Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.433
Filtrar
1.
Bratisl Lek Listy ; 120(10): 769-776, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31663353

RESUMO

OBJECTIVE AND BACKGROUND: Methamphetamine (Meth) is one of the most important central nervous system (CNS) stimulant abuse drugs that cause long-term or permanent damage to different regions of the brain, particularly hippocampus, by neuronal apoptosis and inflammation. In this study, we evaluated Nod-like Receptor Protein 3(NLRP3) and Nod-like Receptor Protein1 (NLRP1) Inflammasome Activation in the Hippocampal Region of postmortem Meth Chronic User. METHODS: Molecular and histological analyses were conducted on the brain of 14 non-addicted and 11 Meth users separately. The expression level of NLRP1, NLRP3 was measured using western blotting and immunohistochemistry (IHC) techniques. Histopathological assessment was performed with stereological Cell Counting of hippocampal cells stained with hematoxylin and eosin (H et E). Moreover, Tunel staining was carried out in order to detect any kind of DNA damage. RESULTS: Based on our findings using western blotting and immunohistochemistry assay, overexpression of NLRP1 and NLRP3 proteins in the hippocampal region of Meth addicts was observed. The stereological analysis in the hippocampus of the human brain revealed increased neurodegeneration. Furthermore, the increased rate of apoptosis and cell death were significant and confirmed by Tunel assay in the hippocampus of Meth groups. CONCLUSION: Chronic Meth abuse could result in increases of NLRP1 and NLRP3 and induction of inflammation and apoptosis in the hippocampus in Meth groups (Tab. 1, Fig. 9, Ref. 40).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Hipocampo/metabolismo , Inflamassomos/metabolismo , Metanfetamina , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/mortalidade , Apoptose , Cadáver , Humanos , Imuno-Histoquímica
2.
Ecotoxicol Environ Saf ; 182: 109425, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31295660

RESUMO

BACKGROUND: Inhalation of fine particulate matter (PM2.5) induces the occurrence of lung inflammation and fibrosis, but its molecular mechanism remains unclear. Resveratrol (RES) is known to have anti-inflammatory properties in many pulmonary diseases. Here, we aimed to investigate the effect of long-term "real-world" ambient PM exposure on lung inflammation and fibrosis and further explore the protective effect and mechanism of RES. METHODS AND RESULTS: RES (50 and 100 mg/kg.bw) was administered to C57BL/6J mice that were exposed to ambient PM for 5 months. The control group breathed filtered air without RES, and the PM group was exposed to PM without RES. The inflammatory cytokine levels in bronchoalveolar lavage fluid (BALF) and lung fibrosis were evaluated by enzyme-linked immune sorbent assay (ELISA) kits and Masson's trichrome staining. The real-time PCR and Western blot analysis were used to determine the signal pathway. In vivo, PM exposure markedly elevated the levels of inflammatory cytokines and TGF-ß1 in BALF, induced lung fibrosis. Meanwhile, PM exposure triggered autophagy process and activated the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome in lung. Also, RES treatment abolished PM-induced lung inflammation and fibrosis, and inhibited autophagic process and NLRP3 inflammasome activation. In vitro, PM2.5-induced cytotoxicity in BEAS-2B cells dose-dependently. Besides, RES alleviated PM2.5-induced cytotoxicity, inhibited autophagic process and NLRP3 inflammasome activity and decreased IL-1ß production in BEAS-2B cells. CONCLUSION: Long-term PM exposure induced lung inflammation and fibrosis, and RES intervention alleviated these adverse effects via inhibiting autophagy-related NLRP3 inflammasome activation.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Fibrose/tratamento farmacológico , Material Particulado/toxicidade , Pneumonia/tratamento farmacológico , Resveratrol/uso terapêutico , Animais , Citocinas/metabolismo , Inibidores Enzimáticos/uso terapêutico , Inflamassomos/metabolismo , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Pneumonia/induzido quimicamente , Proteínas , Fibrose Pulmonar , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1
3.
Nat Commun ; 10(1): 2961, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31273197

RESUMO

Persistent inflammation is a hallmark of many human diseases, including anti-neutrophil cytoplasmic antibody-associated vasculitis (AAV) and atherosclerosis. Here, we describe a dominant trigger of inflammation: human serum factor H-related protein FHR1. In vitro, this protein selectively binds to necrotic cells via its N-terminus; in addition, it binds near necrotic glomerular sites of AAV patients and necrotic areas in atherosclerotic plaques. FHR1, but not factor H, FHR2 or FHR3 strongly induces inflammasome NLRP3 in blood-derived human monocytes, which subsequently secrete IL-1ß, TNFα, IL-18 and IL-6. FHR1 triggers the phospholipase C-pathway via the G-protein coupled receptor EMR2 independent of complement. Moreover, FHR1 concentrations of AAV patients negatively correlate with glomerular filtration rates and associate with the levels of inflammation and progressive disease. These data highlight an unexpected role for FHR1 during sterile inflammation, may explain why FHR1-deficiency protects against certain diseases, and identifies potential targets for treatment of auto-inflammatory diseases.


Assuntos
Proteínas Inativadoras do Complemento C3b/metabolismo , Inflamassomos/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Proteína C-Reativa/metabolismo , Proteínas do Sistema Complemento/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Proteínas Imobilizadas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Lipoproteínas LDL/metabolismo , Malondialdeído/metabolismo , Modelos Biológicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Necrose , Ligação Proteica , Receptores Acoplados a Proteínas-G/metabolismo , Soro/metabolismo , Fosfolipases Tipo C/metabolismo
4.
Zhonghua Gan Zang Bing Za Zhi ; 27(7): 567-571, 2019 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-31357788

RESUMO

Chronic excess alcohol intake triggers the formation of enterogenic endotoxemia. TLR4 ligand localization activates nuclear transcription factor NF-κB by inducing the up-regulation of NLRP3 inflammasome and the biologically inactive IL-1ß and IL-18 precursors to form initiation of pro-inflammatory signals. Under the influence of ethanol, the damaged hepatocyte release uric acid, and adenosine triphosphate and induces NLRP3 inflammasome assembly and functional activation in Kupffer cells to promote the release of inflammatory mediators, such as interleukin-1ß and interleukin-18, that cascade mediates inflammation and drive alcoholic liver disease from steatosis to inflammation and fibrosis. The NLRP3 inflammasome acts as a ligand-sensing element and plays an important role in mediating the immune and inflammatory response in the course of alcoholic liver disease. Thus, exploring the activation mechanism of NLRP3 inflammasome and its pathogenic role may provide a new idea in the clinical treatment of alcoholic liver disease.


Assuntos
Inflamassomos/metabolismo , Hepatopatias Alcoólicas/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Humanos , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos do Fígado
5.
Toxicol Lett ; 313: 130-136, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31276767

RESUMO

We previously demonstrated that based on their potency, contact allergens differently modulate Blimp-1/NLRP12 expression in human keratinocytes, with the extreme allergen 2,4-dinitrochlorobenzene (DNCB) more rapidly upregulating Blimp-1, leading to downregulation of NLRP12, and to the production of interleukin-18 (IL-18). The purpose of this study was to further investigate the effects of DNCB and para-phenylenediamine (PPD) on the expression of the proteins of the inflammasome, namely NLRP3, ASC and caspase 1 by western blot analysis; to define the intracellular localization and co-localization of NLRP3 and NLPR12 by immunoprecipitation and immunohistochemistry; and to define the role of NF-κB in Blimp-1 induction by pharmacological inhibition. The human keratinocyte cell line NCTC2544 was used for all experiments. Dose and time course experiments were performed to evaluate the effect of the selected contact allergens on the parameters investigated. Results indicate, that consistent with previous finding, DNCB more rapidly (3 h) induces NLRP3, ASC protein expression and caspase-1 activation compared to PPD. Immunoprecipitation studies show the recruitment of ASC to the inflammasome following exposure to both allergens, while high level of NLRP12 and less ASC protein were found associated in control cells. By immunohistochemistry, we found increased NLRP3 expression following exposure to contact allergens, and observed a nuclear co-localization of the two proteins, indicating the NLRP12 likely acts preventing the cytosolic localization of NLRP3 and inflammasome assembly. Finally, contact allergen-induced Blimp-1 mRNA and protein expression can be completely blocked by inhibiting NF-κB activation, confirming the central role of NF-κB in contact allergen-induced keratinocyte activation.


Assuntos
Alérgenos/toxicidade , Dermatite Alérgica de Contato/etiologia , Dinitroclorobenzeno/toxicidade , Inflamassomos/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Queratinócitos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenilenodiaminas/toxicidade , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Linhagem Celular , Dermatite Alérgica de Contato/genética , Dermatite Alérgica de Contato/metabolismo , Relação Dose-Resposta a Droga , Humanos , Inflamassomos/genética , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fatores de Tempo
6.
Mol Immunol ; 112: 163-174, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31153046

RESUMO

Exposure to airborne particulate matter (PM) not only causes lung inflammation and chronic respiratory diseases, but also increases the incidence and mortality of cardiopulmonary diseases. The nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome activation has been shown to play a critical role in the formation of many chronic disorders. On the other hand, carbon monoxide (CO) has been shown to possess anti-inflammatory and antioxidant effects in many tissues and organs. Here, we investigated the effects and mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on PM-induced inflammatory responses in human pulmonary alveolar epithelial cells (HPAEpiCs). We found that PM induced C-reactive protein (CRP) expression, NLRP3 inflammasome activation, IL-1ß secretion, and caspase-1 activation, which were inhibited by pretreatment with CORM-2. In addition, transfection with siRNA of Toll-like receptor 2 (TLR2) or TLR4 and pretreatment with an antioxidant (N-acetyl-cysteine, NAC), the inhibitor of NADPH oxidase (diphenyleneiodonium, DPI), or a mitochondria-specific superoxide scavenger (MitoTEMPO) reduced PM-induced inflammatory responses. CORM-2 also inhibited PM-induced NADPH oxidase activity and NADPH oxidase- and mitochondria-derived ROS generation. However, pretreatment with inactivate CORM-2 (iCORM-2) had no effects on PM-induced inflammatory responses. Finally, we showed that CORM-2 inhibited PM-induced CRP, NLRP3 inflammasome, and ASC protein expression in the lung tissues of mice and IL-1ß levels in the serum of mice. PM-enhanced leukocyte count in bronchoalveolar lavage fluid in mice was reduced by CORM-2. The results of this study suggested a protective role of CORM-2 in PM-induced lung inflammation by inhibiting the TLR2 and TLR4/ROS-NLRP3 inflammasome-CRP axial.


Assuntos
Inflamassomos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Compostos Organometálicos/farmacologia , Pneumonia/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Animais , Líquido da Lavagem Broncoalveolar , Monóxido de Carbono/efeitos adversos , Caspase 1/metabolismo , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Material Particulado/efeitos adversos , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos
7.
Immunity ; 50(6): 1352-1364, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216460

RESUMO

Caspases are an evolutionary conserved family of cysteine proteases that are centrally involved in cell death and inflammation responses. A wealth of foundational insight into the molecular mechanisms that control caspase activation has emerged in recent years. Important advancements include the identification of additional inflammasome platforms and pathways that regulate activation of inflammatory caspases; the discovery of gasdermin D as the effector of pyroptosis and interleukin (IL)-1 and IL-18 secretion; and the existence of substantial crosstalk between inflammatory and apoptotic initiator caspases. A better understanding of the mechanisms regulating caspase activation has supported initial efforts to modulate dysfunctional cell death and inflammation pathways in a suite of communicable, inflammatory, malignant, metabolic, and neurodegenerative diseases. Here, we review current understanding of caspase biology with a prime focus on the inflammatory caspases and outline important topics for future experimentation.


Assuntos
Caspases/metabolismo , Suscetibilidade a Doenças , Inflamação/etiologia , Inflamação/metabolismo , Animais , Apoptose , Biomarcadores , Caspases/química , Caspases/genética , Morte Celular/genética , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Terapia de Alvo Molecular , Piroptose , Transdução de Sinais/efeitos dos fármacos
8.
Int J Nanomedicine ; 14: 3503-3516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31190807

RESUMO

Purpose: The NLRP3 inflammasome activation has been proposed as a common mechanism for some adjuvants to boost the immune system, and cationic liposomes were reported to potentially activate the NLRP3 inflammasome. Herein, we questioned whether the NLRP3 inflammasome-activating cationic liposomes could promote antigen presentation and be applied as an immune adjuvant. In addition, we aimed to investigate the structure effect of lipid on triggering these immune responses. Materials and methods: A series of structurally similar lipids, consisting of arginine (Arg) head group and varied lengths of alkyl chains or spacers in between were used to prepare cationic liposomes. Lipopolysaccharide-primed human or murine macrophages or phorbol 12-myristate 13-acetate-primed THP-1 cells were treated with these liposomes, and interleukin (IL)-1ß secretion was measured to quantify the NLRP3 inflammasome activation. Lysosome rupture was examined in THP-1 cells by the fluorescence loss of acridine orange, a lysosome dye. Further, chicken ovalbumin (OVA) was loaded on the liposome surface and applied to murine bone marrow-derived dendritic cells (BMDCs), which activate OT-I and OT-II lymphocytes upon major histocompatibility complex (MHC) class I- and class II-mediated antigen presentation, respectively. OT-I and OT-II cell division and IL-2 secretion were measured to evaluate the antigen presentation efficiency. The expressions of MHC molecules and co-stimulatory molecules ie, CD80, CD86, and CD40 on BMDCs were investigated by flow cytometry. Results: All the liposomes showed size distributions of 80-200 nm and zeta potentials of around 50 mV. A3C14 liposomes, consisting of Arg-C3-Glu2C14 lipids induced the most potent lysosome rupture and NLRP3 inflammasome activation. OVA-A3C14 also exhibited the most potent MHC class I- and class II-mediated antigen presentation in BMDCs without interfering MHC and co-stimulatory molecules. Conclusion: The hydrophobic moieties of arginine-based liposomes are crucial in stimulating innate immune cells. A3C14 liposomes were non-immunogenic but strongly activated innate immune cells and promoted antigen presentation, and therefore can be applied as immune adjuvants.


Assuntos
Apresentação do Antígeno/efeitos dos fármacos , Arginina/farmacologia , Células Dendríticas/imunologia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Cátions , Células Dendríticas/efeitos dos fármacos , Feminino , Antígenos de Histocompatibilidade/metabolismo , Humanos , Lipídeos/química , Lipopolissacarídeos/farmacologia , Lipossomos , Lisossomos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
9.
Nat Commun ; 10(1): 2711, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221993

RESUMO

Sepsis is characterized by a systemic inflammatory response followed by immunosuppression of the host. Metabolic defects and mitochondrial failure are common in immunocompromised patients with sepsis. The NLRP3 inflammasome is important for establishing an inflammatory response after activation by the purinergic P2X7 receptor. Here, we study a cohort of individuals with intra-abdominal origin sepsis and show that patient monocytes have impaired NLRP3 activation by the P2X7 receptor. Furthermore, most sepsis-related deaths are among patients whose NLRP3 activation is profoundly altered. In monocytes from sepsis patients, the P2X7 receptor is associated with mitochondrial dysfunction. Furthermore, activation of the P2X7 receptor results in mitochondrial damage, which in turn inhibits NLRP3 activation by HIF-1α. We show that mortality increases in a mouse model of sepsis when the P2X7 receptor is activated in vivo. These data reveal a molecular mechanism initiated by the P2X7 receptor that contributes to NLRP3 impairment during infection.


Assuntos
Inflamassomos/imunologia , Monócitos/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Sepse/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Seguimentos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamassomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/imunologia , Monócitos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Receptores Purinérgicos P2X7/imunologia , Sepse/sangue , Sepse/microbiologia , Sepse/mortalidade , Regulação para Cima/imunologia
10.
Life Sci ; 231: 116585, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31226415

RESUMO

Exposure to environmental toxicants (ET) results in specific organ damage and auto-immune diseases, mostly mediated by inflammatory responses. The NLRP3 inflammasome has been found to be the major initiator of the associated pathologic inflammation. It has been found that ETs can trigger all the signals required for an NLRP3-mediated response. The exaggerated activation of the NLRP3 inflammasome and its end product IL-1ß, is responsible for the pathogenesis caused by many ETs including pesticides, organic pollutants, heavy metals, and crystalline compounds. Therefore, an extensive study of these chemicals and their mechanisms of inflammasome (INF) activation may provide the scientific evidence for possible targeting of this pathway by proposing possible protective agents that have been previously shown to affect INF compartments and its activation. Melatonin and polyunsaturated fatty acids (PUFA) are among the safest and the most studied of these agents, which affect a wide variety of cellular and physiological processes. These molecules have been shown to suppress the NLRP3 inflammasome mostly through the regulation of cellular redox status and the nuclear factor-κB (NF-κB) pathway, rendering them potential promising compounds to overcome ET-mediated organ damage. In the present review, we have made an effort to extensively review the ETs that exert their pathogenesis via the stimulation of inflammation, their precise mechanisms of action and the possible protective agents that could be potentially used to protect against such toxicants.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Ecotoxicologia/métodos , Poluentes Ambientais/toxicidade , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Melatonina/metabolismo , Metais Pesados/administração & dosagem , Metais Pesados/efeitos adversos , Metais Pesados/toxicidade , NF-kappa B/metabolismo , Oxirredução , Praguicidas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Life Sci ; 231: 116593, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31228512

RESUMO

Inflammasomes are the major mechanistic complexes that include members of the NOD-like receptor (NLRs) or AIM2-like receptors (ALRs) families, which are affiliated with the innate immune system. Once NLRs or ALRs are activated by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), the caspase-1 or -11 is activated by binding with NLRs or ALRs via its own unique cytosolic domains. As a result, caspase-1 or -11 enhances the production of IL-1ß and IL-18, which results in inflammation via the recruitment of immune cells, such as macrophages, and the promotion of programmed cell death mechanisms such as pyroptosis. In addition, the consistent cascades of inflammasomes would precede both minor and severe autoimmune diseases and cancers. The clinical relevance of inflammasomes in multiple forms of cancer highlights their therapeutic promise as molecular targets. To closely analyze the physiological roles of inflammasomes in cancers, here, we describe the fundamental knowledge regarding the current issues of inflammasomes in relevant cancers, and discuss possible therapeutic values in targeting these inflammasomes for the prevention and treatment of cancer.


Assuntos
Inflamassomos/metabolismo , Inflamassomos/fisiologia , Neoplasias/terapia , Alarminas/metabolismo , Animais , Apoptose/fisiologia , Doenças Autoimunes/imunologia , Proteínas de Transporte/metabolismo , Caspase 1/metabolismo , Caspases/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Proteínas NLR/fisiologia , Padrões Moleculares Associados a Patógenos/metabolismo , Transdução de Sinais
12.
Sheng Li Xue Bao ; 71(3): 424-430, 2019 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-31218333

RESUMO

The present study was aimed to investigate the protective effect and anti-inflammation mechanism of astragaloside IV (AST-IV) on cerebral ischemia and reperfusion injury. Following the establishment of cerebral ischemia and reperfusion model in rats by modified suture method, neurological deficit scores and cerebral infarct volume were used to evaluate the pharmacological effect of AST-IV against cerebral ischemia-reperfusion injury. Western blot was used to detect the expression levels of NLRP3, pro-Caspase-1, Caspase-1, pro-IL-1ß, IL-1ß, pro-IL-18, IL-18, phosphorylated and total nuclear factor kappa B (NF-κB)/p65 protein in the brain tissue. The results showed that compared with model group, the intervention of AST-IV decreased the neurological deficit scores, reduced the cerebral infarct volume, decreased the levels of NLRP3, Caspase-1, pro-IL-1ß, IL-1ß, pro-IL-18 and IL-18, and inhibited the expression of phosphorylated NF-κB in brain tissue. The results suggest that AST-IV has a protective effect against cerebral ischemia and reperfusion injury, and its mechanism is related to inhibiting the phosphorylation of NF-κB and NLRP3 inflammasome activation.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Saponinas/farmacologia , Triterpenos/farmacologia , Animais , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley
13.
Mol Immunol ; 112: 1-9, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31078114

RESUMO

UFL1 was identified as a key regulator of cellular stress, which was found to possess anti-inflammatory and cytoprotection effect in LPS-stimulated bovine mammary epithelial cells in our previous study. The NLRP3 inflammasome, which responds to various pathogenic microorganisms and sterile stressors, is involved in multiple inflammatory diseases. However, the specific effects of UFL1 on NLRP3 inflammasome activation remain elusive. Here we investigated the role of UFL1, with a focus on NLRP3 inflammasome activation and the regulation of pyroptosis in LPS-stimulated BMECs. In this study, we observed an elevating NLRP3, Caspase-1 activation and IL-1ß secretion in mammary tissue of cows with mastitis and LPS-stimulated BMECs, and the experimental results here demonstrated that UFL1 depletion aggravated the LPS-induced NLRP3, Caspase-1 and IL-1ß expression. Overexpression of UFL1 significantly suppressed the expression of NLRP3, Caspase-1 and IL-1ß in BMECs. In addition, the suppression of NLRP3 inflammasome activation by UFL1 was partly mediated through the regulation of NF-κB signaling and ROS production. Furthermore, UFL1 overexpression could alleviate NLRP3 inflammasome activation-mediated pyroptosis in LPS-stimulated BMECs. These findings indicate that UFL1 can moudulate NLRP3 inflammasome activation and serve as effective strategies to diminish cell damage in inflammatory response by targeting NLRP3 inflammasome activation.


Assuntos
Células Epiteliais/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Substâncias Protetoras/metabolismo , Piroptose/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Caspase 1/metabolismo , Bovinos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Piroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Immunity ; 50(6): 1412-1424.e6, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31076360

RESUMO

Assembly of inflammasomes after infection or injury leads to the release of interleukin-1ß (IL-1ß) and to pyroptosis. After inflammasome activation, cells either pyroptose or enter a hyperactivated state defined by IL-1ß secretion without cell death, but what controls these different outcomes is unknown. Here, we show that removal of the Toll-IL-1R protein SARM from macrophages uncouples inflammasome-dependent cytokine release and pyroptosis, whereby cells displayed increased IL-1ß production but reduced pyroptosis. Correspondingly, increasing SARM in cells caused less IL-1ß release and more pyroptosis. SARM suppressed IL-1ß by directly restraining the NLRP3 inflammasome and, hence, caspase-1 activation. Consistent with a role for SARM in pyroptosis, Sarm1-/- mice were protected from lipopolysaccharide (LPS)-stimulated sepsis. Pyroptosis-inducing, but not hyperactivating, NLRP3 stimulants caused SARM-dependent mitochondrial depolarization. Thus, SARM-dependent mitochondrial depolarization distinguishes NLRP3 activators that cause pyroptosis from those that do not, and SARM modulation represents a cell-intrinsic mechanism to regulate cell fate after inflammasome activation.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Inflamassomos/metabolismo , Animais , Proteínas do Domínio Armadillo/genética , Biomarcadores , Sobrevivência Celular , Proteínas do Citoesqueleto/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ligação Proteica , Piroptose , Transdução de Sinais
15.
Immunity ; 50(6): 1401-1411.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31076358

RESUMO

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.


Assuntos
Coagulação Sanguínea , Inflamassomos/metabolismo , Piroptose , Trombose/etiologia , Trombose/metabolismo , Animais , Infecções Bacterianas/complicações , Infecções Bacterianas/microbiologia , Biomarcadores , Caspases/metabolismo , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais , Tromboplastina/metabolismo , Trombose/sangue , Trombose/mortalidade
16.
Chin J Traumatol ; 22(3): 161-165, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31056470

RESUMO

PURPOSE: To investigate whether dexmedetomidine (Dex) can reduce the production of inflammatory factor IL-1ß by inhibiting the activation of NLRP3 inflammasome in hippocampal microglia, thereby alleviating the inflammatory response of the central nervous system induced by surgical injury. METHODS: Exploratory laparotomy was used in experimental models in this study. Totally 48 Sprague Dawley male rats were randomly divided into 4 groups (n = 12 for each), respectively sham control (group A), laparotomy only (group B); and Dex treatment with different doses of 5 µg/kg (group D1) or 10 µg/kg (group D2). Rats in groups D1 and D2 were intraperitoneally injected with corresponding doses of Dex every 6 h. The rats were sacrificed 12 h after operation; the hippocampus tissues were isolated, and frozen sections were made. The microglia activation was estimated by immunohistochemistry. The protein expression of NLRP3, caspase-1, ASC and IL-1ß were detected by immunoblotting. All data were presented as mean ± standard deviation, and independent sample t test was used to analyze the statistical difference between groups. RESULTS: The activated microglia in the hippocampus of the rats significantly increased after laparotomy (group B vs. sham control, p < 0.01). After Dex treatment, the number was decreased in a dose-dependent way (group D1 vs. D2, p < 0.05), however the activated microglia in both groups were still higher than that of sham controls (both p < 0.05). Further Western blot analysis showed that the protein expression levels of NLRP3, caspase-1, ASC and downstream cytokine IL-1ß in the hippocampus from the laparotomy group were significantly higher than those of the sham control group (all p < 0.01). The elevated expression of these proteins was relieved after Dex treatment, also in a dose-dependent way (D2 vs. D1 group, p < 0.05). CONCLUSION: Dex can inhibit the activation of microglia and NLRP3 inflammasome in the hippocampus of rats after operation, and the synthesis and secretion of IL-1ß are also reduced in a dose-dependent manner by using Dex. Hence, Dex can alleviate inflammation activation on the central nervous system induced by surgical injury.


Assuntos
Dexmedetomidina/farmacologia , Hipocampo/metabolismo , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Laparotomia/efeitos adversos , Microglia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Dexmedetomidina/administração & dosagem , Relação Dose-Resposta a Droga , Imuno-Histoquímica , Injeções Intraperitoneais , Masculino , Ratos Sprague-Dawley , Fatores de Tempo
17.
Curr Top Microbiol Immunol ; 421: 267-302, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31123893

RESUMO

Inflammasome-controlled transcription and subsequent cleavage-mediated activation of mature IL-1ß and IL-18 cytokines exemplify a crucial innate immune mechanism to combat intruding pathogens. Helicobacter pylori represents a predominant persistent infection in humans, affecting approximately half of the population worldwide, and is associated with the development of chronic gastritis, peptic ulcer disease, and gastric cancer. Studies in knockout mice have demonstrated that the pro-inflammatory cytokine IL-1ß plays a central role in gastric tumorigenesis. Infection by H. pylori was recently reported to stimulate the inflammasome both in cells of the mouse and human immune systems. Using mouse models and in vitro cultured cell systems, the bacterial pathogenicity factors and molecular mechanisms of inflammasome activation have been analyzed. On the one hand, it appears that H. pylori-stimulated IL-1ß production is triggered by engagement of the immune receptors TLR2 and NLRP3, and caspase-1. On the other hand, microRNA hsa-miR-223-3p is induced by the bacteria, which controls the expression of NLRP3. This regulating effect by H. pylori on microRNA expression was also described for more than 60 additionally identified microRNAs, indicating a prominent role for inflammatory and other responses. Besides TLR2, TLR9 becomes activated by H. pylori DNA and further TLR10 stimulated by the bacteria induce the secretion of IL-8 and TNF, respectively. Interestingly, TLR-dependent pathways can accelerate both pro- and anti-inflammatory responses during H. pylori infection. Balancing from a pro-inflammation to anti-inflammation phenotype results in a reduction in immune attack, allowing H. pylori to persistently colonize and to survive in the gastric niche. In this chapter, we will pinpoint the role of H. pylori in TLR- and NLRP3 inflammasome-dependent signaling together with the differential functions of pro- and anti-inflammatory cytokines. Moreover, the impact of microRNAs on H. pylori-host interaction will be discussed, and its role in resolution of infection versus chronic infection, as well as in gastric disease development.


Assuntos
Infecções por Helicobacter/genética , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Inflamassomos/metabolismo , Inflamação/microbiologia , MicroRNAs/biossíntese , Animais , Caspase 1/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Humanos , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo
18.
Gene ; 709: 1-7, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31108165

RESUMO

Diabetes mellitus (DM) is a chronic, multifactorial metabolic disease whereby insulin deficiency or resistance results in hyperglycemia. A sustained high glucose environment results in inflammation and endothelial cell dysfunction. However, the underlying mechanisms are still not entirely clear. Circular RNAs (circRNAs) are recognized as functional non-coding RNAs involved in diverse biological processes, including DM. Previous studies have found that hsa_circ_0068087 is increased in DM patients. In order to identify whether hsa_circ_0068087 plays a role in high glucose (HG)-induced inflammation and endothelial cell dysfunction Human Umbilical Vein Endothelial Cell (HUVECs), quantitative reverse transcription PCR (qRTPCR), tube formation assay, enzyme-linked immunosorbent assay (ELISA) and bifluorescein reporter experiments were employed in this study. The results showed that the expression of hsa_circ_0068087 was upregulated in HUVECs following increases in glucose. Knockdown of hsa_circ_0068087 suppressed HG-induced HUVEC dysfunction and inflammation by suppression of the TLR4/NF-κB/NLRP3 inflammasome signaling pathway. Downregulation of miR-197 reversed hsa_circ_0068087 silence-induced HUVEC dysfunction and inflammation in the HG condition. It was found that TLR4 was the target of miR-197 and that overexpression of TLR4 ameliorated miR-197-induced HUVEC dysfunction and inhibited inflammation in the HG condition. Bifluorescein report experiments confirmed that miR-197 is a potential target of hsa_circ_0068087 and that TLR4 is a potential miR-197 target. Taken together, these results suggest that downregulation of hsa_circ_0068087 ameliorates TLR4/NF-κB/NLRP3 inflammasome-mediated inflammation and endothelial cell dysfunction in the high glucose condition by sponging miR-197.


Assuntos
Glucose/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamassomos/fisiologia , Inflamação/genética , MicroRNAs/metabolismo , RNA/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Técnicas de Silenciamento de Genes , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/genética , Inflamassomos/metabolismo , Inflamação/metabolismo , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , RNA/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
19.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035661

RESUMO

Inflammasome activation is essential for host immune responses during pathogenic infection and sterile signals insult, whereas excessive activation is injurious. Thus, inflammasome activation is tightly regulated at multiple layers. Ubiquitination is an important post-translational modification for orchestrating inflammatory immune responses during pathogenic infection, and a major target hijacked by pathogenic bacteria for promoting their survival and proliferation. This review summarizes recent insights into distinct mechanisms of the inflammasome activation and ubiquitination process triggered by bacterial infection. We discuss the complex regulatory of inflammasome activation mediated by ubiquitination machinery during bacterial infection, and provide therapeutic approaches for specifically targeting aberrant inflammasome activation.


Assuntos
Infecções Bacterianas/metabolismo , Inflamassomos/metabolismo , Animais , Bactérias/imunologia , Bactérias/metabolismo , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Biomarcadores , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Ubiquitinação
20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 41(2): 208-215, 2019 Apr 28.
Artigo em Chinês | MEDLINE | ID: mdl-31060676

RESUMO

Objective To explore the effects of cathepsin B(CTSB)on the activation of nucleotide-binding domain and leucine-rich-repeat-containing family and pyrin domain-containing 3(NLRP3)inflammasome via transient receptor potential mucolipin-1(TRPML1)in cell oxidative stress model and specific gene silencing cell model. Methods BV2 cells cultured in vivo were treated separately or simultaneously with hydrogen peroxide(H2O2),calcium-sensitive receptor agonist gadolinium trichloride(GdCl3),and CTSB inhibitor CA-074Me,and interleukin-1(IL-1)beta and caspase-1 protein were detected by enzyme-linked immunosorbent assay.The growth activity of BV2 cells in each group was measured by MTT.BV2 cells were treated with different concentrations of H2O2.Cystatin C mRNA and TRPML1 mRNA in BV2 cells were detected by real-time quantitative polymerase chain reaction and the proteins of TRPML1,CTSB,cathepsin D(CTSD),cathepsin L(CTSL)and cathepsin V(CTSV)were detected by Western blot.Specific small interfering RNA was designed for TRPML1 gene target sequence.TRPML1 gene silencing cell lines(named Tr-si-Bv2 cells)were established in BV2 cells and treated with or without H2O2.TRPML1,CTSB and transcription factor EB(TFEB)proteins in Tr-si-Bv2 cells or control cells were detected by Western blot. Results After treatment with H2O2,the expression of caspase-1 protein and NLRP3 mRNA in BV2 cells was increased,and IL-1beta protein in BV2 cells was significantly increased after treatment with GdCl3(P=0.0036).After treatment with CA-074Me,the doses of NLRP3 mRNA(P=0.037),caspase-1(P=0.021),and IL-1ß(P= 0.036)were significantly reduced.Cells in the H2O2 group and H2O2+GdCl3 group grew more slowly.The expressions of CTSB mRNA and TRPML1 mRNA,or CTSB and TRPML1 proteins in BV2 cells in the treatment group with 200 µmol/L of H2O2 concentration were similar.H2O2-induced CTSB protein expression was inhibited after silencing TRPML1 gene.The changes of other cathepsins were not affected for the different concentration of H2O2.In the BV2 cells treated with TRPML1 gene silencing,the expression of CTSB protein was significantly reduced and the difference was statistically significant(P=0.021)between the H2O2 +siRNA treatment group and the H2O2 treatment group.Conclusion CTSB regulates the activation of NLRP3 inflammasome in the oxidative stress model of microglia cells,probably mediated by calcium channel protein TRPML1.


Assuntos
Catepsina B/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Canais de Receptores Transientes de Potencial/metabolismo , Animais , Catepsina B/antagonistas & inibidores , Linhagem Celular , Inativação Gênica , Peróxido de Hidrogênio , Interleucina-1beta , Camundongos , Microglia , Domínio Pirina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA