Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.935
Filtrar
1.
BMC Microbiol ; 24(1): 194, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849775

RESUMO

Soybean is the main oilseed cultivated worldwide. Even though Brazil is the world's largest producer and exporter of soybean, its production is severely limited by biotic factors. Soil borne diseases are the most damaging biotic stressors since they significantly reduce yield and are challenging to manage. In this context, the present study aimed to evaluate the potential of a bacterial strain (Ag109) as a biocontrol agent for different soil pathogens (nematodes and fungi) of soybean. In addition, the genome of Ag109 was wholly sequenced and genes related to secondary metabolite production and plant growth promotion were mined. Ag109 showed nematode control in soybean and controlled 69 and 45% of the populations of Meloidogyne javanica and Pratylenchus brachyurus, respectively. Regarding antifungal activity, these strains showed activity against Macrophomia phaseolina, Rhizoctonia solani, and Sclerotinia sclerotiorum. For S. sclerotiorum, this strain increased the number of healthy plants and root dry mass compared to the control (with inoculation). Based on the average nucleotide identity and digital DNA-DNA hybridization, this strain was identified as Bacillus velezensis. Diverse clusters of specific genes related to secondary metabolite biosynthesis and root growth promotion were identified, highlighting the potential of this strain to be used as a multifunctional microbial inoculant that acts as a biological control agent while promoting plant growth in soybean.


Assuntos
Ascomicetos , Bacillus , Genoma Bacteriano , Glycine max , Doenças das Plantas , Animais , Bacillus/genética , Glycine max/microbiologia , Glycine max/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Genoma Bacteriano/genética , Ascomicetos/genética , Rhizoctonia/genética , Controle Biológico de Vetores , Agentes de Controle Biológico , Sequenciamento Completo do Genoma , Tylenchoidea , Filogenia , Antibiose , Brasil
2.
World J Microbiol Biotechnol ; 40(8): 237, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853194

RESUMO

Industrial activities contribute to environmental pollution, particularly through unregulated effluent discharges, causing adverse effects on ecosystems. Vegetable oils, as insoluble substances, exacerbate this pollution, forming impermeable films and affecting the oxygen transfer, leading to serious habitat disruption. Organic wastes, such as soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, were assessed for their efficacy in enhancing the degradation of vegetable oil in contaminated soil. For this purpose, contaminated soil was amended with each of the wastes (10% w/w) using microcosm systems, which were monitored physico-chemically, microbiologically and toxicologically. Results indicate that the wastes promoted significant oil degradation, achieving 83.1, 90.7, and 86.2% removal for soybean texturized waste, spent mushroom substrate, and stabilized poultry litter, respectively, within a 90-day period. Additionally, they positively influenced soil microbial activity, as evidenced by increased levels of culturable microorganisms and hydrolytic microbial activity. While bioassays indicated no phytotoxicity in most cases, soybean texturized waste exhibited inhibitory effects on seed germination and root elongation of Lactuca sativa. This study significantly enhances our comprehension of remediation techniques for sites tainted with vegetable oils, highlighting the critical role of organic waste as eco-friendly agents in soil restoration. Emphasizing the practical implications of these findings is imperative to underscore the relevance and urgency of addressing vegetable oil contamination in soil. Moving forward, tailored strategies considering both contaminant characteristics and soil ecosystem traits are vital for ensuring effective and sustainable soil remediation.


Assuntos
Biodegradação Ambiental , Glycine max , Óleos de Plantas , Aves Domésticas , Microbiologia do Solo , Poluentes do Solo , Solo , Animais , Poluentes do Solo/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/microbiologia , Óleos de Plantas/metabolismo , Solo/química , Agaricales/metabolismo , Agaricales/crescimento & desenvolvimento , Lactuca/crescimento & desenvolvimento , Bactérias/metabolismo , Germinação/efeitos dos fármacos , Resíduos Industriais
3.
J Mass Spectrom ; 59(7): e5045, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837562

RESUMO

Soybean is scientifically known as Glycine max. It belongs to the Fabaceae family. It consists of a lot of bioactive phytochemicals like saponin, phenolic acid, flavonoid, sphingolipids and phytosterols. It also owns excellent immune-active effects in the physiological system. Soy and its phytochemicals have been found to have pharmacological properties that include anticancer, antioxidant, anti-hypercholesterolaemic, anti-diabetic, oestrogenic, anti-hyperlipidaemic, anti-inflammatory, anti-obesity, anti-hypertensive, anti-mutagenic, immunomodulatory, anti-osteoporotic, antiviral, hepatoprotective, antimicrobial, goitrogenic anti-skin ageing, wound healing, neuroprotective and anti-photoageing activities. Present study has been designed to set standard pharmacognostical extraction method, complexation of compounds, qualitative evaluation through phytochemical screening, identification by TLC, physicochemical properties, solubility profile, total phenolic, flavonoid content as well as analytical evaluation or characterisation like UV and FT-IR of methanolic extract of G. max. The final observations like physicochemical properties such as total ash value, LOD and pH were recorded. Phytochemical screenings show the presence of flavonoid, alkaloid, saponin, carbohydrate, tannins, protein, gums and mucilage, fixed oils and fats. The results were found significant. Further in silico studies proved creatinine and euparin to be potent wound healing agents.


Assuntos
Flavonoides , Glycine max , Compostos Fitoquímicos , Extratos Vegetais , Sementes , Espectrometria de Massas em Tandem , Cicatrização , Cicatrização/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectrometria de Massas em Tandem/métodos , Sementes/química , Glycine max/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Flavonoides/análise , Flavonoides/química , Flavonoides/farmacologia , Metanol/química , Simulação por Computador , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Animais
4.
Food Res Int ; 188: 114466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823863

RESUMO

The effect of microfluidization treatment on the primary, secondary, and tertiary structure of soybean protein isolate (SPI) was investigated. The samples were treated with and without controlling the temperature and circulated in the system 1, 3, and 5 times at high pressure (137 MPa). Then, the treated samples were freeze-dried and reconstituted in water to check the impact of the microfluidization on two different states: powder and solution. Regarding the primary structure, the SDS-PAGE analysis under reducing conditions showed that the protein bands remained unchanged when exposed to microfluidization treatment. When the temperature was controlled for the samples in their powder state, a significant decrease in the quantities of ß-sheet and random coil and a slight reduction in α-helix content was noticed. The observed decrease in ß-sheet and the increase in ß-turns in treated samples indicated that microfluidization may lead to protein unfolding, opening the hydrophobic regions. Additionally, a lower amount of α-helix suggests a higher protein flexibility. After reconstitution in water, a significant difference was observed only in α-helix, ß-sheet and ß-turn. Related to the tertiary structure, microfluidization increases the surface hydrophobicity. Among all the conditions tested, the samples where the temperature is controlled seem the most suitable.


Assuntos
Manipulação de Alimentos , Interações Hidrofóbicas e Hidrofílicas , Pós , Proteínas de Soja , Proteínas de Soja/química , Manipulação de Alimentos/métodos , Estrutura Secundária de Proteína , Temperatura , Projetos Piloto , Eletroforese em Gel de Poliacrilamida , Glycine max/química , Soluções , Liofilização
5.
Food Res Int ; 188: 114532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823889

RESUMO

Luteolin has anti-inflammatory, antioxidant, and anti-tumor functions, but its poor water solubility and stability limit its applications in foods as a functional component. In this study, the nanocomposites loading luteolin (Lut) with soybean protein isolate (SPI), soluble soybean polysaccharide (SSPS) and/or rhamnolipid (Rha) were prepared by layer-by-layer shelf assembly method, and their properties were also evaluated. The results showed that Rha/SPI/Lut had the smallest particle size (206.24 nm) and highest loading ratio (8.03 µg/mg) while Rha/SSPS/SPI/Lut had the highest encapsulation efficiency (82.45 %). Rha interacted with SPI through hydrophobic interactions as the main driving force, while SSPS attached to SPI with only hydrogen bonding. Furthermore, the synergistic effect between Rha and SSPS was observed in Rha/SSPS/SPI/Lut complex, in consequence, it had the best thermal and storage stability, and the slowest release in gastrointestinal digestion. Thus, this approach provided an alternative way for the application of luteolin in functional foods.


Assuntos
Digestão , Luteolina , Tamanho da Partícula , Proteínas de Soja , Luteolina/química , Proteínas de Soja/química , Nanocompostos/química , Polissacarídeos/química , Interações Hidrofóbicas e Hidrofílicas , Glycine max/química , Solubilidade , Alimento Funcional , Trato Gastrointestinal/metabolismo
6.
Nat Commun ; 15(1): 4689, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824148

RESUMO

Global warming will lead to significantly increased temperatures on earth. Plants respond to high ambient temperature with altered developmental and growth programs, termed thermomorphogenesis. Here we show that thermomorphogenesis is conserved in Arabidopsis, soybean, and rice and that it is linked to a decrease in the levels of the two macronutrients nitrogen and phosphorus. We also find that low external levels of these nutrients abolish root growth responses to high ambient temperature. We show that in Arabidopsis, this suppression is due to the function of the transcription factor ELONGATED HYPOCOTYL 5 (HY5) and its transcriptional regulation of the transceptor NITRATE TRANSPORTER 1.1 (NRT1.1). Soybean and Rice homologs of these genes are expressed consistently with a conserved role in regulating temperature responses in a nitrogen and phosphorus level dependent manner. Overall, our data show that root thermomorphogenesis is a conserved feature in species of the two major groups of angiosperms, monocots and dicots, that it leads to a reduction of nutrient levels in the plant, and that it is dependent on environmental nitrogen and phosphorus supply, a regulatory process mediated by the HY5-NRT1.1 module.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Glycine max , Nitrogênio , Oryza , Fósforo , Raízes de Plantas , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fósforo/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Nutrientes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Temperatura Alta , Transportadores de Nitrato , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/genética , Temperatura , Fatores de Transcrição de Zíper de Leucina Básica
7.
BMC Plant Biol ; 24(1): 491, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825702

RESUMO

BACKGROUND: Vegetable soybean is an important vegetable crop in world. Seed size and soluble sugar content are considered crucial indicators of quality in vegetable soybean, and there is a lack of clarity on the molecular basis of grain quality in vegetable soybean. RESULTS: In this context, we performed a comprehensive comparative transcriptome analysis of seeds between a high-sucrose content and large-grain variety (Zhenong 6, ZN6) and a low-sucrose content and small-grain variety (Williams 82, W82) at three developmental stages, i.e. stage R5 (Beginning Seed), stage R6 (Full Seed), and stage R7 (Beginning Maturity). The transcriptome analysis showed that 17,107 and 13,571 differentially expressed genes (DEGs) were identified in ZN6 at R6 (vs. R5) and R7 (vs. R6), respectively, whereas 16,203 and 16,032 were detected in W82. Gene expression pattern and DEGs functional enrichment proposed genotype-specific biological processes during seed development. The genes participating in soluble sugar biosynthesis such as FKGP were overexpressed in ZN6, whereas those responsible for lipid and protein metabolism such as ALDH3 were more enhanced in W82, exhibiting different dry material accumulation between two genotypes. Furthermore, hormone-associated transcriptional factors involved in seed size regulation such as BEH4 were overrepresented in ZN6, exhibiting different seed size regulation processes between two genotypes. CONCLUSIONS: Herein, we not only discovered the differential expression of genes encoding metabolic enzymes involved in seed composition, but also identified a type of hormone-associated transcriptional factors overexpressed in ZN6, which may regulate seed size and soluble content. This study provides new insights into the underlying causes of differences in the soybean metabolites and appearance, and suggests that genetic data can be used to improve its appearance and textural quality.


Assuntos
Perfilação da Expressão Gênica , Glycine max , Sementes , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Grão Comestível/genética , Grão Comestível/metabolismo , Transcriptoma , Genes de Plantas , Regulação da Expressão Gênica de Plantas , Genótipo , Sacarose/metabolismo
8.
Sci Rep ; 14(1): 13076, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844526

RESUMO

Yield multi-location trials associated to geostatistical techniques with environmental covariables can provide a better understanding of G x E interactions and, consequently, adaptation limits of soybean cultivars. Thus, the main objective of this study is understanding the environmental covariables effects on soybean adaptation, as well as predicting the adaptation of soybean under environmental variations and then recommend each soybean cultivar to favorable environments aiming maximize the average yield. The trials were carried out in randomized block design (RBD) with three replicates over three years, in 28 locations. Thirty-two genotypes (commercial and pre-commercial) representing different maturity groups (7.5-8.5) were evaluated in each trial were covering the Edaphoclimatic Region (REC) 401, 402 and 403. The covariables adopted as environmental descriptors were accumulated rainfall, minimum temperature, mean temperature, maximum temperature, photoperiod, relative humidity, soil clay content, soil water avaibility and altitude. After fitting means through Mixed Linear Model, the Regression-Kriging procedure was applied to spacialize the grain yield using environmental covariables as predictors. The covariables explained 32.54% of the GxE interaction, being the soil water avaibility the most important to the adaptation of soybean cultivars, contributing with 7.80%. Yield maps of each cultivar were obtained and, hence, the yield maximization map based on cultivar recommendation was elaborated.


Assuntos
Glycine max , Glycine max/genética , Glycine max/crescimento & desenvolvimento , Brasil , Genótipo , Geografia , Adaptação Fisiológica , Solo/química
9.
PLoS One ; 19(6): e0304679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38848345

RESUMO

California yellowtail (CYT), Seriola dorsalis, is a promising candidate for aquaculture due to its rapid growth and high-quality flesh, particularly in markets like Japan, Australia, China, and the United States. Soy protein has shown success as a replacement for marine protein sources in CYT diets, reducing fishmeal levels, though concerns about potential intestinal inflammation persist with the inclusion of solvent-extracted soybean meal. To address this, processing strategies like fractionation, enzymatic treatment, heat treatment, and microbial fermentation have been employed to mitigate the negative impacts of soybean meal on fish nutrition and immune systems. This study focuses on optimizing soybean meal inclusion levels by incorporating advanced soy variants into CYT diets. The eight-week feeding trial, conducted in a recirculation system, featured six diets with sequential inclusion levels (0, 50, 100%) of high protein low oligosaccharide soybean meal (Bright Day, Benson Hill, St Louis, MO) and enzyme-treated soybean meal (HP 300, Hamlet Protein Inc., Findlay, OH), replacing solvent-extracted soybean. The study compares these formulations against a soy-free animal protein-based diet. At the end of the trial, fish were sampled for growth performance, body proximate composition, intestinal morphology, and immune response from gut samples. Results showed consistent FCR (P = 0.775), weight gain (P = 0.242), and high survival rate (99.4 ± 0.5%) among dietary treatments (P>0.05). Histological evaluations revealed no gut inflammation and gene expression analysis demonstrated no significant variations in immune, physiological, and digestive markers apn (P = 0.687), mga (P = 0.397), gpx1 (P = 0.279), atpase (P = 0.590), il1ß (P = 0.659). The study concludes that incorporating advanced soybean meal products, replacing up to 20% of fishmeal does not negatively affect CYT's growth and intestinal health. This suggests that all three soy sources, contributing 35% of total protein (15.4 g 100 g-1 diet), can be included in practical diets without compromising CYT's intestinal integrity or growth. These findings have positive implications for the commercial production of CYT and future research on the incorporation of plant-based proteins in aquaculture diets.


Assuntos
Ração Animal , Composição Corporal , Glycine max , Intestinos , Animais , Ração Animal/análise , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Composição Corporal/efeitos dos fármacos , Dieta/veterinária , Perciformes/crescimento & desenvolvimento , Perciformes/imunologia , Perciformes/genética , Aquicultura/métodos , Fenômenos Fisiológicos da Nutrição Animal
10.
Food Microbiol ; 122: 104555, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839234

RESUMO

Fermentation contributes to the taste and odor of plant cheeses. The selection of functional cultures for the fermentation of plant cheeses, however, is in its infancy. This study aimed to select lactic acid bacteria for ripening of soy and lupin cheese analogues. Bacillus velezensis and B. amyloliquefaciens were used for germination of seeds to produce proteolytic enzymes; Lactococcus lactis and Lactiplantibacillus plantarum served as primary acidifying cultures. Levilactobacillus hammesii, Furfurilactobacillus milii, or Lentilactobacillus buchneri were assessed as adjunct cultures for the ripening of plant cheese. Growth of bacilli was inhibited at low pH. Both Lc. lactis and Lp. plantarum were inactived during plant cheese ripening. Cell counts of Lv. hammesii remained stable over 45 d of ripening while Ff. milii and Lt. buchneri grew slowly. Sequencing of full length 16S rRNA genes confirmed that the inocula the plant cheeses accounted for more than 98% of the bacterial communities. HPLC analysis revealed that Lt. buchneri metabolized lactate to acetate and 1,2-propanediol during ripening. Bacilli enhanced proteolysis as measured by quantification of free amino nitrogen, and the release of glutamate. LC-MS/MS analysis quantified kokumi-active dipeptides. The concentrations of γ-Glu-Leu, γ-Glu-Ile, and γ-Glu-Ala, γ-Glu-Cys in unripened cheeses were increased by seed germination but γ-Glu-Phe was degraded. Lt. buchneri but not Lv. hammesii or Ff. milii accumulated γ-Glu-Val, γ-Glu-Ile or γ-Glu-Leu during ripening, indicating strain-specific differences. In conclusion, a consortium of bacilli, acidification cultures and adjunct cultures accumulates taste- and kokumi-active compounds during ripening of plant cheeses.


Assuntos
Queijo , Fermentação , Microbiologia de Alimentos , Queijo/microbiologia , Queijo/análise , Lupinus/microbiologia , Lupinus/crescimento & desenvolvimento , Glycine max/microbiologia , Glycine max/crescimento & desenvolvimento , Paladar , Bacillus/metabolismo , Bacillus/genética , Bacillus/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Lactobacillales/metabolismo , Lactobacillales/genética , Lactobacillales/crescimento & desenvolvimento , Lactococcus lactis/metabolismo , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/genética , RNA Ribossômico 16S/genética
11.
Arch Virol ; 169(7): 143, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864946

RESUMO

Potyvirus genomes are expressed as polyproteins that are autocatalytically cleaved to produce 10 to 12 multifunctional proteins, among which P1 is the most variable. It has long been hypothesized that P1 plays role(s) in host adaptation and host specificity. We tested this hypothesis using two phylogenetically distinct potyviruses: soybean mosaic virus (SMV), with a narrow host range, and clover yellow vein virus (ClYVV), with a broader host range. When the full-length P1 cistron of SMV-N was replaced with P1 from ClYVV-No.30, the chimera systemically infected only SMV-N-permissive hosts. Hence, there were no changes in the host range or host specificity of the chimeric viruses. Despite sharing only 20.3% amino acid sequence identity, predicted molecular models of P1 proteins from SMV-N and ClYVV-No.30 showed analogous topologies. These observations suggest that P1 of ClYVV-No.30 can functionally replace P1 of SMV-N. However, the P1 proteins of these two potyviruses are not determinants of host specificity and host range.


Assuntos
Especificidade de Hospedeiro , Doenças das Plantas , Potyvirus , Proteínas Virais , Potyvirus/genética , Potyvirus/fisiologia , Doenças das Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Glycine max/virologia , Nicotiana/virologia , Filogenia
12.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891766

RESUMO

Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman-Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities.


Assuntos
Sistemas CRISPR-Cas , Quimotripsina , Edição de Genes , Glycine max , Inibidor da Tripsina de Soja de Bowman-Birk , Tripsina , Glycine max/genética , Glycine max/metabolismo , Quimotripsina/metabolismo , Quimotripsina/genética , Inibidor da Tripsina de Soja de Bowman-Birk/metabolismo , Inibidor da Tripsina de Soja de Bowman-Birk/genética , Tripsina/metabolismo , Tripsina/genética , Tripsina/química , Edição de Genes/métodos , Mutação , Inibidores da Tripsina/metabolismo , Plantas Geneticamente Modificadas/genética , Sementes/genética , Sementes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891802

RESUMO

Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Sementes , Glycine max/genética , Glycine max/metabolismo , Sementes/genética , Sementes/metabolismo , Cromossomos de Plantas/genética , Redes Reguladoras de Genes , Melhoramento Vegetal/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Transcriptoma/genética , Multiômica
14.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38884599

RESUMO

Border crops can increase beneficial insect biodiversity within agricultural fields by supplementing insects with food and nesting resources. However, the effectiveness of border crops relies on insect movement between adjacent habitats and some insects might consider habitat boundaries as barriers. Therefore, understanding insect movement between habitats is needed to determine the effectiveness of border crops for ecosystem services such as pest control within agricultural habitats. Our objective was to compare ground beetle (Coleoptera: Carabidae) movement across soybean plots that were bordered by corn and grassland habitat to determine whether habitat boundaries were considered barriers of movement to predatory beetles. Using a grid of pitfall traps within these habitats, we conducted a mark, release, and recapture experiment to track and evaluate ground beetle movement patterns. We found that ground beetles stayed in the habitat of their release and that movement between habitats, despite the type of bordering habitat or type of edge, was uncommon. We also found that long-distance movement was rare as most beetles moved less than 5 m (regardless of release or recaptured habitat) and movement was perpendicular to habitat edges. These results suggest that any edge habitat, including agricultural-agricultural boundaries and natural-agricultural boundaries, are likely barriers to ground beetle movement. Therefore, in order for border crops to be effective in pest management by ground beetles, making habitat edges more permeable, especially using techniques such as edge softening, could promote cross-habitat movement and ultimately contribute to natural pest control in agricultural systems.


Assuntos
Besouros , Produtos Agrícolas , Ecossistema , Animais , Besouros/fisiologia , Glycine max , Distribuição Animal , Agricultura/métodos , Zea mays
15.
Food Chem ; 454: 139853, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823200

RESUMO

The effects of SHP on the texture, rheological properties, starch crystallinity and microstructure of frozen dough were investigated. The efficacy of SHP in enhancing dough quality is concentration-dependent, with frozen dough containing 1.5% SHP exhibiting hardness comparable to fresh dough without SHP (221.31 vs. 221.42 g). Even at 0.5% SHP, there is a noticeable improvement in frozen dough quality. The rheological results showed that the viscoelasticity of dough increased with higher SHP concentration. What's more, XRD and SEM results indicated that the SHP's hydrophilicity reduces the degree of starch hydrolysis, slows down the damage of starch particles during freezing, and consequently lowers the crystallinity of starch. Additionally, CLSM observations revealed that SHP enhances the gluten network structure, diminishing the appearance of holes. Therefore, the physical, chemical properties, and microstructure of frozen dough with SHP demonstrate significant enhancement, suggesting SHP's promising antifreeze properties and potential as a food antifreeze agent.


Assuntos
Farinha , Congelamento , Glycine max , Polissacarídeos , Reologia , Farinha/análise , Polissacarídeos/química , Glycine max/química , Pão/análise , Viscosidade , Amido/química
16.
Molecules ; 29(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893489

RESUMO

Recovering valuable active substances from the by-products of agricultural processing is a crucial concern for scientific researchers. This paper focuses on the enrichment of soybean trypsin inhibitor (STI) from soybean whey wastewater using either ammonium sulfate salting or ethanol precipitation, and discusses their physicochemical properties. The results show that at a 60% ethanol content, the yield of STI was 3.983 mg/mL, whereas the yield was 3.833 mg/mL at 60% ammonium sulfate saturation. The inhibitory activity of STI obtained by ammonium sulfate salting out (A-STI) was higher than that obtained by ethanol precipitation (E-STI). A-STI exhibited better solubility than E-STI at specific temperatures and pH levels, as confirmed by turbidity and surface hydrophobicity measurements. Thermal characterization revealed that both A-STI and E-STI showed thermal transition temperatures above 90 °C. Scanning electron microscopy demonstrated that A-STI had a smooth surface with fewer pores, while E-STI had a rough surface with more pores. In conclusion, there was no significant difference in the yield of A-STI and E-STI (p < 0.05); however, the physicochemical properties of A-STI were superior to those of E-STI, making it more suitable for further processing and utilization. This study provides a theoretical reference for the enrichment of STI from soybean whey wastewater.


Assuntos
Glycine max , Inibidores da Tripsina , Águas Residuárias , Soro do Leite , Glycine max/química , Águas Residuárias/química , Soro do Leite/química , Inibidores da Tripsina/química , Inibidores da Tripsina/isolamento & purificação , Sulfato de Amônio/química , Precipitação Química , Concentração de Íons de Hidrogênio , Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Temperatura
17.
BMC Plant Biol ; 24(1): 572, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890574

RESUMO

BACKGROUND: Nitrogen (N) availability is crucial in regulating plants' abiotic stress resistance, particularly at the seedling stage. Nevertheless, plant responses to N under salinity conditions may vary depending on the soil's NH4+ to NO3- ratio. METHODS: In this study, we investigated the effects of different NH4+:NO3- ratios (100/0, 0/100, 25/75, 50/50, and 75/25) on the growth and physio-biochemical responses of soybean seedlings grown under controlled and saline stress conditions (0-, 50-, and 100-mM L- 1 NaCl and Na2SO4, at a 1:1 molar ratio). RESULTS: We observed that shoot length, root length, and leaf-stem-root dry weight decreased significantly with increased saline stress levels compared to control. Moreover, there was a significant accumulation of Na+, Cl-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) but impaired ascorbate-glutathione pools (AsA-GSH). They also displayed lower photosynthetic pigments (chlorophyll-a and chlorophyll-b), K+ ion, K+/Na+ ratio, and weakened O2•--H2O2-scavenging enzymes such as superoxide dismutase, catalase, peroxidase, monodehydroascorbate reductase, glutathione reductase under both saline stress levels, while reduced ascorbate peroxidase, and dehydroascorbate reductase under 100-mM stress, demonstrating their sensitivity to a saline environment. Moreover, the concentrations of proline, glycine betaine, total phenolic, flavonoids, and abscisic acid increased under both stresses compared to the control. They also exhibited lower indole acetic acid, gibberellic acid, cytokinins, and zeatine riboside, which may account for their reduced biomass. However, NH4+:NO3- ratios caused a differential response to alleviate saline stress toxicity. Soybean seedlings supplemented with optimal ratios of NH4+:NO3- (T3 = 25:75 and T = 4 50:50) displayed lower Na+ and Cl- and ABA but improved K+ and K+/Na+, pigments, growth hormones, and biomass compared to higher NH4+:NO3- ratios. They also exhibited higher O2•--H2O2-scavenging enzymes and optimized H2O2, MDA, and AsA-GSH pools status in favor of the higher biomass of seedlings. CONCLUSIONS: In summary, the NH4+ and NO3- ratios followed the order of 50:50 > 25:75 > 0:100 > 75:25 > 100:0 for regulating the morpho-physio-biochemical responses in seedlings under SS conditions. Accordingly, we suggest that applying optimal ratios of NH4+ and NO3- (25/75 and 50:50) can improve the resistance of soybean seedlings grown in saline conditions.


Assuntos
Antioxidantes , Glycine max , Nitratos , Reguladores de Crescimento de Plantas , Tolerância ao Sal , Plântula , Glycine max/fisiologia , Glycine max/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Estresse Salino , Íons/metabolismo
18.
PLoS One ; 19(6): e0302098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38870135

RESUMO

Suitable combinations of observed datasets for estimating crop model parameters can reduce the computational cost while ensuring accuracy. This study aims to explore the quantitative influence of different combinations of the observed phenological stages on estimation of cultivar-specific parameters (CPSs). We used the CROPGRO-Soybean phenological model (CSPM) as a case study in combination with the Generalized Likelihood Uncertainty Estimation (GLUE) method. Different combinations of four observed phenological stages, including initial flowering, initial pod, initial grain, and initial maturity stages for five soybean cultivars from Exp. 1 and Exp. 3 described in Table 2 are respectively used to calibrate the CSPs. The CSPM, driven by the optimized CSPs, is then evaluated against two independent phenological datasets from Exp. 2 and Exp. 4 described in Table 2. Root means square error (RMSE) (mean absolute error (MAE), coefficient of determination (R2), and Nash Sutcliffe model efficiency (NSE)) are 15.50 (14.63, 0.96, 0.42), 4.76 (3.92, 0.97, 0.95), 4.69 (3.72, 0.98, 0.95), 3.91 (3.40, 0.99, 0.96) and 12.54 (11.67, 0.95, 0.60), 5.07 (4.61, 0.98, 0.93), 4.97 (4.28, 0.97, 0.94), 4.58 (4.02, 0.98, 0.95) for using one, two, three, and four observed phenological stages in the CSPs estimation. The evaluation results suggest that RMSE and MAE decrease, and R2 and NSE increase with the increase in the number of observed phenological stages used for parameter calibration. However, there is no significant reduction in the RMSEs (MAEs, NSEs) using two, three, and four observed stages. Relatively reliable optimized CSPs for CSMP are obtained by using at least two observed phenological stages balancing calibration effect and computational cost. These findings provide new insight into parameter estimation of crop models.


Assuntos
Produtos Agrícolas , Glycine max , Glycine max/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Calibragem , Modelos Biológicos , Funções Verossimilhança , Incerteza
19.
Food Res Int ; 189: 114571, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876583

RESUMO

The non-covalent and covalent complexes of ultrasound treated soybean protein isolate (SPI) and soybean isoflavone (SI) were prepared, and the structure, physicochemical properties and in vitro digestion characteristics of SPI-SI complexes were investigated. Ultrasonic treatment increased the non-covalent and covalent binding degree of SPI with SI, and the 240 W ultrasonic covalent complexes had higher binding efficiency. Appropriate ultrasonic treatment caused more uniform particle size distribution, lower average particle size and higher surface charge, which enhanced the free sulfhydryl groups and surface hydrophobicity, thus improving the stability, solubility and emulsifying properties of complexes. Ultrasonic treatment resulted in more disordered secondary structure, tighter tertiary conformation, higher thermal stability and stronger SPI-SI covalent interactions of complexes. These structural modifications of particles had important effects on the chemical stability and gastrointestinal digestion fate of SI. The ultrasonic covalent complexation had a greater resistance to heat-induced chemical degradation of SI and improved its chemical stability. Furthermore, the 240 W ultrasonic covalent complexes showed lower protein digestibility during digestion, and provided stronger protection for SI, which improved the digestion stability and antioxidant activity. Therefore, appropriate ultrasound promoted SPI-SI interactions to improve the stability and functional properties of complexes, which provided a theoretical basis for the development of new complexes and their applications in functional foods.


Assuntos
Digestão , Interações Hidrofóbicas e Hidrofílicas , Isoflavonas , Tamanho da Partícula , Solubilidade , Proteínas de Soja , Proteínas de Soja/química , Isoflavonas/química , Glycine max/química , Antioxidantes/química , Manipulação de Alimentos/métodos , Temperatura Alta
20.
Vet Med Sci ; 10(4): e1504, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38879885

RESUMO

BACKGROUND: The metabolic impacts of including soya meal, wheat gluten and corn gluten in the diet of male lambs could influence their reproductive performance. OBJECTIVES: An experiment was carried out to assess the effects of corn gluten, wheat gluten and soya meal on the reproductive system of male lambs. METHODS: Twenty-four male Morkaraman lambs, aged 9 months, were utilized in this study and were fed experimental diets for 56 days. The lambs were divided into a control group (soybean meal + safflower meal), a corn group (corn gluten) and a wheat group (wheat gluten). RESULTS: The serum follicle-stimulating hormone level of the control group was significantly higher and tumour necrosis factor-alpha (TNF-α) level was lower than the wheat and corn gluten groups (p < 0.05). The lowest malondialdehyde level in testicular tissue was observed in the control group, whereas the highest was in the wheat gluten group (p < 0.05). The glutathione level in the control group was significantly higher than in the other groups (p < 0.05). The corn gluten group showed the highest CHOP and IRE1 levels; the lowest Bcl-2 levels and the highest IL-1B and P2 × 7R levels were found in the wheat group; and the lowest TNF-α levels were in the control group (p < 0.05). Additionally, the study revealed that diet had a significant impact on spermatological parameters of the testis such as diameter, volume and weight (p < 0.05). CONCLUSIONS: These results concluded that the inclusion of different protein sources in the diet of reproductive male lambs affects the metabolism of testicular tissue.


Assuntos
Ração Animal , Dieta , Estresse do Retículo Endoplasmático , Espermatozoides , Testículo , Animais , Masculino , Dieta/veterinária , Ração Animal/análise , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Espermatozoides/fisiologia , Espermatozoides/efeitos dos fármacos , Análise do Sêmen/veterinária , Carneiro Doméstico/fisiologia , Ovinos/fisiologia , Triticum/química , Fenômenos Fisiológicos da Nutrição Animal , Zea mays/química , Glycine max/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...