Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39.392
Filtrar
1.
Ultrasonics ; 118: 106564, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34530395

RESUMO

Tissue-Mimicking Material (TMM) is defined on IEC International Standards and applied in assessing ultrasonic diagnostic and therapeutic equipment's basic safety and essential performance. One of the TMM that fits IEC standards specification has its recipe described at IEC 60601-2-37, and it is fabricated using glycerol (11.21 %), deionized water (82.95%), benzalkonium chloride (0.47 %), silicon carbide (0.53 %), aluminum oxide 0.3 µm (0.88%), aluminum oxide 3.0 µm (0.94 %), and agar (3.08 %). Glycerol is the component responsible for adjusting the TMM's speed of sound. Moreover, it is recommended to store TMM in a closed container immersed in a mixture of water (88.1 %)/glycerol (11.9 %) to prevent it from drying out and avoiding air contact. The literature points out TMM measurements underwater can alter the speed of sound property as TMM tends to lose glycerol. Herein, the authors proposed to assess the viability of measuring the TMM speed of sound in the water/glycerol maintenance solution. First, the authors characterized the maintenance solution's speed of sound for a temperature range of 20 °C to 45 °C. Then, the group velocity of a set of TMM was measured underwater and in the maintenance solution for the same temperature range. The respective group velocity expanded uncertainty was calculated. The results indicate it is feasible to measure TMM in the maintenance solution, achieving group velocity values with no statistical difference from the ones measured underwater in the temperature range of 20 °C to 40 °C.


Assuntos
Materiais Biomiméticos , Imagens de Fantasmas/normas , Som , Terapia por Ultrassom/instrumentação , Ultrassonografia/instrumentação , Óxido de Alumínio , Compostos de Benzalcônio , Calibragem , Compostos Inorgânicos de Carbono , Segurança de Equipamentos , Glicerol , Compostos de Silício , Temperatura , Água
2.
Skeletal Radiol ; 51(1): 145-151, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34114078

RESUMO

OBJECTIVE: This study evaluated the clinical utility of a phantom-based convolutional neural network noise reduction framework for whole-body-low-dose CT skeletal surveys. MATERIALS AND METHODS: The CT exams of ten patients with multiple myeloma were retrospectively analyzed. Exams were acquired with routine whole-body-low-dose CT protocol and projection noise insertion was used to simulate 25% dose exams. Images were reconstructed with either iterative reconstruction or filtered back projection with convolutional neural network post-processing. Diagnostic quality and structure visualization were blindly rated (subjective scale ranging from 0 [poor] to 100 [excellent]) by three musculoskeletal radiologists for iterative reconstruction and convolutional neural network images at routine whole-body-low-dose and 25% dose CT. RESULTS: For the diagnostic quality rating, the convolutional neural network outscored iterative reconstruction at routine whole-body-low-dose CT (convolutional neural network: 95 ± 5, iterative reconstruction: 85 ± 8) and at the 25% dose level (convolutional neural network: 79 ± 10, iterative reconstruction: 22 ± 13). Convolutional neural network applied to 25% dose was rated inferior to iterative reconstruction applied to routine dose. Similar trends were observed in rating experiments focusing on structure visualization. CONCLUSION: Results indicate that the phantom-based convolutional neural network noise reduction framework can improve visualization of critical structures within CT skeletal surveys. At matched dose level, the convolutional neural network outscored iterative reconstruction for all conditions studied. The image quality improvement of convolutional neural network applied to 25% dose indicates a potential for dose reduction; however, the 75% dose reduction condition studied is not currently recommended for clinical implementation.


Assuntos
Redes Neurais de Computação , Tomografia Computadorizada por Raios X , Algoritmos , Humanos , Imagens de Fantasmas , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador , Estudos Retrospectivos
3.
J Biomed Opt ; 27(7)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725995

RESUMO

SIGNIFICANCE: Gas in scattering media absorption spectroscopy (GASMAS) enables noninvasive gas sensing in the body. It is developing as a tool for diagnosis and monitoring of respiratory conditions in neonates. Phantom models with relevant features to the clinical translation of GASMAS technology are necessary to understand technical challenges and potential applications of this technique. State-of-the-art phantoms designed for this purpose have focused on the optical properties and anthropomorphic geometry of the thorax, contributing to the source-detector placement, design, and optimization. Lung phantom mimicking the alveolar anatomy has not been included in the existent models due to the inherent complexity of the tissue. We present a simplified model that recreates inflated alveoli embedded in lung phantom. AIM: The goal of this study was to build a lung model with air-filled structures mimicking inflated alveoli surrounded by optical phantom with accurate optical properties (µa = 0.50 cm - 1 and µs'=5.4 cm-1) and physiological parameters [37°C and 100% relative humidity (RH)], and to control the air volume within the phantom to demonstrate the feasibility of GASMAS in sensing changes in pulmonary air volume. APPROACH: The lung model was built using a capillary structure with analogous size to alveolar units. Part of the capillaries were filled with liquid lung optical phantom to recreate scattering and absorption, whereas empty capillaries mimicked air filled alveoli. The capillary array was placed inside a custom-made chamber that maintained pulmonary temperature and RH. The geometry of the chamber permitted the placement of the laser head and detector of a GASMAS bench top system (MicroLab Dual O2 / H2O), to test the changes in volume of the lung model in transmittance geometry. RESULTS: The lung tissue model with air volume range from 6.89 × 10 - 7 m3 to 1.80 × 10 - 3 m3 was built. Two measurement sets, with 10 different capillary configurations each, were arranged to increase or decrease progressively (in steps of 3.93 × 10 - 8 m3) the air volume in the lung model. The respective GASMAS data acquisition was performed for both data sets. The maximum absorption signal was obtained for configurations with the highest number of air-filled capillaries and decreased progressively when the air spaces were replaced by capillaries filled with liquid optical phantom. Further studies are necessary to define the minimum and maximum volume of air that can be measured with GASMAS-based devices for different source-detector geometries. CONCLUSIONS: The optical properties and the structure of tissue from the respiratory zone have been modeled using a simplified capillary array immersed in a controlled environment chamber at pulmonary temperature and RH. The feasibility of measuring volume changes with GASMAS technique has been proven, stating a new possible application of GASMAS technology in respiratory treatment and diagnostics.


Assuntos
Pulmão , Oxigênio , Humanos , Umidade , Recém-Nascido , Pulmão/diagnóstico por imagem , Imagens de Fantasmas , Temperatura
4.
Sensors (Basel) ; 21(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34770344

RESUMO

(1) Background: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a preclinical Positron Emission Tomography (PET) insert for the Bruker BioSpec 70/30 Ultra Shield Refrigerated (USR) preclinical 7T Magnetic Resonance Imaging (MRI) system. It is designed explicitly for high-rate kinetic studies in mice and rats with injected activities reaching 500MBq, enabling truly simultaneous quantitative PET and Magnetic Resonance (MR) imaging with time frames of a few seconds in length. (2) Methods: SAFIR-I has an axial field of view of 54.2mm and an inner diameter of 114mm. It employs Lutetium Yttrium OxyorthoSilicate (LYSO) crystals and Multi Pixel Photon Counter (MPPC) arrays. The Position-Energy-Timing Application Specific Integrated Circuit, version 6, Single Ended (PETA6SE) digitizes the MPPC signals and provides time stamps and energy information. (3) Results: SAFIR-I is MR-compatible. The system's Coincidence Resolving Time (CRT) and energy resolution are between separate-uncertainty 209.0(3)ps and separate-uncertainty 12.41(02) Full Width at Half Maximum (FWHM) at low activity and separate-uncertainty 326.89(12)ps and separate-uncertainty 20.630(011) FWHM at 550MBq, respectively. The peak sensitivity is ∼1.6. The excellent performance facilitated the successful execution of first in vivo rat studies beyond 300MBq. Based on features visible in the acquired images, we estimate the spatial resolution to be ∼2mm in the center of the Field Of View (FOV). (4) Conclusion: The SAFIR-I PET insert provides excellent performance, permitting simultaneous in vivo small animal PET/MR image acquisitions with time frames of a few seconds in length at activities of up to 500MBq.


Assuntos
Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Animais , Desenho de Equipamento , Cinética , Camundongos , Imagens de Fantasmas , Fótons , Ratos
5.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770534

RESUMO

Positron emission tomography (PET) can provide functional images and identify abnormal metabolic regions of the whole-body to effectively detect tumor presence and distribution. The filtered back-projection (FBP) algorithm is one of the most common images reconstruction methods. However, it will generate strike artifacts on the reconstructed image and affect the clinical diagnosis of lesions. Past studies have shown reduction in strike artifacts and improvement in quality of images by two-dimensional morphological structure operators (2D-MSO). The morphological structure method merely processes the noise distribution of 2D space and never considers the noise distribution of 3D space. This study was designed to develop three-dimensional-morphological structure operators (3D MSO) for nuclear medicine imaging and effectively eliminating strike artifacts without reducing image quality. A parallel operation was also used to calculate the minimum background standard deviation of the images for three-dimensional morphological structure operators with the optimal response curve (3D-MSO/ORC). As a result of Jaszczak phantom and rat verification, 3D-MSO/ORC showed better denoising performance and image quality than the 2D-MSO method. Thus, 3D MSO/ORC with a 3 × 3 × 3 mask can reduce noise efficiently and provide stability in FBP images.


Assuntos
Algoritmos , Artefatos , Animais , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons , Ratos
6.
Sensors (Basel) ; 21(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34770558

RESUMO

For ultra-high field and frequency (UHF) magnetic resonance imaging (MRI), the associated short wavelengths in biological tissues leads to penetration and homogeneity issues at 10.5 tesla (T) and require antenna transmit arrays for efficiently generated 447 MHz B1+ fields (defined as the transmit radiofrequency (RF) magnetic field generated by RF coils). Previously, we evaluated a 16-channel combined loop + dipole antenna (LD) 10.5 T head array. While the LD array configuration did not achieve the desired B1+ efficiency, it showed an improvement of the specific absorption rate (SAR) efficiency compared to the separate 8-channel loop and separate 8-channel dipole antenna arrays at 10.5 T. Here we compare a 16-channel dipole antenna array with a 16-channel LD array of the same dimensions to evaluate B1+ efficiency, 10 g SAR, and SAR efficiency. The 16-channel dipole antenna array achieved a 24% increase in B1+ efficiency in the electromagnetic simulation and MR experiment compared to the LD array, as measured in the central region of a phantom. Based on the simulation results with a human model, we estimate that a 16-channel dipole antenna array for human brain imaging can increase B1+ efficiency by 15% with similar SAR efficiency compared to a 16-channel LD head array.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imagens de Fantasmas
7.
J Int Med Res ; 49(11): 3000605211053281, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34743631

RESUMO

OBJECTIVE: Technological developments have made it possible to create simulation models to educate clinicians on surgical techniques and patient preparation. In this study, we created an inexpensive lumbar spine phantom using patient data and analyzed its usefulness in clinical education. METHODS: This randomized comparative study used computed tomography and magnetic resonance imaging data from a single patient to print a three-dimensional (3D) bone framework and create a mold. The printed bones and structures made from the mold were placed in a simulation model that was used to train residents. The residents were divided into two groups: Group L, which received only an audiovisual lecture, and Group P, which received an additional 1 hour of training using the 3D phantom. The performance of both groups was evaluated using pretest and post-test analyses. RESULTS: Both the checklist and global rating scores increased after training in both groups. However, some variables improved significantly only in Group P. The overall satisfaction score was also higher in Group P than in Group L. CONCLUSIONS: We have described a method by which medical doctors can create a spine simulation phantom and have demonstrated its efficiency for procedural education.


Assuntos
Vértebras Lombares , Impressão Tridimensional , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Modelos Anatômicos , Dor , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
8.
Dentomaxillofac Radiol ; 50(8): 20210276, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739304

RESUMO

The mathematical theory of CT was proposed by J. Radon in 1917. It was declared that the projection of whole data sets was needed to reconstruct CT images. Therefore, according to J. Radon's original theory, local cone beam CT (local CBCT) was impossible to achieve.In this paper, I discuss how local CBCT was discovered and developed. Its development required many technical elements, such as a turntable and X-ray television system, for basic experiments such as those on which narrow collimation theory and multifunctional panoramic tomography were based. These experiments endured many failures during development.Now, local CBCT is extremely popular in dental practice because local CBCT has a low radiation dose and high resolution. This paper introduces the technical elements and outlines the important stages during the development of local CBCT in the 1990s.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Raios X
9.
J Biomed Opt ; 27(7)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34796707

RESUMO

SIGNIFICANCE: The polymer, polydimethylsiloxane (PDMS), has been increasingly used to make tissue simulating phantoms due to its excellent processability, durability, flexibility, and limited tunability of optical, mechanical, and thermal properties. We report on a robust technique to fabricate PDMS-based tissue-mimicking phantoms where the broad range of scattering and absorption properties are independently adjustable in the visible- to near-infrared wavelength range from 500 to 850 nm. We also report on an analysis method to concisely quantify the phantoms' broadband characteristics with four parameters. AIM: We report on techniques to manufacture and characterize solid tissue-mimicking phantoms of PDMS polymers. Tunability of the absorption (µa ( λ ) ) and reduced scattering coefficient spectra (µs'(λ)) in the wavelength range of 500 to 850 nm is demonstrated by adjusting the concentrations of light absorbing carbon black powder (CBP) and light scattering titanium dioxide powder (TDP) added into the PDMS base material. APPROACH: The µa ( λ ) and µs'(λ) of the phantoms were obtained through measurements with a broadband integrating sphere system and by applying an inverse adding doubling algorithm. Analyses of µa ( λ ) and µs'(λ) of the phantoms, by fitting them to linear and power law functions, respectively, demonstrate that independent control of µa ( λ ) and µs'(λ) is possible by systematically varying the concentrations of CBP and TDP. RESULTS: Our technique quantifies the phantoms with four simple fitting parameters enabling a concise tabulation of their broadband optical properties as well as comparisons to the optical properties of biological tissues. We demonstrate that, to a limited extent, the scattering properties of our phantoms mimic those of human tissues of various types. A possible way to overcome this limitation is demonstrated with phantoms that incorporate polystyrene microbead scatterers. CONCLUSIONS: Our manufacturing and analysis techniques may further promote the application of PDMS-based tissue-mimicking phantoms and may enable robust quality control and quality checks of the phantoms.


Assuntos
Dimetilpolisiloxanos , Humanos , Imagens de Fantasmas
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(6): 1001-1005, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34841768

RESUMO

Objective: To investigate the feasibility of low-dose CT scan of the temporal bone combined with reconstruction matrix size of 1 024×1 024 and the effect of the reconstruction matrix size on image quality. Methods: Normal-dose and low-dose bilateral temporal bone CT scans were performed on twelve adult male cadaveric skull specimens using the 160-slice multi-detector CT scanning of United Imaging Healthcare. Normal-dose CT images were reconstructed with matrix sizes of 512×512 and 1 024×1 024, while low-dose CT images were reconstructed with the matrix size of 1 024×1 024. CT value, noise, signal-to-noise ratio, contrast-to-noise ratio, the visualization scoring of 15 anatomical structures of the temporal bone, and the result of three-dimensional reconstruction of the ossicular chain were compared among the three groups. Results: The radiation dose of low-dose CT scanning was reduced by about 50% compared with that of normal-dose CT. There was no significant difference in CT values of air, soft tissues and bones among the three groups. Low-dose temporal bone CT with the matrix size of 1 024×1 024 had higher noise, but much better visualization of temporal bone structure than the normal-dose temporal bone CT with matrix size of 512×512. Both the three-dimensional reconstructions of normal-dose and low-dose 1 024×1 024 matrix images were satisfactory and showed no significant difference. The morphology, size and relative position of malleus, incus, stapes, cochlea, and labyrinth, as well as the location of the ossicular chain in the cranium were all clearly displayed. Conclusion: Low-dose temporal bone CT with the matrix size of 1 024×1 024 can be used to effectively reduce the radiation dose and significantly improve the spatial resolution and the visualization of the temporal bone anatomical structures compared with the normal-dose temporal bone CT with a matrix size of 512×512.


Assuntos
Osso Temporal , Tomografia Computadorizada por Raios X , Adulto , Estudos de Viabilidade , Humanos , Masculino , Imagens de Fantasmas , Doses de Radiação , Razão Sinal-Ruído , Osso Temporal/diagnóstico por imagem
11.
Phys Med ; 91: 121-130, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34785490

RESUMO

PURPOSE: We developed an x-ray-opaque-marker (XOM) system with inserted fiducial markers for patient-specific quality assurance (QA) in CyberKnife (Accuray) and a general-purpose linear accelerator (linac). The XOM system can be easily inserted or removed from the existing patient-specific QA phantom. Our study aimed to assess the utility of the XOM system by evaluating the recognition accuracy of the phantom position error and estimating the dose perturbation around a marker. METHODS: The recognition accuracy of the phantom position error was evaluated by comparing the known error values of the phantom position with the values measured by matching the images with target locating system (TLS; Accuray) and on-board imager (OBI; Varian). The dose perturbation was evaluated for 6 and 10 MV single-photon beams through experimental measurements and Monte Carlo simulations. RESULTS: The root mean squares (RMSs) of the residual position errors for the recognition accuracy evaluation in translations were 0.07 mm with TLS and 0.30 mm with OBI, and those in rotations were 0.13° with TLS and 0.15° with OBI. The dose perturbation was observed within 1.5 mm for 6 MV and 2.0 mm for 10 MV from the marker. CONCLUSIONS: Sufficient recognition accuracy of the phantom position error was achieved using our system. It is unnecessary to consider the dose perturbation in actual patient-specific QA. We concluded that the XOM system can be utilized to ensure quantitative and accurate phantom positioning in patient-specific QA with CyberKnife and a general-purpose linac.


Assuntos
Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Raios X
12.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 77(11): 1317-1324, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34803112

RESUMO

PURPOSE: We applied deviceless, positron emission tomography/computed tomography(PET/CT) data-driven respiratory gating (DDG) to validate the effects of misalignment between PET and CT at various respiratory phases. METHODS: A lung lesion was simulated using an NEMA IEC body phantom in which the background comprised hot spheres containing polystyrene foam beads. We acquired PET images as the phantom moved downwards and then stopped. Attenuation on computed tomography images acquired at the inspiratory, stationary, and expiratory phases was corrected after the phantom stopped moving. Normalized mean square error (NMSE), recovery coefficients (RCmax and RCmean) and volume were analyzed on DDG-PET images using CT-based attenuation correction. RESULTS: The NMSE was closest to 0 in PET images corrected using the expiratory CT image. The RCmax was<1.0, and the RCmean was closest to 1.0 only in PET images corrected using the expiratory CT image. Volume was either underestimated or overestimated more according to the size of the spheres when the alignment of CT and PET images was greater. CONCLUSION: We recommend using the expiratory but not the inspiratory phase when using DDG for PET/CT correction.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons , Artefatos , Imagens de Fantasmas , Tomografia Computadorizada por Raios X
13.
Sensors (Basel) ; 21(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34833802

RESUMO

Magnetic induction tomography (MIT) is a contactless, low-energy method used to visualize the conductivity distribution inside a body under examination. A particularly demanding task is the three-dimensional (3D) imaging of voluminous bodies in the biomedical impedance regime. While successful MIT simulations have been reported for this regime, practical demonstration over the entire depth of weakly conductive bodies is technically difficult and has not yet been reported, particularly in terms of more realistic requirements. Poor sensitivity in the central regions critically affects the measurements. However, a recently simulated MIT scanner with a sinusoidal excitation field topology promises improved sensitivity (>20 dB) from the interior. On this basis, a large and fast 3D MIT scanner was practically realized in this study. Close agreement between theoretical forward calculations and experimental measurements underline the technical performance of the sensor system, and the previously only simulated progress is hereby confirmed. This allows 3D reconstructions from practical measurements to be presented over the entire depth of a voluminous body phantom with tissue-like conductivity and dimensions similar to a human torso. This feasibility demonstration takes MIT a step further toward the quick 3D mapping of a low conductive and voluminous object, for example, for rapid, harmless and contactless thorax or lung diagnostics.


Assuntos
Magnetismo , Tomografia , Condutividade Elétrica , Impedância Elétrica , Humanos , Imageamento Tridimensional , Imagens de Fantasmas
14.
Int J Comput Assist Radiol Surg ; 16(11): 1947-1956, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34694572

RESUMO

PURPOSE: The viscoelasticity (storage modulus and loss modulus) of living tissues is known to be related to diseases. Magnetic resonance elastography (MRE) is a quantitative method for non-invasive measuring viscoelasticity. The viscoelasticity is calculated from the elastic wave images using an inversion algorithm. The estimation accuracy of the inversion algorithm is degraded by background noise. This study aims to propose novel inversion algorithms that are applicable for noisy elastic wave images. METHODS: The proposed algorithms are based on the Voigt-type viscoelastic equation. The algorithms are designed to improve the noise robustness by avoiding direct differentiation of measurement data by virtue of Green's formula. Similarly, stabilization is introduced to the curl-operator which works to eliminate the compression waves in measurement data. To clarify the characteristics of the algorithms, the proposed algorithms were compared with the conventional algorithms using isotropic and anisotropic voxel numerical simulations and phantom experimental data. RESULTS: From the results of the numerical simulations, normalized errors of stiffness of proposed algorithms were 3% or less. The proposed algorithms mostly showed better results than the conventional algorithms despite noisy elastic wave images. From the gel phantom experiment, we confirmed the same tendency as the characteristics of the algorithms observed in the numerical simulation results. CONCLUSION: We have developed a novel inversion algorithm and evaluated it quantitatively. The results confirm that the proposed algorithms are highly quantitative and noise-robust methods for estimating storage and loss modulus regardless of noise, voxel anisotropy, and propagation direction. Therefore, the proposed algorithms will appropriate to various three-dimensional MRE systems.


Assuntos
Técnicas de Imagem por Elasticidade , Algoritmos , Anisotropia , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
15.
Radiol Phys Technol ; 14(4): 381-389, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34716568

RESUMO

The evaluation of the entrance surface dose (ESD) ensures safe radiation doses for X-ray imaging patients. The air kerma free-in-air value used to estimate ESD may be affected by those X-rays that scatter from the scatterer placed behind the chamber at the time of measurement, thereby leading to assessment errors. Therefore, the influence of scattered radiation on air kerma measurements was investigated. Monte Carlo simulations were performed for various detector-to-scatterer distances and scatterer materials. The simulation results were compared with actual measurements to confirm the simulation accuracy. The source-chamber distance was set to 50 and 100 cm for the experimental measurements and simulation, respectively, and the chamber-scatterer distance was varied. The Monte Carlo simulation results reproduced the actual measurements with an accuracy of 3.5%. The effect of backscattering varied with the tube voltage and irradiation field size. The effect was observed in the order of prominence for the following scatterer materials: water-equivalent phantom, acrylic, concrete, lead, and iron. Furthermore, this effect decreased exponentially with increasing chamber-scatterer distance. For a field size of 10 × 10 cm2, the finite-distance backscatter factor decreased with an increasing chamber-scatterer distance for all materials. The cause of backscattering in diagnostic X-ray energy regions differs depending on the scatterer material, as well as the photon energy and field size. Backscattering decreases exponentially as the distance between the detector and scatterer increases.


Assuntos
Fótons , Radiometria , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Radiografia , Raios X
16.
J Biomed Opt ; 27(7)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34713648

RESUMO

SIGNIFICANCE: Raman spectroscopy has emerged as a promising technique for a variety of biomedical applications. The unique ability to provide molecular specific information offers insight to the underlying biochemical changes that result in disease states such as cancer. However, one of the hurdles to successful clinical translation is a lack of international standards for calibration and performance assessment of modern Raman systems used to interrogate biological tissue. AIM: To facilitate progress in the clinical translation of Raman-based devices and assist the scientific community in reaching a consensus regarding best practices for performance testing. APPROACH: We reviewed the current literature and available standards documents to identify methods commonly used for bench testing of Raman devices (e.g., relative intensity correction, wavenumber calibration, noise, resolution, and sensitivity). Additionally, a novel 3D-printed turbid phantom was used to assess depth sensitivity. These approaches were implemented on three fiberoptic-probe-based Raman systems with different technical specifications. RESULTS: While traditional approaches demonstrated fundamental differences due to detectors, spectrometers, and data processing routines, results from the turbid phantom illustrated the impact of illumination-collection geometry on measurement quality. CONCLUSIONS: Specifications alone are necessary but not sufficient to predict in vivo performance, highlighting the need for phantom-based test methods in the standardized evaluation of Raman devices.


Assuntos
Neoplasias , Análise Espectral Raman , Calibragem , Humanos , Imagens de Fantasmas
17.
Med Phys ; 48(11): 6740-6754, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34622973

RESUMO

PURPOSE: Conventional cone-beam computed tomography CT (CBCT) provides limited discrimination between low-contrast tissues. Furthermore, it is limited to full-spectrum energy integration. A dual-energy CBCT system could be used to separate photon energy spectra with the potential to increase the visibility of clinically relevant features and acquire additional information relevant in a multitude of clinical imaging applications. In this work, the performance of a novel dual-layer dual-energy CBCT (DL-DE-CBCT) C-arm system is characterized for the first time. METHODS: A prototype dual-layer detector was fitted into a commercial interventional C-arm CBCT system to enable DL-DE-CBCT acquisitions. DL-DE reconstructions were derived from material-decomposed Compton scatter and photoelectric base functions. The modulation transfer function (MTF) of the prototype DL-DE-CBCT was compared to that of a commercial CBCT. Noise and uniformity characteristics were evaluated using a cylindrical water phantom. Effective atomic numbers and electron densities were estimated in clinically relevant tissue substitutes. Iodine quantification was performed (for 0.5-15 mg/ml concentrations) and virtual noncontrast (VNC) images were evaluated. Finally, contrast-to-noise ratios (CNR) and CT number accuracies were estimated. RESULTS: The prototype and commercial CBCT showed similar spatial resolution, with a mean 10% MTF of 5.98 cycles/cm and 6.28 cycles/cm, respectively, using a commercial standard reconstruction. The lowest noise was seen in the 80 keV virtual monoenergetic images (VMI) (7.40 HU) and the most uniform images were seen at VMI 60 keV (4.74 HU) or VMI 80 keV (1.98 HU), depending on the uniformity measure used. For all the tissue substitutes measured, the mean accuracy in effective atomic number was 98.2% (SD 1.2%) and the mean accuracy in electron density was 100.3% (SD 0.9%). Iodine quantification images showed a mean difference of -0.1 (SD 0.5) mg/ml compared to the true iodine concentration for all blood and iodine-containing objects. For VNC images, all blood substitutes containing iodine averaged a CT number of 43.2 HU, whereas a blood-only substitute measured 44.8 HU. All water-containing iodine substitutes measured a mean CT number of 2.6 in the VNC images. A noise-suppressed dataset showed a CNR peak at VMI 40 keV and low at VMI 120 keV. In the same dataset without noise suppression applied, a peak in CNR was obtained at VMI 70 keV and a low at VMI 120 keV. The estimated CT numbers of various clinically relevant objects were generally very close to the calculated CT number. CONCLUSIONS: The performance of a prototype dual-layer dual-energy C-arm CBCT system was characterized. Spatial resolution and noise were comparable with a commercially available C-arm CBCT system, while offering dual-energy capability. Iodine quantifications, effective atomic numbers, and electron densities were in good agreement with expected values, indicating that the system can be used to reliably evaluate the material composition of clinically relevant tissues. The VNC and monoenergetic images indicate a consistent ability to separate clinically relevant tissues. The results presented indicate that the system could find utility in diagnostic, interventional, and radiotherapy planning settings.


Assuntos
Iodo , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Tomografia Computadorizada de Feixe Cônico , Imagens de Fantasmas , Estudos Retrospectivos , Razão Sinal-Ruído
18.
Med Phys ; 48(11): 6627-6633, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34648191

RESUMO

PURPOSE: To evaluate the dose difference between measurement and double Gaussian beam model prediction according to the field size and correct the measurements in patient-specific quality assurance (QA). METHODS: The field size dependence of the dose was evaluated with volumes of 20 × 20 × 80 mm3 , 40 × 40 × 80 mm3 , 60 × 60 × 80 mm3 , and 80 × 80 × 80 mm3 of 1 Gy uniform dose at three depths. Additional two 80 × 80 × 80 mm3 volumes of nonuniform fields were created: one high-dose field was given 1 Gy at the central 40 × 40 mm2 and 0.5 Gy in its surrounding, and the other low-dose field was given 0.5 Gy in the middle and 1 Gy at the periphery. The dose in the center of the spread-out Bragg peak (SOBP) was measured in a water phantom and compared with the treatment planning system (TPS) predication. A field factor based on the two-dimensional (2D) dose distribution was proposed to estimate the field size. The field factor was first evaluated against the dose difference in the square fields, and then used to analyze and correct the patient-specific QA results. RESULTS: TPS overestimated dose for fields smaller than 80 × 80 mm2 . A practically positive correlation was observed between the measured dose and the field factor. In the patient-specific QA, measured doses were lower than the TPS predication as they were calculated a relatively small field factor. The corrected dose differences were no longer field factor dependent. CONCLUSIONS: Using the proposed field factor, we have shown that all the measurements with a large dose deviation were due to the small-sized field. It is clinically relevant to take into consideration the field size in the QA analysis as long as the double Gaussian beam model being used for the dose calculation. Correction to the measurement can be made based on the field factor.


Assuntos
Radioterapia com Íons Pesados , Planejamento da Radioterapia Assistida por Computador , Humanos , Distribuição Normal , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Radiometria , Dosagem Radioterapêutica
19.
Med Phys ; 48(11): 6696-6709, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34655079

RESUMO

PURPOSE: Aim of this study was to evaluate the use of computer-aided design (CAD) models for attenuation correction (AC) of hardware components in positron emission tomography/magnetic resonance (PET/MR) imaging. METHODS: The technical feasibility and quantitative impact of CAD-AC compared to computer tomography (CT)-based AC (reference) was investigated on a modular phantom consisting of 19 different material samples (plastics and metals arranged around a cylindrical emission phantom) typically used in phantoms, patient tables, and radiofrequency (RF) coils in PET/MR. The clinical applicability of the CAD-AC method was then evaluated on a 16-channel RF breast coil in a PET/MR patient study. The RF breast coil in this study was specifically designed PET compatible. Using this RF breast coil, the impact on clinical PET/MR breast imaging was systematically evaluated in breast phantom measurements and, furthermore, in n = 10 PET/MR patients with breast cancer. PET data were reconstructed three times: (1) no AC (NAC), (2) established CT-AC, and (3) CAD-AC. For both phantom measurements, a scan without attenuating hardware components (material probes or RF breast coil) was acquired serving as reference. Relative differences in PET data were calculated for all experiments. RESULTS: In all phantom and patient measurements, significant gains in PET signal compared to NAC data were measurable with CT and CAD-AC. In initial phantom experiments, mean relative differences of -0.2% for CT-AC and 0.2% for CAD-AC were calculated compared to reference measurements without the material probes. The application to a RF breast coil depicts that CAD-AC results in significant gains compared to NAC data (10%) and a slight underestimation in PET signal of -1.3% in comparison to the no-coil reference measurement. In the patient study, a total of 15 congruent lesions in all 10 patients with a mean relative difference of 14% (CT and CAD-AC) in standardized uptake value compared to NAC data could be detected. CONCLUSIONS: To ensure best possible PET image quality and accurate PET quantification in PET/MR imaging, the AC of hardware components such as phantoms and RF coils is important. In initial phantom experiments and in clinical application to an RF breast coil, it was found that CAD-based AC results in significant gains in PET signal compared to NAC data and provides comparably good results to the established method of CT-based AC.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Desenho Assistido por Computador , Computadores , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas
20.
Med Phys ; 48(11): 6832-6843, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34662433

RESUMO

PURPOSE: Cone-beam CT (CBCT) has been widely utilized in image-guided radiotherapy. Planning CT (pCT)-aided CBCT scatter correction could further enhance image quality and extend CBCT application to dose calculation and adaptive planning. Nevertheless, existing pCT-based approaches demand accurate registration between pCT and CBCT, leading to limited imaging performance and increased computational cost when large anatomical discrepancies exist. In this work, we proposed a robust and fast CBCT scatter correction method using local filtration technique and rigid registration between pCT and CBCT (LF-RR). METHODS: First of all, the pCT was rigidly registered with CBCT, then forward projection was performed on registered pCT to create scatter-free projections. The raw scatter signals were obtained via subtracting the scatter-free projections from the measured CBCT projections. Based on frequency and intensity threshold criteria, reliable scatter signals were selected from the raw scatter signals, and further filtered for global scatter estimation via local filtration technique. Finally, corrected CBCT was reconstructed with the projections generated by subtracting the scatter estimation from the raw CBCT projections using FDK algorithm. The LF-RR method was evaluated via comparison with another pCT-based scatter correction method based on Median and Gaussian filters (MG method). RESULTS: Proposed method was first validated on an anthropomorphic pelvis phantom, and showed satisfied performance on scatter removal even when anatomical mismatches were intentionally created on pCT. The quantitative analysis was further performed on four clinical CBCT images. Compared with the uncorrected CBCT, CBCT corrected by MG with rigid registration (MG-RR), MG with deformable registration (MG-DR), and LF-RR reduced the CT number error from 79 ± 35 to 25 ± 18 , 17 ± 13 and 7 ± 3 HU for adipose and from 115 ± 61 to 36 ± 22 , 30 ± 24 , 7 ± 3 HU for muscle, respectively. After correction, the spatial non-uniformity (SNU) of CBCT corrected with MG-RR, MG-DR and LF-RR was 51 ± 13 , 60 ± 21 , and 21 ± 9 HU for adipose, and 50 ± 22 , 57 ± 41 , and 25 ± 6 HU for muscle, respectively. Meanwhile, the contrast-to-noise ratio (CNR) between muscle and adipose was increased by a factor of 2.70, 2.89 and 2.56, respectively. Using the LF-RR method, the scatter correction of 656 projections can be finished within 10 s and the corrected volumetric images (200 slices) can be obtained within 2 min. CONCLUSION: We developed a fast and robust pCT-based CBCT scatter correction method which exploits the local-filtration technique to promote the accuracy of scatter estimation and is resistant to pCT-to-CBCT registration uncertainties. Both phantom and patient studies showed the superiority of the proposed correction in imaging accuracy and computational efficiency, indicating promisingfuture clinical application.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Radioterapia Guiada por Imagem , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...