Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.517
Filtrar
1.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953252

RESUMO

Spermatogonial stem cell (SSC) self-renewal and differentiation provide foundational support for long-term, steady-state spermatogenesis in mammals. Here, we have investigated the essential role of RNA exosome associated DIS3 ribonuclease in maintaining spermatogonial homeostasis and facilitating germ cell differentiation. We have established male germ-cell Dis3 conditional knockout (cKO) mice in which the first and subsequent waves of spermatogenesis are disrupted. This leads to a Sertoli cell-only phenotype and sterility in adult male mice. Bulk RNA-seq documents that Dis3 deficiency partially abolishes RNA degradation and causes significant increases in the abundance of transcripts. This also includes pervasively transcribed PROMoter uPstream Transcripts (PROMPTs), which accumulate robustly in Dis3 cKO testes. In addition, scRNA-seq analysis indicates that Dis3 deficiency in spermatogonia significantly disrupts RNA metabolism and gene expression, and impairs early germline cell development. Overall, we document that exosome-associated DIS3 ribonuclease plays crucial roles in maintaining early male germ cell lineage in mice.


Assuntos
Fertilidade , Camundongos Knockout , Espermatogênese , Espermatogônias , Testículo , Animais , Masculino , Espermatogênese/genética , Espermatogênese/fisiologia , Camundongos , Fertilidade/genética , Testículo/metabolismo , Espermatogônias/metabolismo , Espermatogônias/citologia , Células de Sertoli/metabolismo , Diferenciação Celular , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/metabolismo , Estabilidade de RNA/genética , Infertilidade Masculina/genética
2.
Front Endocrinol (Lausanne) ; 15: 1392917, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966220

RESUMO

Biogenic amines are signaling molecules with multiple roles in the central nervous system and in peripheral organs, including the gonads. A series of studies indicated that these molecules, their biosynthetic enzymes and their receptors are present in the testis and that they are involved in the regulation of male reproductive physiology and/or pathology. This mini-review aims to summarize the current knowledge in this field and to pinpoint existing research gaps. We suggest that the widespread clinical use of pharmacological agonists/antagonists of these signaling molecules, calls for new investigations in this area. They are necessary to evaluate the relevance of biogenic amines for human male fertility and infertility, as well as the potential value of at least one of them as an anti-aging compound in the testis.


Assuntos
Aminas Biogênicas , Testículo , Humanos , Aminas Biogênicas/metabolismo , Masculino , Testículo/metabolismo , Animais , Transdução de Sinais , Infertilidade Masculina/metabolismo
3.
Reprod Fertil Dev ; 362024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968399

RESUMO

Context In recent years, the COVID-19 pandemic became a threat to human health and induced global concern. The SARS-CoV-2 virus causes various disorders in the body's systems, and the reproductive system is no exception. Further, the rate of infertile couples is increasing and part of this is related to male infertility. Aims The aim of the present study was to investigate the impacts of COVID-19 infection history on semen quality in men referred to public and private infertility centres. Methods In this research, patients were divided into two groups: 88 men with a history of COVID-19 (Covid+) and 51 men without (Covid-). After semen collection, sperm parameters, fertilisation rate and oxidative stress were investigated. Key results Sperms with normal morphology and mature chromatin in patients with COVID-19 infection history decreased, and seminal oxidative stress and sperm DNA fragmentation were increased; moreover, the fertilisation rate in the Covid+ group decreased in compare to the Covid- group. Conclusion COVID-19 infection increases oxidative stress in the semen, so has a negative effect on some sperm parameters and fertilisation rate. Implications COVID-19 infection impairs semen quality by increasing in oxidative stress, thus reducing the fertility potential.


Assuntos
COVID-19 , Fragmentação do DNA , Infertilidade Masculina , Estresse Oxidativo , Análise do Sêmen , Sêmen , Espermatozoides , Humanos , Masculino , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/virologia , Adulto , Infertilidade Masculina/virologia , Infertilidade Masculina/epidemiologia , Estresse Oxidativo/fisiologia , Espermatozoides/virologia , Espermatozoides/patologia , Sêmen/virologia , SARS-CoV-2 , Clínicas de Fertilização , Motilidade dos Espermatozoides
4.
Clin Transl Sci ; 17(7): e13866, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38965809

RESUMO

Rising cure rates in pediatric cancer patients warrants an increased attention toward the long-term consequences of the diagnosis and treatment in survivors. Chemotherapeutic agents can be gonadotoxic, rendering them at risk for infertility post-survival. While semen cryopreservation is an option that can be provided for most (post)pubertal boys before treatment, this is unfortunately not an option prepubertal in age, simply due to the lack of spermatogenesis. Over the last couple of years, studies have thus focused on better understanding the testis niche in response to various chemotherapeutic agents that are commonly administered and their direct and indirect impact on the germ cell populations. These are generally compounds that have a high risk of infertility and have been classified into risk categories in curated fertility guidelines. However, with it comes the lack of evidence and the challenge of using informative models and conditions most reflective of the physiological scenario, in short, the appropriate study designs for clinically relevant outcomes. Besides, the exact mechanism(s) of action for many of these "risk" compounds as well as other agents is unclear. Understanding their behavior and effect on the testis niche will pave the way for incorporating new strategies to ultimately combat infertility. Of the various drug classes, alkylating agents pose the highest risk of gonadotoxicity as per previously established studies as well as risk stratification guidelines. Therefore, this review will summarize the findings in the field of male fertility concerning gonadotoxicity of akylating agents as a result of chemotherapy exposure.


Assuntos
Antineoplásicos Alquilantes , Testículo , Humanos , Masculino , Testículo/efeitos dos fármacos , Criança , Antineoplásicos Alquilantes/efeitos adversos , Antineoplásicos Alquilantes/administração & dosagem , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/etiologia , Infertilidade Masculina/diagnóstico , Animais , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Neoplasias/tratamento farmacológico , Puberdade/efeitos dos fármacos , Puberdade/fisiologia , Alquilantes/efeitos adversos , Alquilantes/administração & dosagem
5.
Mol Genet Genomics ; 299(1): 69, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992144

RESUMO

TTC12 is a cytoplasmic and centromere-localized protein that plays a role in the proper assembly of dynein arm complexes in motile cilia in both respiratory cells and sperm flagella. This finding underscores its significance in cellular motility and function. However, the wide role of TTC12 in human spermatogenesis-associated primary ciliary dyskinesia (PCD) still needs to be elucidated. Whole-exome sequencing (WES) and Sanger sequencing were performed to identify potentially pathogenic variants causing PCD and multiple morphological abnormalities of sperm flagella (MMAF) in an infertile Pakistani man. Diagnostic imaging techniques were used for PCD screening in the patient. Real-time polymerase chain reaction (RT‒PCR) was performed to detect the effect of mutations on the mRNA abundance of the affected genes. Papanicolaou staining and scanning electron microscopy (SEM) were carried out to examine sperm morphology. Transmission electron microscopy (TEM) was performed to examine the ultrastructure of the sperm flagella, and the results were confirmed by immunofluorescence staining. Using WES and Sanger sequencing, a novel homozygous missense variant (c.C1069T; p.Arg357Trp) in TTC12 was identified in a patient from a consanguineous family. A computed tomography scan of the paranasal sinuses confirmed the symptoms of the PCD. RT-PCR showed a decrease in TTC12 mRNA in the patient's sperm sample. Papanicolaou staining, SEM, and TEM analysis revealed a significant change in shape and a disorganized axonemal structure in the sperm flagella of the patient. Immunostaining assays revealed that TTC12 is distributed throughout the flagella and is predominantly concentrated in the midpiece in normal spermatozoa. In contrast, spermatozoa from patient deficient in TTC12 showed minimal staining intensity for TTC12 or DNAH17 (outer dynein arms components). This could lead to MMAF and result in male infertility. This novel TTC12 variant not only illuminates the underlying genetic causes of male infertility but also paves the way for potential treatments targeting these genetic factors. This study represents a significant advancement in understanding the genetic basis of PCD-related infertility.


Assuntos
Homozigoto , Infertilidade Masculina , Mutação de Sentido Incorreto , Cauda do Espermatozoide , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Paquistão , Infertilidade Masculina/genética , Infertilidade Masculina/patologia , Cauda do Espermatozoide/patologia , Cauda do Espermatozoide/ultraestrutura , Cauda do Espermatozoide/metabolismo , Adulto , Linhagem , Astenozoospermia/genética , Astenozoospermia/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Sequenciamento do Exoma , Oligospermia/genética , Oligospermia/patologia , Síndrome de Kartagener/genética , Síndrome de Kartagener/patologia
6.
Aging Male ; 27(1): 2374724, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38992941

RESUMO

The effect of paternal age on fertility remains unclear. This retrospective study aims to examine the impact of male age on semen parameters and the reproductive outcomes of men admitted to an infertility center over a 9-year period. A total of 8046 patients were included in the study. Men were divided into four age groups. The groups were evaluated for semen parameters and reproductive outcome. The 21-30 year group presented lower sperm concentrations in comparison to those aged 31-40 and 41-50, yet shared a similar concentration to those over 50 years of age. Moreover, grades A and B decreased significantly in men aged over 50 years. The highest progressive motility and normozoospermia were observed in the age group 31-40 years while men over 50 years of age had the highest rates of asthenozoospermia and oligoasthenozoospermia. Furthermore, live birth results were reported in 5583 of the patients who underwent intracytoplasmic sperm injection (ICSI) and were found highest between 31-40 years of age. To our knowledge, this is the largest study in Turkey focusing on male age-related semen parameters and ICSI pregnancy outcomes. The study demonstrates that age is a significant factor for semen quality and live birth.


Assuntos
Resultado da Gravidez , Injeções de Esperma Intracitoplásmicas , Humanos , Gravidez , Masculino , Adulto , Injeções de Esperma Intracitoplásmicas/estatística & dados numéricos , Feminino , Estudos Retrospectivos , Turquia/epidemiologia , Pessoa de Meia-Idade , Resultado da Gravidez/epidemiologia , Análise do Sêmen/estatística & dados numéricos , Infertilidade Masculina/epidemiologia , Infertilidade Masculina/terapia , Fatores Etários , Contagem de Espermatozoides , Motilidade dos Espermatozoides/fisiologia
8.
BMC Public Health ; 24(1): 1805, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971742

RESUMO

BACKGROUND: Infertility in men causes problems in various aspects of their lives, including personal, family and social life. One of the most important of these problems is anxiety. Anxiety in infertile men can affect their health, quality of life, and response to treatment, highlighting the significance of anxiety in these men. Thus, this systematic review and meta-analysis was conducted to investigate the prevalence of anxiety symptoms in infertile men. METHODS: To conduct this review study, two researchers independently searched international databases such as PubMed, Cochrane Library, Web of sciences, Scopus, PsyINFO, and the Google scholar search engine in English without considering any time limit until January 2, 2024. Keywords such as "anxiety," "infertility," "prevalence," and "epidemiology" were used, taking into account the specific search method of each database. Using the Newcastle-Ottawa Scale (NOS), the quality of the articles was evaluated by two researchers independently. RESULTS: In the systematic part of the study, 27 studies were included, and given the variety of measurement tools (8 different tools) used to investigate anxiety symptoms in infertile men, 24 studies were analyzed in five subgroups of tools. The pooled prevalence of anxiety symptoms in infertile men was 21.37% (95% CI: 15.73-27.02). The lowest and highest prevalence of anxiety in infertile men were related to the Beck anxiety inventory (BAI) and Depression Anxiety Stress Scales (DASS), accounting for 7.08% (95% CI: 3.27-10.90) and 34.90% (95%CI: 28.90-40.90) values respectively. This prevalence was 19.80% (95%CI: 9.01-30.59) for the Hospital Anxiety and Depression Scale (HADS), 30.06% (95%CI: 18.59-41.52) for the Spielberger Trait Anxiety Inventory (STAI-T), and 18.52% (95%CI: 7.76-29.29) for the Self-Rating Anxiety Scale (SAS). CONCLUSION: The results of this systematic review and meta-analysis indicated that the prevalence of anxiety symptoms in infertile men requires special attention to healthcare planning. The healthcare system of different countries should evaluate the symptoms of anxiety in infertile men and take appropriate measures to reduce them according to the culture of the countries. It is recommended that all infertile couples be assessed for anxiety symptoms using a standardized tool during their initial evaluation.


Assuntos
Ansiedade , Infertilidade Masculina , Humanos , Masculino , Ansiedade/epidemiologia , Prevalência , Infertilidade Masculina/epidemiologia , Infertilidade Masculina/psicologia , Qualidade de Vida
9.
Cells ; 13(13)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38994945

RESUMO

Spermatogenesis in mammalian testes is essential for male fertility, ensuring a continuous supply of mature sperm. The testicular microenvironment finely tunes this process, with retinoic acid, an active metabolite of vitamin A, serving a pivotal role. Retinoic acid is critical for various stages, including the differentiation of spermatogonia, meiosis in spermatogenic cells, and the production of mature spermatozoa. Vitamin A deficiency halts spermatogenesis, leading to the degeneration of numerous germ cells, a condition reversible with retinoic acid supplementation. Although retinoic acid can restore fertility in some males with reproductive disorders, it does not work universally. Furthermore, high doses may adversely affect reproduction. The inconsistent outcomes of retinoid treatments in addressing infertility are linked to the incomplete understanding of the molecular mechanisms through which retinoid signaling governs spermatogenesis. In addition to the treatment of male reproductive disorders, the role of retinoic acid in spermatogenesis also provides new ideas for the development of male non-hormone contraceptives. This paper will explore three facets: the synthesis and breakdown of retinoic acid in the testes, its role in spermatogenesis, and its application in male reproduction. Our discussion aims to provide a comprehensive reference for studying the regulatory effects of retinoic acid signaling on spermatogenesis and offer insights into its use in treating male reproductive issues.


Assuntos
Espermatogênese , Tretinoína , Masculino , Espermatogênese/efeitos dos fármacos , Tretinoína/metabolismo , Tretinoína/farmacologia , Humanos , Animais , Reprodução/efeitos dos fármacos , Testículo/metabolismo , Testículo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Infertilidade Masculina/metabolismo , Espermatozoides/metabolismo , Espermatozoides/efeitos dos fármacos
10.
World J Urol ; 42(1): 408, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990348

RESUMO

PURPOSE: The purpose of this narrative review is to provide a practical understanding of sperm DNA fragmentation (SDF) in the management of male infertility. METHODS: A search for systematic reviews and meta-analyses (SRMA) on SDF between April 1st, 2018 and April 1st, 2023 was performed using PubMed and articles were selected as per their relevance to the topic. Guidelines from major societies were also reviewed. Three clinical cases are reported and discussed. RESULTS: The search initially identified 80 articles. We selected 13 SRMAs based on their relevance to the topic. Of the 13 SRMAs, 7 evaluated the effect of SDF on assisted reproductive technology (ART) outcomes and recurrent pregnancy loss, 3 studied the effect of varicocele repair on SDF, and 3 evaluated the role of SDF involving lifestyle and environmental health factors including body mass index and male factor treatment strategies. CONCLUSION: Evidence suggests that increased SDF has a negative impact on natural pregnancy and ART outcomes. SDF testing may be particularly important in the infertility evaluation of men with varicoceles, idiopathic or unexplained infertility, recurrent pregnancy loss, or previous ART failure. Further studies are needed on SDF testing and the implications it can have on male factor infertility and pregnancy outcomes as well as its implementation in the setting of ART.


Assuntos
Fragmentação do DNA , Infertilidade Masculina , Espermatozoides , Humanos , Masculino , Infertilidade Masculina/genética , Feminino , Técnicas de Reprodução Assistida , Gravidez
11.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000597

RESUMO

Drosophila spermatogenesis involves the renewal of germline stem cells, meiosis of spermatocytes, and morphological transformation of spermatids into mature sperm. We previously demonstrated that Ocnus (ocn) plays an essential role in spermatogenesis. The ValRS-m (Valyl-tRNA synthetase, mitochondrial) gene was down-regulated in ocn RNAi testes. Here, we found that ValRS-m-knockdown induced complete sterility in male flies. The depletion of ValRS-m blocked mitochondrial behavior and ATP synthesis, thus inhibiting the transition from spermatogonia to spermatocytes, and eventually, inducing the accumulation of spermatogonia during spermatogenesis. To understand the intrinsic reason for this, we further conducted transcriptome-sequencing analysis for control and ValRS-m-knockdown testes. The differentially expressed genes (DEGs) between these two groups were selected with a fold change of ≥2 or ≤1/2. Compared with the control group, 4725 genes were down-regulated (dDEGs) and 2985 genes were up-regulated (uDEGs) in the ValRS-m RNAi group. The dDEGs were mainly concentrated in the glycolytic pathway and pyruvate metabolic pathway, and the uDEGs were primarily related to ribosomal biogenesis. A total of 28 DEGs associated with mitochondria and 6 meiosis-related genes were verified to be suppressed when ValRS-m was deficient. Overall, these results suggest that ValRS-m plays a wide and vital role in mitochondrial behavior and spermatogonia differentiation in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Infertilidade Masculina , Espermatogênese , Animais , Masculino , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/deficiência , Espermatogênese/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Testículo/metabolismo , Meiose/genética , Espermatogônias/metabolismo , Perfilação da Expressão Gênica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Espermatócitos/metabolismo , Transcriptoma
12.
Reprod Biol Endocrinol ; 22(1): 83, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020374

RESUMO

BACKGROUND: Besides adenine triphosphate (ATP) production for sustaining motility, the mitochondria of sperm also host other critical cellular functions during germ cell development and fertilization including calcium homeostasis, generation of reactive oxygen species (ROS), apoptosis, and in some cases steroid hormone biosynthesis. Normal mitochondrial membrane potential with optimal mitochondrial performance is essential for sperm motility, capacitation, acrosome reaction, and DNA integrity. RESULTS: Defects in the sperm mitochondrial function can severely harm the fertility potential of males. The role of sperm mitochondria in fertilization and its final fate after fertilization is still controversial. Here, we review the current knowledge on human sperm mitochondria characteristics and their physiological and pathological conditions, paying special attention to improvements in assistant reproductive technology and available treatments to ameliorate male infertility. CONCLUSION: Although mitochondrial variants associated with male infertility have potential clinical use, research is limited. Further understanding is needed to determine how these characteristics lead to adverse pregnancy outcomes and affect male fertility potential.


Assuntos
Fertilidade , Infertilidade Masculina , Mitocôndrias , Espermatozoides , Humanos , Masculino , Infertilidade Masculina/fisiopatologia , Infertilidade Masculina/metabolismo , Espermatozoides/metabolismo , Espermatozoides/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Fertilidade/fisiologia , Motilidade dos Espermatozoides/fisiologia , Feminino , Espécies Reativas de Oxigênio/metabolismo , Animais
13.
Zhonghua Nan Ke Xue ; 30(1): 44-50, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-39046413

RESUMO

OBJECTIVE: To investigate the clinical and genetic characteristics of a case of primary ciliary dyskinesia (PCD). METHODS: We collected the clinical data on a case of PCD treated in the Department of Reproductive Medicine of Linyi People's Hospital in July 2020, detected the genes of the patient by whole-exome sequencing (WES), verified the candidate mutations by Sanger sequencing, and predicted the protein structure of the mutant gene by SWISS-MODEL. RESULTS: The proband was found with the clinical phenotypes of chronic rhinitis, bronchiectasis, visceral transposition and male infertility. WES revealed a homozygous frameshift variation of c.12890dup (p.N4297Kfs*13) in exon 74 of the DNAH5 gene, which led to the premature termination of polypeptide chain synthesis and affected the gene function. SWISS-MODEL prediction showed that some of the amino acid residues were deleted after mutation, resulting in a 3D conformational change of the protein. This variation was not recorded in the ClinVar, gnomAD and OMIM databases and, according to the relevant guidelines of the American College of Genetics and Genomics, was classified as a pathogenic variation (PVS1+PM2_P+PM3_P). CONCLUSION: The homozygous variation of the DNAH5 gene c.12890dup (p.N4297Kfs*13) may be the cause of the clinical phenotype of this case of PCD, and the above findings have enriched the variation spectrum of the DNAH5 gene.


Assuntos
Sequenciamento do Exoma , Mutação da Fase de Leitura , Humanos , Masculino , Dineínas do Axonema/genética , Fenótipo , Homozigoto , Transtornos da Motilidade Ciliar/genética , Éxons , Infertilidade Masculina/genética
14.
Zhonghua Nan Ke Xue ; 30(1): 51-59, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-39046414

RESUMO

OBJECTIVE: To analyze the main active components and potential molecular mechanism of Yishen Tongluo Prescription (YTP) in the treatment of male infertility based on network pharmacological technology. METHODS: We searched and sorted the main active components of YTP and their individual potential targets in the databases of Systematic Pharmacology of Traditional Chinese Medicine (TCM) and Bioinformatics Analysis Tool of the Molecular Mechanism of TCM, and screened the targets related to male infertility diseases in the databases of Genecards, DisGeNET and OMIM. We made a Venn diagram by intersecting the predicted targets of YTP and those of male infertility diseases, constructed visualized networks for the association of the intersection targets and protein-protein interaction (PPI) using the Cytoscape software and STRING platform respectively, and conducted gene ontology (GO) and KEGG enrichment analyses using the DAVID database and R language "Cluster Profiler" software package respectively. RESULTS: A total of 99 active components, 250 targets of YTP, 4 397 targets of male infertility and 127 common targets were identified. GO analysis revealed that the biological processes of the common targets mainly included transcriptional regulation of RNA polymerase promoter Ⅱ, regulation of gene expressions, regulation of apoptosis, responses to estrogen, and cell responses to hypoxia. KEGG analysis showed significant enrichment of the common targets in the estrogen signaling pathway, cell apoptosis pathway, AGE-RAGE signaling pathway in diabetic complications, and TNF signaling pathway. CONCLUSION: Through network pharmacology, we identified the main active components of YTP and its multi-target and multi-pathway mechanism in the treatment of male infertility, which has paved the ground for animal and cell experiments in verifying the action mechanism of YTP on male infertility.


Assuntos
Medicamentos de Ervas Chinesas , Infertilidade Masculina , Farmacologia em Rede , Masculino , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Infertilidade Masculina/tratamento farmacológico , Humanos , Mapas de Interação de Proteínas , Medicina Tradicional Chinesa/métodos , Biologia Computacional , Ontologia Genética , Apoptose/efeitos dos fármacos
15.
Zhonghua Nan Ke Xue ; 30(1): 66-71, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-39046416

RESUMO

Phthalate esters are plasticizers that people are often exposed to in daily life. They are closely related to our lives and generally exist in the air, soil and water. Studies show that the exposure to phthalates is associated with male reproductive damage. When the concentration of phthalates reaches a certain level in the body, it can reduce the count and motility of sperm, induce abnormalities in the reproductive system and organs, and affect male fertility. This review summarizes the advances in the studies of the metabolic pathway of phthalate esters in the human body, the mechanism underlying their damage to the male reproductive system and their antagonistic effect.


Assuntos
Ácidos Ftálicos , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/efeitos adversos , Humanos , Masculino , Ésteres , Infertilidade Masculina/induzido quimicamente , Infertilidade Masculina/etiologia , Genitália Masculina/efeitos dos fármacos
16.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000054

RESUMO

Pesticides serve as essential tools in agriculture and public health, aiding in pest control and disease management. However, their widespread use has prompted concerns regarding their adverse effects on humans and animals. This review offers a comprehensive examination of the toxicity profile of pesticides, focusing on their detrimental impacts on the nervous, hepatic, cardiac, and pulmonary systems, and their impact on reproductive functions. Additionally, it discusses how pesticides mimic hormones, thereby inducing dysfunction in the endocrine system. Pesticides disrupt the endocrine system, leading to neurological impairments, hepatocellular abnormalities, cardiac dysfunction, and respiratory issues. Furthermore, they also exert adverse effects on reproductive organs, disrupting hormone levels and causing reproductive dysfunction. Mechanistically, pesticides interfere with neurotransmitter function, enzyme activity, and hormone regulation. This review highlights the effects of pesticides on male reproduction, particularly sperm capacitation, the process wherein ejaculated sperm undergo physiological changes within the female reproductive tract, acquiring the ability to fertilize an oocyte. Pesticides have been reported to inhibit the morphological changes crucial for sperm capacitation, resulting in poor sperm capacitation and eventual male infertility. Understanding the toxic effects of pesticides is crucial for mitigating their impact on human and animal health, and in guiding future research endeavors.


Assuntos
Disruptores Endócrinos , Fertilidade , Praguicidas , Humanos , Praguicidas/toxicidade , Praguicidas/efeitos adversos , Masculino , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/efeitos adversos , Animais , Fertilidade/efeitos dos fármacos , Infertilidade Masculina/induzido quimicamente , Exposição Ambiental/efeitos adversos , Reprodução/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos
17.
Sci Data ; 11(1): 747, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982138

RESUMO

Infertility, a worldwide reproductive health concern, impacts approximately one in five couples. Male infertility, stemming from spermatogenic dysfunction and reduced sperm quality, stands as a primary factor contributing to infertility. Given the global decrease in male fertility linked to environmental factors like the greenhouse effect, it is crucial to develop a comprehensive understanding of how increased temperatures impact both the quantity and quality of sperm. In this study, we utilized Pandora-seq technology to detect the small non-coding RNAs (sncRNAs) expression profile in the testicular tissue of heat-stressed mice. The investigation explores the dynamic shifts in sncRNAs within the mouse testis under heat stress, including miRNAs, tsRNAs, piRNAs, rsRNAs and other sncRNAs. Furthermore, we successfully identified differentially expressed sncRNAs in testicular tissues before and after heat stress. Subsequently, we conducted functional enrichment analysis on the potential predicted target genes of differentially expressed miRNAs and tsRNAs. These datasets will constitute a valuable foundational resource for further investigations into the decline in male reproductive capacity triggered by heat stress.


Assuntos
Resposta ao Choque Térmico , Pequeno RNA não Traduzido , Testículo , Masculino , Testículo/metabolismo , Animais , Camundongos , Pequeno RNA não Traduzido/genética , Infertilidade Masculina/genética , MicroRNAs/genética
18.
Hinyokika Kiyo ; 70(6): 167-171, 2024 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-38967029

RESUMO

A 42-year-old man visited our hospital complaining of secondary infertility. An abdominal ultrasonography screening incidentally revealed a protruding lesion in the bladder. As the lesion extended from the prostatic urethra and bladder neck, there was a possibility of ejaculation dysfunction after resection of the lesion. Therefore, with the patient's informed consent, sperm cryopreservation was conducted for fertility preservation, and subsequently histological examination was performed by partial transurethral resection of bladder tumor. The pathological findings were proliferative cystitis including all three subtypes (glandularis, cystica, and papillary). Cyclooxygenase-2 immunostaining was positive in cytoplasm; weakly positive in cystic and papillary lesions, and strongly positive in glandular lesions. According to a literature review of massive proliferative cystitis, the patient was the 77th case in Japan. Novel postoperative immunological pharmacotherapies with cyclooxygenase-2 inhibitors have been introduced in recent years.


Assuntos
Cistite , Humanos , Masculino , Adulto , Cistite/diagnóstico por imagem , Cistite/patologia , Infertilidade Masculina/etiologia
20.
Cell Death Dis ; 15(7): 499, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38997255

RESUMO

Dynein complexes are large, multi-unit assemblies involved in many biological processes via their critical roles in protein transport and axoneme motility. Using next-generation sequencing of infertile men presenting with low or no sperm in their ejaculates, we identified damaging variants in the dynein-related gene AXDND1. We thus hypothesised that AXDND1 is a critical regulator of male fertility. To test this hypothesis, we produced a knockout mouse model. Axdnd1-/- males were sterile at all ages but presented with an evolving testis phenotype wherein they could undergo one round of histologically replete spermatogenesis followed by a rapid depletion of the seminiferous epithelium. Marker experiments identified a role for AXDND1 in maintaining the balance between differentiation-committed and self-renewing spermatogonial populations, resulting in disproportionate production of differentiating cells in the absence of AXDND1 and increased sperm production during initial spermatogenic waves. Moreover, long-term spermatogonial maintenance in the Axdnd1 knockout was compromised, ultimately leading to catastrophic germ cell loss, destruction of blood-testis barrier integrity and immune cell infiltration. In addition, sperm produced during the first wave of spermatogenesis were immotile due to abnormal axoneme structure, including the presence of ectopic vesicles and abnormalities in outer dense fibres and microtubule doublet structures. Sperm output was additionally compromised by a severe spermiation defect and abnormal sperm individualisation. Collectively these data identify AXDND1 as an atypical dynein complex-related protein with a role in protein/vesicle transport of relevance to spermatogonial function and sperm tail formation in mice and humans. This study underscores the importance of studying the consequences of gene loss-of-function on both the establishment and maintenance of male fertility.


Assuntos
Camundongos Knockout , Cauda do Espermatozoide , Espermatogênese , Espermatogônias , Masculino , Animais , Humanos , Espermatogênese/genética , Camundongos , Espermatogônias/metabolismo , Cauda do Espermatozoide/metabolismo , Dineínas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Testículo/metabolismo , Diferenciação Celular , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA