT/AMPK signaling pathway and decreased the expression levels of G6P and PEPCK. Conclusion: These findings demonstrate that H8-BMSCs-NVs improved hepatic glucose and lipid metabolism in T2D mice by activating the PI3K/AKT/AMPK signaling pathway, which provides novel evidence suggesting the potential of H8-BMSCs-NVs in the clinically treatment of T2D patients.


Assuntos
Diabetes Mellitus Tipo 2 , Glucose , Metabolismo dos Lipídeos , Fígado , Células-Tronco Mesenquimais , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células Hep G2 , Glucose/metabolismo , Camundongos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Curcumina/farmacologia , Curcumina/química , Curcumina/administração & dosagem , Resistência à Insulina , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Diabetes Mellitus Experimental/metabolismo
12.
Front Endocrinol (Lausanne) ; 15: 1395028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989001

RESUMO

Introduction: Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods: Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results: Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion: The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.


Assuntos
Glucose , Secreção de Insulina , Insulina , Animais , Secreção de Insulina/efeitos dos fármacos , Glucose/metabolismo , Ratos , Humanos , Insulina/metabolismo , Camundongos , Masculino , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , AMP Cíclico/metabolismo , Cálcio/metabolismo
13.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(6): 616-623, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38991961

RESUMO

OBJECTIVE: To investigate whether 6-shogaol (6-SH) alleviates oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal autophagy and calcium overload by promoting the expression of microRNA-26a-5p (miR-26a-5p) and inhibiting death-associated protein kinase 1 (DAPK1), and to explore its potential mechanisms. METHODS: Primary cultured logarithmic growth phase mouse hippocampal neurons HT22 cells were taken and cell counting kit-8 (CCK-8) was used to detect cell viability, searching for the optimal concentration of Na2S2O4. HT22 cells were divided into blank control group (NC group), OGD/R group (sugar-free culture medium + 10 mmol/L Na2S2O4 treatment for 1.5 hours followed by normal culture medium for 4 hours), 6-SH intervention group (cultured with 10 µmol/L 6-SH for 4 hours after OGD), negative control inhibitor pretreatment group (transfected with negative control inhibitor for 48 hours followed by OGD, then cultured with 6-SH for 4 hours), and miR-26a-5p inhibitor pretreatment group (transfected with miR-26a-5p inhibitor for 48 hours followed by OGD, then cultured with 6-SH for 4 hours). Cell viability of each group was detected by CCK-8 method; cell ultrastructure was observed under transmission electron microscopy; real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the gene expressions of DAPK1 and miR-26a-5p; molecular docking were used to verify the interaction between 6-SH and miR-26a-5p; dual-luciferase assay was used to verify the targeting relationship between DAPK1 and miR-26a-5p; flow cytometry was used to determine the levels of intracellular Ca2+; Western blotting was used to detect the protein expressions of phosphorylated-glutamate receptor 2B (p-NMDAR2B) Ser1303, DAPK1, autophagy related protein Beclin1, light chain 3 (LC3), and p-DAPK1 Ser308; immunofluorescence was used to detect the expression of LC3 and Beclin1. RESULTS: The results of the CCK-8 assay showed that the cell viability of the 6-SH intervention group was significantly increased compared to the OGD/R group, while the cell viability of the miR-26a-5p inhibitor pretreatment group was significantly decreased compared to the 6-SH intervention group. Transmission electron microscopy revealed that the number of autophagosomes in the 6-SH intervention group was significantly reduced compared to the OGD/R group, while the number of autophagosomes in the miR-26a-5p inhibitor pretreatment group was significantly increased compared to the 6-SH intervention group. RT-qPCR results showed that compared with the OGD/R group, the expression of miR-26a-5p was significantly upregulated and the expression of DAPK1 mRNA was significantly downregulated in the 6-SH intervention group; compared with the 6-SH intervention group, the expression of miR-26a-5p was significantly downregulated and the expression of DAPK1 mRNA was significantly upregulated in the miR-26a-5p inhibitor pretreatment group. Molecular docking verified the interaction between 6-SH and miR-26a-5p. Dual-luciferase reporter gene assay showed that compared with the negative control group, mmu-miR-26a-5p significantly downregulated the luciferase expression of m-DAPK1-3UTR-WT, indicating a binding interaction between them. Flow cytometry results showed that compared with the OGD/R group, the level of intracellular Ca2+; was significantly decreased in the 6-SH intervention group; compared with the 6-SH intervention group, the level of Ca2+ was significantly increased in the miR-26a-5p inhibitor pretreatment group. Western blotting results showed that compared with the OGD/R group, the protein expressions of p-NMDAR2B Ser1303, DAPK1, Beclin1, and LC3 were significantly decreased in the 6-SH intervention group (p-NMDAR2B Ser1303/ß-actin: 2.34±0.27 vs. 4.78±0.39, DAPK1/ß-actin: 1.40±0.13 vs. 2.37±0.21, Beclin1/ß-actin: 2.61±0.32 vs. 4.32±0.29, LC3/ß-actin: 2.52±0.45 vs. 5.09±0.18, all P < 0.05), while the protein expression of p-DAPK1 Ser308 was significantly increased (p-DAPK1 Ser308/ß-actin: 0.66±0.09 vs. 0.40±0.02, P < 0.05); compared with the 6-SH intervention group, the protein expressions of p-NMDAR2B Ser1303, DAPK1, Beclin1, and LC3 were significantly increased in the miR-26a-5p inhibitor pretreatment group (p-NMDAR2B Ser1303/ß-actin: 4.08±0.14 vs. 2.34±0.27, DAPK1/ß-actin: 1.96±0.15 vs. 1.40±0.13, Beclin1/ß-actin: 3.92±0.31 vs. 2.61±0.32, LC3/ß-actin: 4.33±0.33 vs. 2.52±0.45, all P < 0.05), while the expression of p-DAPK1 Ser308 protein was significantly decreased (p-DAPK1 Ser308/ß-actin: 0.33±0.12 vs. 0.66±0.09, P < 0.05); immunofluorescence staining showed that compared with the OGD/R group, the fluorescence intensity of LC3 and Beclin1 was significantly decreased in the 6-SH intervention group; compared with the 6-SH intervention group, the fluorescence intensity of LC3 and Beclin1 was significantly increased in the miR-26a-5p inhibitor pretreatment group. CONCLUSIONS: 6-SH can alleviate neuronal damage by regulating miR-26a-5p/DAPK1 to reduce autophagy and calcium overload in cells.


Assuntos
Autofagia , Proteínas Quinases Associadas com Morte Celular , MicroRNAs , Traumatismo por Reperfusão , MicroRNAs/genética , Animais , Camundongos , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Autofagia/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Catecóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/metabolismo , Glucose
14.
Mol Biol Rep ; 51(1): 808, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002003

RESUMO

BACKGROUND: Endothelial cells (ECs) can confer neuroprotection by secreting molecules. This study aimed to investigate whether DNA methylation contributes to the neuroprotective gene expression induced by hypoxia preconditioning (HPC) in ECs and to clarify that the secretion of molecules from HPC ECs may be one of the molecular mechanisms of neuroprotection. METHODS: Human microvascular endothelial cell-1 (HMEC-1) was cultured under normal conditions (C), hypoxia(H), and hypoxia preconditioning (HPC), followed by the isolation of culture medium (CM). SY5Y cell incubated with the isolated CM from HMEC-1 was exposed to oxygen-glucose deprivation (OGD). The DNA methyltransferases (DNMTs), global methylation level, miR-126 and its promotor DNA methylation level in HMEC-1 were measured. The cell viability and cell injury in SY5Y were detected. RESULTS: HPC decreased DNMTs level and global methylation level as well as increased miR-126 expression in HMEC-1. CM from HPC treated HMEC-1 also relieved SY5Y cell damage, while CM from HMEC-1 which over-expression of miR-126 can reduce injury in SY5Y under OGD condition. CONCLUSIONS: These findings indicate EC may secrete molecules, such as miR-126, to execute neuroprotection induced by HPC through regulating the expression of DNMTs.


Assuntos
Hipóxia Celular , Metilação de DNA , Células Endoteliais , MicroRNAs , Neurônios , MicroRNAs/genética , MicroRNAs/metabolismo , Metilação de DNA/genética , Humanos , Células Endoteliais/metabolismo , Hipóxia Celular/genética , Neurônios/metabolismo , Regulação para Cima/genética , Sobrevivência Celular/genética , Glucose/metabolismo , Linhagem Celular , Oxigênio/metabolismo , Regiões Promotoras Genéticas/genética
15.
Vascul Pharmacol ; 155: 107324, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38985581

RESUMO

Doxorubicin (DOX) is a highly effective chemotherapeutic agent whose clinical use is hindered by the onset of cardiotoxic effects, resulting in reduced ejection fraction within the first year from treatment initiation. Recently it has been demonstrated that DOX accumulates within mitochondria, leading to disruption of metabolic processes and energetic imbalance. We previously described that phosphoinositide 3-kinase γ (PI3Kγ) contributes to DOX-induced cardiotoxicity, causing autophagy inhibition and accumulation of damaged mitochondria. Here we intend to describe the maladaptive metabolic rewiring occurring in DOX-treated hearts and the contribution of PI3Kγ signalling to this process. Metabolomic analysis of DOX-treated WT hearts revealed an accumulation of TCA cycle metabolites due to a cycle slowdown, with reduced levels of pyruvate, unchanged abundance of lactate and increased Acetyl-CoA production. Moreover, the activity of glycolytic enzymes was upregulated, and fatty acid oxidation downregulated, after DOX, indicative of increased glucose oxidation. In agreement, oxygen consumption was increased in after pyruvate supplementation, with the formation of cytotoxic ROS rather than energy production. These metabolic changes were fully prevented in KD hearts. Interestingly, they failed to increase glucose oxidation in response to DOX even with autophagy inhibition, indicating that PI3Kγ likely controls the fuel preference after DOX through an autophagy-independent mechanism. In vitro experiments showed that inhibition of PI3Kγ inhibits pyruvate dehydrogenase (PDH), the key enzyme of Randle cycle regulating the switch from fatty acids to glucose usage, while decreasing DOX-induced mobilization of GLUT-4-carrying vesicles to the plasma membrane and limiting the ensuing glucose uptake. These results demonstrate that PI3Kγ promotes a maladaptive metabolic rewiring in DOX-treated hearts, through a two-pronged mechanism controlling PDH activation and GLUT-4-mediated glucose uptake.


Assuntos
Cardiotoxicidade , Doxorrubicina , Metabolismo Energético , Ácidos Graxos , Glucose , Oxirredução , Animais , Doxorrubicina/toxicidade , Glucose/metabolismo , Ácidos Graxos/metabolismo , Metabolismo Energético/efeitos dos fármacos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Glicólise/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Masculino , Transdução de Sinais/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Cardiopatias/induzido quimicamente , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/prevenção & controle , Cardiopatias/fisiopatologia , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/enzimologia , Camundongos Knockout , Modelos Animais de Doenças , Espécies Reativas de Oxigênio/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Antibióticos Antineoplásicos/toxicidade , Antibióticos Antineoplásicos/efeitos adversos
16.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39000505

RESUMO

The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cß2 (PLCß2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.


Assuntos
Receptores Acoplados a Proteínas G , Humanos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Papilas Gustativas/metabolismo , Boca/metabolismo , Trato Gastrointestinal/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/metabolismo , Glucose/metabolismo , Pâncreas/metabolismo , Encéfalo/metabolismo
17.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000541

RESUMO

Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by hyperglycemia and dyslipidemia. The termite fungus comb is an integral component of nests of termites, which are a global pest. Termite fungus comb polysaccharides (TFCPs) have been identified to possess antioxidant, anti-aging, and immune-enhancing properties. However, their physicochemical characteristics and their role in fighting diabetes have not been previously reported. In the current study, TFCPs were isolated and structurally characterized. The yield of TFCPs was determined to be 2.76%, and it was found to be composed of a diverse array of polysaccharides with varying molecular weights. The hypoglycemic and hypolipidemic effects of TFCPs, as well as their potential mechanisms of action, were investigated in a T2D mouse model. The results demonstrated that oral administration of TFCPs could alleviate fasting blood glucose levels, insulin resistance, hyperlipidemia, and the dysfunction of pancreatic islets in T2D mice. In terms of mechanisms, the TFCPs enhanced hepatic glycogenesis and glycolysis while inhibiting gluconeogenesis. Additionally, the TFCPs suppressed hepatic de novo lipogenesis and promoted fatty acid oxidation. Furthermore, the TFCPs altered the composition of the gut microbiota in the T2D mice, increasing the abundance of beneficial bacteria such as Allobaculum and Faecalibaculum, while reducing the levels of pathogens like Mailhella and Acetatifactor. Overall, these findings suggest that TFCPs may exert anti-diabetic effects by regulating hepatic glucose and lipid metabolism and the composition of the gut microbiota. These findings suggest that TFCPs can be used as a promising functional ingredient for the prevention and treatment of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hiperglicemia , Hiperlipidemias , Metabolismo dos Lipídeos , Fígado , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Camundongos , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Polissacarídeos Fúngicos/farmacologia , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Termitomyces/metabolismo , Glicemia/metabolismo , Polissacarídeos/farmacologia , Camundongos Endogâmicos C57BL
18.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000590

RESUMO

Protein cysteine S-glycosylation is a relatively rare and less well characterized post-translational modification (PTM). Creating reliable model proteins that carry this modification is challenging. The lack of available models or natural S-glycosylated proteins significantly hampers the development of mass-spectrometry-based (MS-based) methodologies for detecting protein cysteine S-glycosylation in real-world proteomic studies. There is also limited MS-sequencing data describing it as easier to create synthetic S-glycopeptides. Here, we present the results of an in-depth manual analysis of automatically annotated CID/HCD spectra for model S-glucopeptides. The CID spectra show a long series of y/b-fragment ions with retained S-glucosylation, regardless of the dominant m/z signals corresponding to neutral loss of 1,2-anhydroglucose from the precursor ions. In addition, the spectra show signals manifesting glucosyl transfer from the cysteine position onto lysine, arginine (Lys, Arg) side chains, and a peptide N-terminus. Other spectral evidence indicates that the N-glucosylated initial products of transfer are converted into N-fructosylated (i.e., glycated) structures due to Amadori rearrangement. We discuss the peculiar transfer of the glucose oxocarbenium ion (Glc+) to positively charged guanidinium residue (ArgH+) and propose a mechanism for the gas-phase Amadori rearrangement involving a 1,2-hydride ion shift.


Assuntos
Cisteína , Glicosilação , Cisteína/química , Cisteína/metabolismo , Processamento de Proteína Pós-Traducional , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Gases/metabolismo , Gases/química , Glucose/metabolismo , Glucose/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
19.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000586

RESUMO

Visceral adipose tissue (VAT) dysfunction has been recently recognized as a potential contributor to the development of Alzheimer's disease (AD). This study aimed to explore the relationship between VAT metabolism and cerebral glucose metabolism in patients with cognitive impairment. This cross-sectional prospective study included 54 patients who underwent 18F-fluorodeoxyglucose (18F-FDG) brain and torso positron emission tomography/computed tomography (PET/CT), and neuropsychological evaluations. VAT metabolism was measured by 18F-FDG torso PET/CT, and cerebral glucose metabolism was measured using 18F-FDG brain PET/CT. A voxel-based analysis revealed that the high-VAT-metabolism group exhibited a significantly lower cerebral glucose metabolism in AD-signature regions such as the parietal and temporal cortices. In the volume-of-interest analysis, multiple linear regression analyses with adjustment for age, sex, and white matter hyperintensity volume revealed that VAT metabolism was negatively associated with cerebral glucose metabolism in AD-signature regions. In addition, higher VAT metabolism was correlated with poorer outcomes on cognitive assessments, including the Korean Boston Naming Test, Rey Complex Figure Test immediate recall, and the Controlled Oral Word Association Test. In conclusion, our study revealed significant relationships among VAT metabolism, cerebral glucose metabolism, and cognitive function. This suggests that VAT dysfunction actively contributes to the neurodegenerative processes characteristic of AD, making VAT dysfunction targeting a novel AD therapy approach.


Assuntos
Encéfalo , Disfunção Cognitiva , Fluordesoxiglucose F18 , Glucose , Gordura Intra-Abdominal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Masculino , Feminino , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/diagnóstico por imagem , Glucose/metabolismo , Idoso , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Fluordesoxiglucose F18/metabolismo , Estudos Transversais , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Pessoa de Meia-Idade , Estudos Prospectivos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Testes Neuropsicológicos
20.
Sci Rep ; 14(1): 15635, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972889

RESUMO

This study aimed to elucidate the influence of miR-483-3p on human renal tubular epithelial cells (HK-2) under high glucose conditions and to understand its mechanism. Human proximal tubular epithelial cells (HK-2) were exposed to 50 mmol/L glucose for 48 h to establish a renal tubular epithelial cell injury model, denoted as the high glucose group (HG group). Cells were also cultured for 48 h in a medium containing 5.5 mmol/L glucose, serving as the low glucose group. Transfection was performed in various groups: HK-2 + low glucose (control group), high glucose (50 mM) (HG group), high glucose + miR-483-3p mimics (HG + mimics group), high glucose +miR-483-3p inhibitor (HG + inhibitor group), and corresponding negative controls. Real-time quantitative polymerase chain reaction (qPCR) assessed the mRNA expression of miR-483-3p, bax, bcl-2, and caspase-3. Western blot determined the corresponding protein levels. Proliferation was assessed using the CCK-8 assay, and cell apoptosis was analyzed using the fluorescence TUNEL method. Western blot and Masson's staining were conducted to observe alterations in cell fibrosis post miR-483-3p transfection. Furthermore, a dual-luciferase assay investigated the targeting relationship between miR-483-3p and IGF-1. The CCK8 assay demonstrated that the HG + mimics group inhibited HK-2 cell proliferation, while the fluorescent TUNEL method revealed induced cell apoptosis in this group. Conversely, the HG + inhibitor group promoted cell proliferation and suppressed cell apoptosis. The HG + mimics group upregulated mRNA and protein expression of pro-apoptotic markers (bax and caspase-3), while downregulating anti-apoptotic marker (bcl-2) expression. In contrast, the HG + inhibitor group showed opposite effects. Collagen I and FN protein levels were significantly elevated in the HG + mimics group compared to controls (P < 0.05). Conversely, in the HG + inhibitor group, the protein expression of Collagen I and FN was notably reduced compared to the HG group (P < 0.05). The dual luciferase reporter assay confirmed that miR-483-3p could inhibit the luciferase activity of IGF-1's 3'-UTR region (P < 0.05). miR-483-3p exerts targeted regulation on IGF-1, promoting apoptosis and fibrosis in renal tubular epithelial cells induced by high glucose conditions.


Assuntos
Apoptose , Proliferação de Células , Células Epiteliais , Glucose , Fator de Crescimento Insulin-Like I , Túbulos Renais , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Glucose/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Túbulos Renais/metabolismo , Túbulos Renais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA