Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.070
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 556-560, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38952096

RESUMO

Macrophages (MACs) and classical dendritic cells (cDCs) represent the front line of immune defense, playing crucial roles in both innate and adaptive immunity due to their remarkable tissue specificity and precise adaptation to environmental cues. MACs contribute to maintaining tissue homeostasis and immune surveillance, while cDCs function as the most efficient antigen-presenting cells, playing a critical role in immune responses. These two cell types share similarities and interconnections. Both MACs and cDCs are capable of recognizing pathogens and tissue damage, secreting cytokines to activate other innate immune cells, and initiating or modulating adaptive immunity through interactions with T cells. In this review, we provide a comprehensive analysis of the research advances in the development and functions of MACs and cDCs during resting and infection processes, elucidate their interrelationships and interactions within the immune system, and offer a theoretical basis for in-depth studies of diseases.


Assuntos
Células Dendríticas , Macrófagos , Células Dendríticas/imunologia , Humanos , Macrófagos/imunologia , Animais , Infecções/imunologia , Imunidade Inata , Imunidade Adaptativa
2.
J Med Virol ; 96(7): e29772, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949201

RESUMO

The distinct composition and immune response characteristics of bats' innate and adaptive immune systems, which enable them to serve as host of numerous serious zoonotic viruses without falling ill, differ substantially from those of other mammals, it have garnered significant attention. In this article, we offer a systematic review of the names, attributes, and functions of innate and adaptive immune cells & molecules across different bat species. This includes descriptions of the differences shown by research between 71 bat species in 10 families, as well as comparisons between bats and other mammals. Studies of the immune cells & molecules of different bat species are necessary to understand the unique antiviral immunity of bats. By providing comprehensive information on these unique immune responses, it is hoped that new insights will be provided for the study of co-evolutionary dynamics between viruses and the bat immune system, as well as human antiviral immunity.


Assuntos
Imunidade Adaptativa , Quirópteros , Imunidade Inata , Quirópteros/virologia , Quirópteros/imunologia , Animais , Humanos , Vírus/imunologia , Vírus/classificação , Viroses/imunologia , Viroses/virologia
3.
Commun Biol ; 7(1): 788, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951600

RESUMO

Immune defenses are crucial for survival but costly to develop and maintain. Increased immune investment is therefore hypothesized to trade-off with other life-history traits. Here, we examined innate and adaptive immune responses to environmental heterogeneity in wild Antarctic fur seals. In a fully crossed, repeated measures design, we sampled 100 pups and their mothers from colonies of contrasting density during seasons of contrasting food availability. Biometric and cortisol data as well as blood for the analysis of 13 immune and oxidative status markers were collected at two key life-history stages. We show that immune responses of pups are more responsive than adults to variation in food availability, but not population density, and are modulated by cortisol and condition. Immune investment is associated with different oxidative status markers in pups and mothers. Our results suggest that early life stages show greater sensitivity to extrinsic and intrinsic effectors, and that immunity may be a strong target for natural selection even in low-pathogen environments such as Antarctica.


Assuntos
Otárias , Estresse Oxidativo , Animais , Otárias/imunologia , Otárias/fisiologia , Otárias/metabolismo , Regiões Antárticas , Feminino , Masculino , Imunidade Inata , Hidrocortisona/sangue , Imunidade Adaptativa
4.
Stem Cell Res Ther ; 15(1): 193, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956724

RESUMO

BACKGROUND: The human induced pluripotent stem cells (hiPSCs) can generate all the cells composing the human body, theoretically. Therefore, hiPSCs are thought to be a candidate source of stem cells for regenerative medicine. The major challenge of allogeneic hiPSC-derived cell products is their immunogenicity. The hypoimmunogenic cell strategy is allogenic cell therapy without using immune suppressants. Advances in gene engineering technology now permit the generation of hypoimmunogenic cells to avoid allogeneic immune rejection. In this study, we generated a hypoimmunogenic hiPSC (HyPSC) clone that had diminished expression of human leukocyte antigen (HLA) class Ia and class II and expressed immune checkpoint molecules and a safety switch. METHODS: First, we generated HLA class Ia and class II double knockout (HLA class Ia/II DKO) hiPSCs. Then, a HyPSC clone was generated by introducing exogenous ß-2-microglobulin (B2M), HLA-G, PD-L1, and PD-L2 genes, and the Rapamycin-activated Caspase 9 (RapaCasp9)-based suicide gene as a safety switch into the HLA class Ia/II DKO hiPSCs. The characteristics and immunogenicity of the HyPSCs and their derivatives were analyzed. RESULTS: We found that the expression of HLA-G on the cell surface can be enhanced by introducing the exogenous HLA-G gene along with B2M gene into HLA class Ia/II DKO hiPSCs. The HyPSCs retained a normal karyotype and had the characteristics of pluripotent stem cells. Moreover, the HyPSCs could differentiate into cells of all three germ layer lineages including CD45+ hematopoietic progenitor cells (HPCs), functional endothelial cells, and hepatocytes. The HyPSCs-derived HPCs exhibited the ability to evade innate and adaptive immunity. Further, we demonstrated that RapaCasp9 could be used as a safety switch in vitro and in vivo. CONCLUSION: The HLA class Ia/II DKO hiPSCs armed with HLA-G, PD-L1, PD-L2, and RapaCasp9 molecules are a potential source of stem cells for allogeneic transplantation.


Assuntos
Imunidade Adaptativa , Antígeno B7-H1 , Antígenos HLA-G , Imunidade Inata , Células-Tronco Pluripotentes Induzidas , Proteína 2 Ligante de Morte Celular Programada 1 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Antígenos HLA-G/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Animais , Camundongos
6.
Front Immunol ; 15: 1395921, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966644

RESUMO

IL-27, a member of the IL-6/IL-12 cytokine superfamily, is primarily secreted by antigen presenting cells, specifically by dendric cells, macrophages and B cells. IL-27 has antiviral activities and modulates both innate and adaptive immune responses against viruses. The role of IL-27 in the setting of viral infections is not well defined and both pro-inflammatory and anti-inflammatory functions have been described. Here, we discuss the latest advancements in the role of IL-27 in several viral infection models of human disease. We highlight important aspects of IL-27 expression regulation, the critical cell sources at different stages of the infection and their impact in cell mediated immunity. Lastly, we discuss the need to better define the antiviral and modulatory (pro-inflammatory vs anti-inflammatory) properties of IL-27 in the context of human chronic viral infections.


Assuntos
Imunidade Adaptativa , Viroses , Humanos , Viroses/imunologia , Animais , Regulação da Expressão Gênica , Interleucina-27/metabolismo , Vírus/imunologia , Interleucinas/imunologia , Interleucinas/metabolismo
7.
Immunity ; 57(7): 1457-1465, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986441

RESUMO

Regardless of microbial virulence (i.e., the global infection-fatality ratio), age generally drives the prevalence of death from infection in unvaccinated humans. Four mortality patterns are recognized: the common U- and L-shaped curves of endemic infections and the unique W- and J-shaped curves of pandemic infections. We suggest that these patterns result from different sets of human genetic and immunological determinants. In this model, it is the interplay between (1) monogenic genotypes affecting immunity to primary infection that preferentially manifest early in life and related genotypes or their phenocopies, including auto-antibodies, which manifest later in life and (2) the occurrence and persistence of adaptive, acquired immunity to primary or cross-reactive infections, which shapes the age-dependent pattern of human deaths from infection.


Assuntos
Doenças Transmissíveis , Humanos , Fatores Etários , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/epidemiologia , Imunidade Adaptativa/genética , Envelhecimento/imunologia , Envelhecimento/genética , Pandemias
8.
Semin Immunopathol ; 46(3-4): 6, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39042263

RESUMO

Galectins, a family of glycan-binding proteins have been shown to bind a wide range of glycans. In the cytoplasm, these glycans can be endogenous (or "self"), originating from damaged endocytic vesicles, or exogenous (or "non-self"), found on the surface of invading microbial pathogens. Galectins can detect these unusual cytosolic exposures to glycans and serve as critical regulators in orchestrating immune responses in innate and adaptive immunity. This review provides an overview of how galectins modulate host cellular responses, such as autophagy, xenophagy, and inflammasome-dependent cell death program, to infection.


Assuntos
Autofagia , Galectinas , Inflamassomos , Humanos , Autofagia/imunologia , Galectinas/metabolismo , Galectinas/imunologia , Inflamassomos/metabolismo , Animais , Imunidade Inata , Interações Hospedeiro-Patógeno/imunologia , Transdução de Sinais , Imunidade Adaptativa
9.
Fish Shellfish Immunol ; 151: 109742, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960109

RESUMO

Rainbow trout is an important fish species for Peruvian artisanal aquaculture, comprising over 60 % of the total aquaculture production. However, their industry has been highly affected by several bacterial agents such as Yersinia ruckeri. This pathogen is the causative agent of Enteric Redmouth Disease, and causes high mortality in fingerlings and chronic infection in adult rainbow trout. To date, the immune response of rainbow trout against Y. ruckeri has been well studied in laboratory-controlled infection studies (i.e. intraperitoneal infection, bath immersion), however, the immune response during natural infection has not been explored. To address this, in this study, 35 clinically healthy O. mykiss without evidence of lesions or changes in behavior and 32 rainbow trout naturally infected by Y. ruckeri, were collected from semi-intensive fish farms located in the Central Highlands of Peru. To evaluate the effect on the immune response, RT-qPCR, western blotting, and ELISA were conducted using head kidney, spleen, and skin tissues to evaluate the relative gene expression and protein levels. Our results show a significant increase in the expression of the pro-inflammatory cytokines il1b, tnfa, and il6, as well as ifng in all three tissues, as well as increases in IL-1ß and IFN-γ protein levels. The endogenous pathway of antigen presentation showed to play a key role in defense against Y. ruckeri, due to the upregulation of mhc-I, tapasin, and b2m transcripts, and the significant increase of Tapasin protein levels in infected rainbow trout. None of the genes associated with the exogenous pathway of antigen presentation showed a significant increase in infected fish, suggesting that this pathway is not involved in the response against this intracellular pathogen. Finally, the transcripts of immunoglobulins IgM and IgT did not show a modulation, nor were the protein levels evaluated in this study.


Assuntos
Imunidade Adaptativa , Doenças dos Peixes , Imunidade Inata , Oncorhynchus mykiss , Yersiniose , Yersinia ruckeri , Animais , Oncorhynchus mykiss/imunologia , Yersinia ruckeri/fisiologia , Yersiniose/veterinária , Yersiniose/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Peru
10.
Fish Shellfish Immunol ; 151: 109747, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969154

RESUMO

The transforming growth factor beta-activated kinase 1 (TAK1)/c-Jun N-terminal kinase (JNK) axis is an essential MAPK upstream mediator and regulates immune signaling pathways. However, whether the TAK1/JNK axis harnesses the strength in regulation of signal transduction in early vertebrate adaptive immunity is unclear. In this study, by modeling on Nile tilapia (Oreochromis niloticus), we investigated the potential regulatory function of TAK1/JNK axis on lymphocyte-mediated adaptive immune response. Both OnTAK1 and OnJNK exhibited highly conserved sequences and structures relative to their counterparts in other vertebrates. Their mRNA was widely expressed in the immune-associated tissues, while phosphorylation levels in splenic lymphocytes were significantly enhanced on the 4th day post-infection by Edwardsiella piscicida. In addition, OnTAK1 and OnJNK were significantly up-regulated in transcriptional level after activation of lymphocytes in vitro by phorbol 12-myristate 13-acetate plus ionomycin (P + I) or PHA, accompanied by a predominant increase in phosphorylation level. More importantly, inhibition of OnTAK1 activity by specific inhibitor NG25 led to a significant decrease in the phosphorylation level of OnJNK. Furthermore, blocking the activity of OnJNK with specific inhibitor SP600125 resulted in a marked reduction in the expression of T-cell activation markers including IFN-γ, CD122, IL-2, and CD44 during PHA-induced T-cell activation. In summary, these findings indicated that the conserved TAK1/JNK axis in Nile tilapia was involved in adaptive immune responses by regulating the activation of lymphocytes. This study enriched the current knowledge of adaptive immunity in teleost and provided a new perspective for understanding the regulatory mechanism of fish immunity.


Assuntos
Imunidade Adaptativa , Ciclídeos , Doenças dos Peixes , Proteínas de Peixes , Ativação Linfocitária , MAP Quinase Quinase Quinases , Animais , Ciclídeos/imunologia , Ciclídeos/genética , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Doenças dos Peixes/imunologia , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Edwardsiella/imunologia , Edwardsiella/fisiologia , Regulação da Expressão Gênica/imunologia , Transdução de Sinais/imunologia , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Sequência de Aminoácidos
11.
Front Immunol ; 15: 1405376, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39015565

RESUMO

Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/imunologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Doença Crônica , Animais , Interações Hospedeiro-Patógeno/imunologia , Imunidade Adaptativa , Pneumopatias/imunologia , Pneumopatias/microbiologia , Fibrose Cística/imunologia , Fibrose Cística/microbiologia , Fibrose Cística/complicações , Pulmão/imunologia , Pulmão/microbiologia
12.
Adv Exp Med Biol ; 1459: 53-77, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017839

RESUMO

BOB.1/OBF.1 is a transcriptional coactivator involved in octamer-dependent transcription. Thereby, BOB.1/OBF.1 is involved in the transcriptional regulation of genes important for lymphocyte physiology. BOB.1/OBF.1-deficient mice reveal multiple B- and T-cell developmental defects. The most prominent defect of these mice is the complete absence of germinal centers (GCs) resulting in severely impaired T-cell-dependent immune responses. In humans, BOB.1/OBF.1 is associated with several autoimmune and inflammatory diseases but also linked to liquid and solid tumors. Although its role for B-cell development is relatively well understood, its exact role for the GC reaction and T-cell biology has long been unclear. Here, the contribution of BOB.1/OBF.1 for B-cell maturation is summarized, and recent findings regarding its function in GC B- as well as in various T-cell populations are discussed. Finally, a detailed perspective on how BOB.1/OBF.1 contributes to different pathologies is provided.


Assuntos
Imunidade Adaptativa , Linfócitos B , Linfócitos T , Transativadores , Animais , Humanos , Imunidade Adaptativa/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transativadores/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Camundongos
13.
Sci Immunol ; 9(97): eadl1903, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028828

RESUMO

Regulatory T cells (Tregs) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident Tregs and group 2 innate lymphoid cells (ILC2s); however, how Tregs locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of Treg function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and Tregs engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3high Tregs, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-Treg communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3high Tregs can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-Treg interactions represent a critical feedback mechanism to control adaptive type 2 immunity.


Assuntos
Imunidade Adaptativa , Fator de Transcrição GATA3 , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Fator de Transcrição GATA3/imunologia , Fator de Transcrição GATA3/metabolismo , Camundongos , Imunidade Adaptativa/imunologia , Linfócitos/imunologia , Imunidade Inata/imunologia , Camundongos Knockout , Células Th2/imunologia , Feminino
14.
Cell ; 187(14): 3506-3530, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38996486

RESUMO

Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.


Assuntos
Imunidade Inata , Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/imunologia , Doenças Pulmonares Intersticiais/patologia , Animais , Imunidade Adaptativa , Imunoterapia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Pulmão/patologia , Pulmão/imunologia
15.
Expert Rev Vaccines ; 23(1): 705-714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39037200

RESUMO

INTRODUCTION: Whooping cough, also known as pertussis, remains a significant challenge as a vaccine-preventable disease worldwide. Since the switch from the whole-cell Pertussis (wP) vaccine to the acellular Pertussis vaccine (aP), cases of whooping cough have increased in countries using the aP vaccine. Understanding the immune system's response to pertussis vaccines and infection is crucial for improving current vaccine efficacy. AREAS COVERED: This review of the literature using PubMed records offers an overview of the qualitative differences in antibody and T cell responses to B. pertussis (BP) in vaccination and infection, and their potential association with decreased efficacy of the aP vaccine in preventing infection and subclinical colonization. We further discuss how asymptomatic infections and carriage are widespread among vaccinated human populations, and explore methodologies that can be employed for their detection, to better understand their impact on adaptive immune responses and identify key features necessary for protection against the disease. EXPERT OPINION: An underappreciated human BP reservoir, stemming from the decreased capacity of the aP vaccine to prevent subclinical infection, offers an alternative explanation for the increased incidence of clinical disease and recurrent outbreaks.


Assuntos
Imunidade Adaptativa , Bordetella pertussis , Vacina contra Coqueluche , Vacinação , Coqueluche , Humanos , Coqueluche/prevenção & controle , Coqueluche/imunologia , Vacina contra Coqueluche/imunologia , Vacina contra Coqueluche/administração & dosagem , Bordetella pertussis/imunologia , Imunidade Adaptativa/imunologia , Vacinação/métodos , Eficácia de Vacinas , Linfócitos T/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Animais
16.
Nat Commun ; 15(1): 5016, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38876998

RESUMO

Periodontitis affects billions of people worldwide. To address relationships of periodontal niche cell types and microbes in periodontitis, we generated an integrated single-cell RNA sequencing (scRNAseq) atlas of human periodontium (34-sample, 105918-cell), including sulcular and junctional keratinocytes (SK/JKs). SK/JKs displayed altered differentiation states and were enriched for effector cytokines in periodontitis. Single-cell metagenomics revealed 37 bacterial species with cell-specific tropism. Fluorescence in situ hybridization detected intracellular 16 S and mRNA signals of multiple species and correlated with SK/JK proinflammatory phenotypes in situ. Cell-cell communication analysis predicted keratinocyte-specific innate and adaptive immune interactions. Highly multiplexed immunofluorescence (33-antibody) revealed peri-epithelial immune foci, with innate cells often spatially constrained around JKs. Spatial phenotyping revealed immunosuppressed JK-microniches and SK-localized tertiary lymphoid structures in periodontitis. Here, we demonstrate impacts on and predicted interactomics of SK and JK cells in health and periodontitis, which requires further investigation to support precision periodontal interventions in states of chronic inflammation.


Assuntos
Comunicação Celular , Queratinócitos , Periodontite , Análise de Célula Única , Humanos , Queratinócitos/metabolismo , Queratinócitos/imunologia , Periodontite/microbiologia , Periodontite/metabolismo , Periodontite/imunologia , Periodontite/patologia , Citocinas/metabolismo , Periodonto/microbiologia , Periodonto/metabolismo , Periodonto/patologia , Imunidade Inata , Hibridização in Situ Fluorescente , Masculino , Metagenômica/métodos , Bactérias/metabolismo , Bactérias/genética , Feminino , Adulto , Imunidade Adaptativa
17.
Ann Endocrinol (Paris) ; 85(3): 226-230, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38871498

RESUMO

IMPORTANCE: Epicardial adipose tissue (EAT) is a biologically active organ surrounding myocardium and coronary arteries that has been associated with coronary artery disease (CAD) and atrial fibrillation. Previous work has shown that EAT exhibits beige features. OBJECTIVE: Our objective was to determine whether the stromal vascular fraction of the human EAT contains innate or adaptive lymphoid cells compared to thoracic subcutaneous (thSAT), visceral abdominal (VAT) and subcutaneous abdominal (abSAT). PARTICIPANTS: New pangenomic microarray analysis was performed on previous transcriptomic dataset using significance analysis of microarray and ingenuity pathway analysis (n=41) to identify specific immune signature and its link with browning genes. EAT, thSAT, VAT and abSAT samples from explanted patients with severe cardiomyopathies and multi-organ donor patients (n=17) were used for flow cytometry (FC) immunophenotyping assay. Patients were on average 55±16 years-old; 47% had hypertension and 6% CAD. Phenotypic adaptive and innate immune profiles were performed using a TBNK panel and a specific ILC1-2-3 panel including CD127, CD117, CRTH2 (CD294) and activation markers such as CD25 and CD69. RESULTS: Transcriptomic analysis showed a significant positive correlation between the TH2 immune pathway (IL-4, IL-5, IL-13, IL-25, IL-33) and browning genes (UCP-1, PRDM16, TMEM26, CITED1, TBX1) in EAT versus thSAT (R=0.82, P<0.0001). Regarding adaptive immune cells, a preponderance of CD8T cells, a contingent of CD4T cells, and a few B cells were observed in all ATs (P<0.0001). In innate lymphoid cells (ILCs), an increase was observed in visceral ATs (i.e. EAT; VAT 35±8ILCs/g of tissue) compared to their subcutaneous counterpart (i.e. thSAT+abSAT: 8±3 ILCs/g of AT, P=0.002), with a difference in the proportion of the 3 subtypes of ILCs (ILC1>ILC3>ILC2). In addition, we observed an increase in EAT-ILC2 compared to other ATs and almost all these EAT-ILC2 expressed CD69 and/or CD25 activation markers (99.75±0.16%; P<0.0001). We also observed more NKs in EAT and VAT (1520±71 cells/g of AT) than in SATs (562±17 cells/g of AT); P=0.01. CONCLUSION: This is the first study to provide a comparison between innate and adaptive lymphoid cells in human epicardial versus abdominal or thoracic adipose tissues. Further studies are ongoing to decipher whether these cells could be involved in EAT beiging. TRIAL REGISTRATION: CODECOH No. DC-2021-4518 The French agency of biomedicine PFS21-005.


Assuntos
Imunidade Adaptativa , Tecido Adiposo , Imunidade Inata , Pericárdio , Humanos , Pericárdio/imunologia , Pericárdio/patologia , Masculino , Pessoa de Meia-Idade , Feminino , Tecido Adiposo/imunologia , Idoso , Adulto , Linfócitos/imunologia , Gordura Intra-Abdominal/imunologia , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/patologia , Transcriptoma , Tecido Adiposo Epicárdico
18.
Viruses ; 16(6)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38932162

RESUMO

Vaccinia virus is the most successful vaccine in human history and functions as a protective vaccine against smallpox and monkeypox, highlighting the importance of ongoing research into vaccinia due to its genetic similarity to other emergent poxviruses. Moreover, vaccinia's ability to accommodate large genetic insertions makes it promising for vaccine development and potential therapeutic applications, such as oncolytic agents. Thus, understanding how superior immunity is generated by vaccinia is crucial for designing other effective and safe vaccine strategies. During vaccinia inoculation by scarification, the skin serves as a primary site for the virus-host interaction, with various cell types playing distinct roles. During this process, hematopoietic cells undergo abortive infections, while non-hematopoietic cells support the full viral life cycle. This differential permissiveness to viral replication influences subsequent innate and adaptive immune responses. Dendritic cells (DCs), key immune sentinels in peripheral tissues such as skin, are pivotal in generating T cell memory during vaccinia immunization. DCs residing in the skin capture viral antigens and migrate to the draining lymph nodes (dLN), where they undergo maturation and present processed antigens to T cells. Notably, CD8+ T cells are particularly significant in viral clearance and the establishment of long-term protective immunity. Here, we will discuss vaccinia virus, its continued relevance to public health, and viral strategies permissive to immune escape. We will also discuss key events and populations leading to long-term protective immunity and remaining key gaps.


Assuntos
Evasão da Resposta Imune , Vaccinia virus , Vacínia , Vaccinia virus/imunologia , Vaccinia virus/genética , Humanos , Animais , Vacínia/imunologia , Vacínia/virologia , Células Dendríticas/imunologia , Replicação Viral , Imunidade Adaptativa , Linfócitos T CD8-Positivos/imunologia
19.
Viruses ; 16(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38932265

RESUMO

Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.


Assuntos
Imunidade Adaptativa , Adenoviridae , Terapia Genética , Vetores Genéticos , Imunidade Inata , Humanos , Adenoviridae/imunologia , Adenoviridae/genética , Vetores Genéticos/imunologia , Vetores Genéticos/genética , Terapia Genética/métodos , Animais , Sistema Imunitário/imunologia , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/terapia
20.
Annu Rev Immunol ; 42(1): 83-102, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941606

RESUMO

Circadian rhythms of approximately 24 h have emerged as important modulators of the immune system. These oscillations are important for mounting short-term, innate immune responses, but surprisingly also long-term, adaptive immune responses. Recent data indicate that they play a central role in antitumor immunity, in both mice and humans. In this review, we discuss the evolving literature on circadian antitumor immune responses and the underlying mechanisms that control them. We further provide an overview of circadian treatment regimens-chrono-immunotherapies-that harness time-of-day differences in immunity for optimal efficacy. Our aim is to provide an overview for researchers and clinicians alike, for a better understanding of the circadian immune system and how to best harness it for chronotherapeutic interventions. This knowledge is important for a better understanding of immune responses per se and could revolutionize the way we approach the treatment of cancer and a range of other diseases, ultimately improving clinical practice.


Assuntos
Ritmo Circadiano , Neoplasias , Humanos , Ritmo Circadiano/imunologia , Animais , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Imunidade Inata , Imunidade Adaptativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA