Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.664
Filtrar
1.
J Transl Med ; 22(1): 164, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365806

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disease characterized by complement dependent and proinflammatory activation of macrophages. However, effective treatment for complement activation in PAH is lacking. We aimed to explore the effect and mechanism of CP40-KK (a newly identified analog of selective complement C3 inhibitor CP40) in the PAH model. METHODS: We used western blotting, immunohistochemistry, and immunofluorescence staining of lung tissues from the monocrotaline (MCT)-induced rat PAH model to study macrophage infiltration, NLPR3 inflammasome activation, and proinflammatory cytokines (IL-1ß and IL-18) release. Surface plasmon resonance (SPR), ELISA, and CH50 assays were used to test the affinity between CP40-KK and rat/human complement C3. CP40-KK group rats only received CP40-KK (2 mg/kg) by subcutaneous injection at day 15 to day 28 continuously. RESULTS: C3a was significantly upregulated in the plasma of MCT-treated rats. SPR, ELISA, and CH50 assays revealed that CP40-KK displayed similar affinity binding to human and rat complement C3. Pharmacological inhibition of complement C3 cleavage (CP40-KK) could ameliorate MCT-induced NLRP3 inflammasome activity, pulmonary vascular remodeling, and right ventricular hypertrophy. Mechanistically, increased proliferation of pulmonary arterial smooth muscle cells is closely associated with macrophage infiltration, NLPR3 inflammasome activation, and proinflammatory cytokines (IL-1ß and IL-18) release. Besides, C3a enhanced IL-1ß activity in macrophages and promoted pulmonary arterial smooth muscle cell proliferation in vitro. CONCLUSION: Our findings suggest that CP40-KK treatment was protective in the MCT-induced rat PAH model, which might serve as a therapeutic option for PAH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Ratos , Humanos , Animais , Hipertensão Arterial Pulmonar/tratamento farmacológico , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Complemento C3/metabolismo , Inativadores do Complemento/efeitos adversos , Inativadores do Complemento/metabolismo , Artéria Pulmonar/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças
2.
Endocrinology ; 165(3)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366363

RESUMO

Histone deacetylase 11 (HDAC11) has been implicated in the pathogenesis of metabolic diseases characterized by chronic low-grade inflammation, such as obesity. However, the influence of HDAC11 on inflammation and the specific effect of HDAC11 on the palmitic acid (PA)-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation are poorly understood. The effect of PA treatment on HDAC11 activity and the NLRP3 inflammasome was investigated in human peripheral blood mononuclear cells and THP-1 cells. The PA-induced responses of key markers of NLRP3 inflammasome activation, including NLRP3 gene expression, caspase-1 p10 activation, cleaved IL-1ß production, and extracellular IL-1ß release, were assessed as well. The role of HDAC11 was explored using a specific inhibitor of HDAC11 and by knockdown using small interfering (si)HDAC11 RNA. The relationship between HDAC11 and yes-associated protein (YAP) in the PA-induced NLRP3 inflammasome was investigated in THP-1 cells with HDAC11 or YAP knockdown. Following PA treatment, HDAC11 activity and protein levels increased significantly, concomitant with activation of the NLRP3 inflammasome. Notably, PA-induced the upregulation of NLRP3, caspase-1 p10 activation, the production of cleaved IL-1ß, and the release of IL-1ß into the extracellular space, all of which were attenuated by FT895 treatment and by HDAC11 knockdown. In THP-1 cells, PA induced the expression of YAP and its interaction with NLRP3, resulting in NLRP3 inflammasome activation, whereas both were inhibited by FT895 and siHDAC11 RNA. These findings demonstrate a pivotal role for HDAC11 in the PA-induced activation of the NLRP3 inflammasome. HDAC11 inhibition thus represents a promising therapeutic strategy for mitigating NLRP3 inflammasome-related inflammation in the context of obesity.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Células THP-1 , Palmitatos , Leucócitos Mononucleares , Inflamação/metabolismo , Caspase 1/genética , Caspase 1/metabolismo , Ácido Palmítico/farmacologia , RNA , Obesidade , Interleucina-1beta/genética , Histona Desacetilases
4.
Cells ; 13(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334675

RESUMO

Cathepsin B (CatB) is thought to be essential for the induction of Porphyromonas gingivalis lipopolysaccharide (Pg LPS)-induced Alzheimer's disease-like pathologies in mice, including interleukin-1ß (IL-1ß) production and cognitive decline. However, little is known about the role of CatB in Pg virulence factor-induced IL-1ß production by microglia. We first subjected IL-1ß-luciferase reporter BV-2 microglia to inhibitors of Toll-like receptors (TLRs), IκB kinase, and the NLRP3 inflammasome following stimulation with Pg LPS and outer membrane vesicles (OMVs). To clarify the involvement of CatB, we used several known CatB inhibitors, including CA-074Me, ZRLR, and human ß-defensin 3 (hBD3). IL-1ß production in BV-2 microglia induced by Pg LPS and OMVs was significantly inhibited by the TLR2 inhibitor C29 and the IκB kinase inhibitor wedelolactonne, but not by the NLRPs inhibitor MCC950. Both hBD3 and CA-074Me significantly inhibited Pg LPS-induced IL-1ß production in BV-2 microglia. Although CA-074Me also suppressed OMV-induced IL-1ß production, hBD3 did not inhibit it. Furthermore, both hBD3 and CA-074Me significantly blocked Pg LPS-induced nuclear NF-κB p65 translocation and IκBα degradation. In contrast, hBD3 and CA-074Me did not block OMV-induced nuclear NF-κB p65 translocation or IκBα degradation. Furthermore, neither ZRLR, a specific CatB inhibitor, nor shRNA-mediated knockdown of CatB expression had any effect on Pg virulence factor-induced IL-1ß production. Interestingly, phagocytosis of OMVs by BV-2 microglia induced IL-1ß production. Finally, the structural models generated by AlphaFold indicated that hBD3 can bind to the substrate-binding pocket of CatB, and possibly CatL as well. These results suggest that Pg LPS induces CatB/CatL-dependent synthesis and processing of pro-IL-1ß without activation of the NLRP3 inflammasome. In contrast, OMVs promote the synthesis and processing of pro-IL-1ß through CatB/CatL-independent phagocytic mechanisms. Thus, hBD3 can improve the IL-1ß-associated vicious inflammatory cycle induced by microglia through inhibition of CatB/CatL.


Assuntos
Microglia , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , Catepsina B/metabolismo , Quinase I-kappa B/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Microglia/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Virulência/metabolismo
5.
Cell Death Dis ; 15(2): 140, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355725

RESUMO

Immune checkpoints (CTLA4 & PD-1) are inhibitory pathways that block aberrant immune activity and maintain self-tolerance. Tumors co-opt these checkpoints to avoid immune destruction. Immune checkpoint inhibitors (ICIs) activate immune cells and restore their tumoricidal potential, making them highly efficacious cancer therapies. However, immunotolerant organs such as the liver depend on these tolerogenic mechanisms, and their disruption with ICI use can trigger the unintended side effect of hepatotoxicity termed immune-mediated liver injury from ICIs (ILICI). Learning how to uncouple ILICI from ICI anti-tumor activity is of paramount clinical importance. We developed a murine model to recapitulate human ILICI using CTLA4+/- mice treated with either combined anti-CTLA4 + anti-PDL1 or IgG1 + IgG2. We tested two forms of antisense oligonucleotides to knockdown caspase-3 in a total liver (parenchymal and non-parenchymal cells) or in a hepatocyte-specific manner. We also employed imaging mass cytometry (IMC), a powerful multiplex modality for immunophenotyping and cell interaction analysis in our model. ICI-treated mice had significant evidence of liver injury. We detected cleaved caspase-3 (cC3), indicating apoptosis was occurring, as well as Nod-like receptor protein 3 (NLRP3) inflammasome activation, but no necroptosis. Total liver knockdown of caspase-3 worsened liver injury, and induced further inflammasome activation, and Gasdermin-D-mediated pyroptosis. Hepatocyte-specific knockdown of caspase-3 reduced liver injury and NLRP3 inflammasome activation. IMC-generated single-cell data for 77,692 cells was used to identify 22 unique phenotypic clusters. Spatial analysis revealed that cC3+ hepatocytes had significantly closer interactions with macrophages, Kupffer cells, and NLRP3hi myeloid cells than other cell types. We also observed zones of three-way interaction between cC3+ hepatocytes, CD8 + T-cells, and macrophages. Our work is the first to identify hepatocyte apoptosis and NLRP3 inflammasome activation as drivers of ILICI. Furthermore, we report that the interplay between adaptive and innate immune cells is critical to hepatocyte apoptosis and ILICI.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Camundongos , Humanos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Antígeno CTLA-4/metabolismo , Caspase 3/metabolismo , Fígado/metabolismo , Apoptose , Hepatócitos/metabolismo , Comunicação Celular
6.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338718

RESUMO

Sarcopenia, a complex and debilitating condition characterized by progressive deterioration of skeletal muscle, is the primary cause of age-associated disability and significantly impacts healthspan in elderly patients. Despite its prevalence among the aging population, the underlying molecular mechanisms are still under investigation. The NLRP3 inflammasome is crucial in the innate immune response and has a significant impact on diseases related to inflammation and aging. Here, we investigated the expression of the NLRP3 inflammasome pathway and pro-inflammatory cytokines in skeletal muscle and peripheral blood of dependent and independent patients who underwent hip surgery. Patients were categorized into independent and dependent individuals based on their Barthel Index. The expression of NLRP3 inflammasome components was significantly upregulated in sarcopenic muscle from dependent patients, accompanied by higher levels of Caspase-1, IL-1ß and IL-6. Among older dependent individuals with sarcopenia, there was a significant increase in the MYH3/MYH2 ratio, indicating a transcriptional shift in expression from mature to developmental myosin isoforms. Creatine kinase levels and senescence markers were also higher in dependent patients, altogether resembling dystrophic diseases and indicating muscle degeneration. In summary, we present evidence for the involvement of the NLRP3/ASC/NEK7/Caspase-1 inflammasome pathway with activation of pro-inflammatory SASP in the outcome of sarcopenia in the elderly.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Sarcopenia , Humanos , Idoso , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Sarcopenia/etiologia , Caspase 1/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Músculo Esquelético/metabolismo
7.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338925

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder with a complicated etiology and pathogenesis. α-Synuclein aggregation, dopaminergic (DA) neuron loss, mitochondrial injury, oxidative stress, and inflammation are involved in the process of PD. Neuroinflammation has been recognized as a key element in the initiation and progression of PD. In this review, we summarize the inflammatory response and pathogenic mechanisms of PD. Additionally, we describe the potential anti-inflammatory therapies, including nod-like receptor pyrin domain containing protein 3 (NLRP3) inflammasome inhibition, nuclear factor κB (NF-κB) inhibition, microglia inhibition, astrocyte inhibition, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibition, the peroxisome proliferator-activated receptor γ (PPARγ) agonist, targeting the mitogen-activated protein kinase (MAPK) pathway, targeting the adenosine monophosphate-activated protein kinase (AMPK)-dependent pathway, targeting α-synuclein, targeting miRNA, acupuncture, and exercise. The review focuses on inflammation and will help in designing new prevention strategies for PD.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Doenças Neurodegenerativas/metabolismo , Microglia/metabolismo , Neurônios Dopaminérgicos/metabolismo
8.
Autoimmunity ; 57(1): 2310269, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38332696

RESUMO

Type 2 inflammation related diseases, such as atopic dermatitis, asthma, and allergic rhinitis, are diverse and affect multiple systems in the human body. It is common for individuals to have multiple co-existing type 2 inflammation related diseases, which can impose a significant financial and living burden on patients. However, the exact pathogenesis of these diseases is still unclear. The NLRP3 inflammasome is a protein complex composed of the NLRP3 protein, ASC, and Caspase-1, and is activated through various mechanisms, including the NF-κB pathway, ion channels, and lysosomal damage. The NLRP3 inflammasome plays a role in the immune response to pathogens and cellular damage. Recent studies have indicated a strong correlation between the abnormal activation of NLRP3 inflammasome and the onset of type 2 inflammation. Additionally, it has been demonstrated that suppressing NLRP3 expression effectively diminishes the inflammatory response, highlighting its promising therapeutic applications. Therefore, this article reviews the role of NLRP3 inflammasome in the development and therapy of multiple type 2 inflammation related diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo , Inflamação/metabolismo , Caspase 1/metabolismo
9.
PLoS One ; 19(2): e0295837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335214

RESUMO

Poly-(ADP-ribose) polymerases (PARPs) are a protein family that make ADP-ribose modifications on target genes and proteins. PARP family members contribute to the pathogenesis of chronic inflammatory diseases, including atherosclerosis, in which monocytes/macrophages play important roles. PARP inhibition is protective against atherosclerosis. However, the mechanisms by which PARP inhibition exerts this beneficial effect are not well understood. Here we show that in THP-1 monocytes, inhibition of PARP by olaparib attenuated oxidized low-density lipoprotein (oxLDL)-induced protein expressions of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing-3 (NLRP3) inflammasome components: NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1. Consistent with this effect, olaparib decreased oxLDL-enhanced interleukin (IL)-1ß and IL-18 protein expression. Olaparib also decreased the oxLDL-mediated increase in mitochondrial reactive oxygen species. Similar to the effects of the NLRP3 inhibitor, MCC950, olaparib attenuated oxLDL-induced adhesion of monocytes to cultured human umbilical vein endothelial cells and reduced foam cell formation. Furthermore, olaparib attenuated the oxLDL-mediated activation of nuclear factor (NF)-κB through the oxLDL-mediated increase in IκBα phosphorylation and assembly of NF-κB subunits, demonstrated by co-immunoprecipitation of IκBα with RelA/p50 and RelB/p52 subunits. Moreover, PARP inhibition decreased oxLDL-mediated protein expression of a NF-κB target gene, VCAM1, encoding vascular cell adhesion molecule-1. This finding indicates an important role for NF-κB activity in PARP-mediated activation of the NLRP3 inflammasome. Thus, PARP inhibition by olaparib attenuates NF-κB and NLRP3 inflammasome activities, lessening monocyte cell adhesion and macrophage foam cell formation. These inhibitory effects of olaparib on NLRP3 activity potentially protect against atherosclerosis.


Assuntos
Aterosclerose , Inflamassomos , Ftalazinas , Piperazinas , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células Endoteliais/metabolismo , Adenosina Difosfato Ribose/metabolismo , Aterosclerose/metabolismo , Interleucina-1beta/metabolismo
10.
J Transl Med ; 22(1): 155, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360728

RESUMO

BACKGROUND: Hypertension influences the inflammatory pathological changes in the retina. The function of the inflammasomes is significant. To see if Sirtuin 1 (SIRT1) regulates angiotensin II (Ang II)-induced hypertensive retinopathy and inflammation by modulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation and the potential protective effects of fucoidan (FO) in mouse retinal vascular endothelial cells (mRECs) and mice retina. METHODS: The diagnosis of hypertensive retinopathy was made after three weeks of Ang II infusion (3000 ng/kg/min). One day prior to the commencement of Ang II infusion, the mice were treatment with NLRP3 inhibitor MCC950 (10 mg/kg/day, intraperitoneal injections) or FO (300 mg/kg/day, oral gavage). A blood pressure was recorded. Hematoxylin and eosin (H&E) staining was used to conduct pathological alterations, dihydroethidium bromide (DHE) was utilized to assess oxidative stress damage in the retina, and fluorescence angiography was used to identify vascular disorders in the eye. Using immunohistochemical labeling, NLRP3 expression was found. Reactive protein and mRNA expression levels in mouse retina and cells were assessed using Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: NLRP3 inflammasome activation and SIRT1 decrease were brought about by Ang II infusion. Retinopathy and dysfunction were lessened by MCC950 target-induced NLRP3 inflammasome activation, while overexpression of SIRT1 had the opposite impact on NLRP3 inflammasome activation, indicating that SIRT1 functions as an upstream regulator of NLRP3 activity. FO may improve SIRT1 expression and decrease NLRP3 activation in retinopathy and dysfunction brought on by Ang II, and the effects were consistent across both in vivo and in vitro models. CONCLUSIONS: SIRT1 adversely regulates the NLRP3 inflammasome pathway, which in turn increases Ang II-induced inflammation and hypertensive retinopathy. FO may mitigate Ang II-induced retinopathy and dysfunction via modulating the expression of SIRT1/NLRP3. This implies practical approaches to the management of hypertensive retinopathy.


Assuntos
Retinopatia Hipertensiva , Proteína 3 que Contém Domínio de Pirina da Família NLR , Polissacarídeos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Sirtuína 1/metabolismo , Células Endoteliais/metabolismo , Inflamação , Angiotensina II
11.
Sci Adv ; 10(6): eadi9284, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38324683

RESUMO

Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Inflamassomos/metabolismo , Cisteína/metabolismo , Gasderminas , Lipoilação
12.
Nat Commun ; 15(1): 1164, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326375

RESUMO

The NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) is a critical intracellular inflammasome sensor and an important clinical target against inflammation-driven human diseases. Recent studies have elucidated its transition from a closed cage to an activated disk-like inflammasome, but the intermediate activation mechanism remains elusive. Here we report the cryo-electron microscopy structure of NLRP3, which forms an open octamer and undergoes a ~ 90° hinge rotation at the NACHT domain. Mutations on open octamer's interfaces reduce IL-1ß signaling, highlighting its essential role in NLRP3 activation/inflammasome assembly. The centrosomal NIMA-related kinase 7 (NEK7) disrupts large NLRP3 oligomers and forms NEK7/NLRP3 monomers/dimers which is a critical step preceding the assembly of the disk-like inflammasome. These data demonstrate an oligomeric cooperative activation of NLRP3 and provide insight into its inflammasome assembly mechanism.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Microscopia Crioeletrônica , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Proteínas
13.
Biochem Biophys Res Commun ; 700: 149582, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38306930

RESUMO

Doxorubicin (DOX) is a widely used antitumor drug, but its clinical applicability is hampered by the unfortunate side effect of DOX-induced cardiotoxicity (DIC). In our current study, we retrieved three high-throughput sequencing datasets related to DIC from the Gene Expression Omnibus (GEO) datasets. We conducted differential analysis using R (DESeq2) to pinpoint differentially expressed genes (DEGs, and identified 11 genes that were consistently altered in both the control and DOX-treated groups. Notably, our Random Forest analysis of these three GEO datasets highlighted the significance of nuclear receptor subfamily 4 group A member 1 (NR4A1) in the context of DIC. The DOX-induced mouse model and cell model were used for the in vivo and in vitro studies to reveal the role of NR4A1 in DIC. We found that silencing NR4A1 by adeno-associated virus serotype 9 (AAV9) contained shRNA in vivo alleviated the DOX-induced cardiac dysfunction, cardiomyocyte injury and fibrosis. Mechanistically, we found NR4A1 silencing was able to inhibit DOX-induced the cleavage of NLRP3, IL-1ß and GSDMD in vivo. Further in vitro studies have shown that inhibition of NR4A1 suppressed DOX-induced cytotoxicity and oxidative stress through the same molecular mechanism. We prove that NR4A1 plays a critical role in DOX-induced cardiotoxicity by inducing pyroptosis via activation of the NLRP3 inflammasome, and it might be a promising therapeutic target for DIC.


Assuntos
Cardiotoxicidade , Inflamassomos , Camundongos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Cardiotoxicidade/genética , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doxorrubicina/farmacologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Apoptose
14.
J Pharmacol Exp Ther ; 388(3): 813-826, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336379

RESUMO

Systemic and cerebral inflammatory responses are implicated in the pathogenesis of obesity and associated metabolic impairment. While the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to obesity-associated inflammation, whether it contributes to the development or maintenance of obesity is unknown. We provide support for a direct role of saturated fatty acids, such as palmitic acid, as NLRP3 activating stimuli in obese states. To investigate whether NLRP3 activation contributes to the pathogenesis of diet-induced obesity (DIO) in mice, we tested two different clinical-stage NLRP3 inflammasome inhibitors. We demonstrate a contributory role of this key inflammasome to established obesity and associated systemic and cerebral inflammation. By comparing their effects to calorie restriction, we aimed to identify specific NLRP3-sensitive mechanisms contributing to obesity-induced inflammation (as opposed to be those regulated by weight loss per se). In addition, a direct comparison of an NLRP3 inhibitor to a glucagon like peptide-1 receptor agonist, semaglutide (Wegovy), in the DIO model allowed an appreciation of the relative efficacy of these two therapeutic strategies on obesity, its associated systemic inflammatory response, and cerebral gliosis. We show that two structurally distinct, NLRP3 inhibitors, NT-0249 and NT-0796, reverse obesity in the DIO mouse model and that brain exposure appears necessary for efficacy. In support of this, we show that DIO-driven hypothalamic glial fibrillary acidic protein expression is blocked by dosing with NT-0249/NT-0796. While matching weight loss driven by semaglutide or calorie restriction, remarkably, NLRP3 inhibition provided enhanced improvements in disease-relevant biomarkers of acute phase response, cardiovascular inflammation, and lipid metabolism. SIGNIFICANCE STATEMENT: Obesity is a global health concern that predisposes individuals to chronic disease such as diabetes and cardiovascular disease at least in part by promoting systemic inflammation. We report that in mice fed a high-fat, obesogenic diet, obesity is reversed by either of two inhibitors of the intracellular inflammatory mediator NLRP3. Furthermore, NLRP3 inhibition reduces both hypothalamic gliosis and circulating biomarkers of cardiovascular disease risk beyond what can be achieved by either the glucagon like peptide-1 agonist semaglutide or calorie restriction alone.


Assuntos
Doenças Cardiovasculares , Inflamassomos , Camundongos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Gliose/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos NOD , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Obesidade/metabolismo , Redução de Peso , Biomarcadores , Peptídeos Semelhantes ao Glucagon , Camundongos Endogâmicos C57BL
15.
World J Gastroenterol ; 30(3): 252-267, 2024 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-38314135

RESUMO

BACKGROUND: Ulcerative colitis (UC) is an inflammatory condition with frequent relapse and recurrence. Evidence suggests the involvement of SLC6A14 in UC pathogenesis, but the central regulator remains unknown. AIM: To explore the role of SLC6A14 in UC-associated pyroptosis. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR), immunoblotting, and immunohistochemical were used to assess SLC6A14 in human UC tissues. Lipopolysaccharide (LPS) was used to induce inflammation in FHC and NCM460 cells and model enteritis, and SLC6A14 levels were assessed. Pyroptosis markers were quantified using enzyme-linked immunosorbent assay, Western blotting, and qRT-PCR, and EdU incubation, CCK-8 assays and flow cytometry were used to examine proliferation and apoptosis. Mouse models of UC were used for verification. RESULTS: SLC6A14 was increased and correlated with NLRP3 in UC tissues. LPS-induced FHC and NCM460 cells showed increased SLC6A14 levels. Reducing SLC6A14 increased cell proliferation and suppressed apoptosis. Reducing SLC6A14 decreased pyroptosis-associated proteins (ASC, IL-1ß, IL-18, NLRP3). NLRP3 overexpression counteracted the effects of sh-SLC6A14 on LPS-induced FHC and NCM460 cell pyroptosis. SLC6A14 improved the mucosa in mice with dextran sulfate sodium-induced colitis. CONCLUSION: SLC6A14 promotes UC pyroptosis by regulating NLRP3, suggesting the therapeutic potential of modulating the SLC6A14/NLRP3 axis.


Assuntos
Sistemas de Transporte de Aminoácidos , Colite Ulcerativa , Colite , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Camundongos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Colite Ulcerativa/induzido quimicamente , Inflamassomos/metabolismo , Lipopolissacarídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
16.
Cell Mol Life Sci ; 81(1): 77, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315242

RESUMO

BACKGROUND: Obesity-associated dysfunctional intestinal permeability contributes to systemic chronic inflammation leading to the development of metabolic diseases. The inflammasomes constitute essential components in the regulation of intestinal homeostasis. We aimed to determine the impact of the inflammasomes in the regulation of gut barrier dysfunction and metabolic inflammation in the context of obesity and type 2 diabetes (T2D). METHODS: Blood samples obtained from 80 volunteers (n = 20 normal weight, n = 21 OB without T2D, n = 39 OB with T2D) and a subgroup of jejunum samples were used in a case-control study. Circulating levels of intestinal damage markers and expression levels of inflammasomes as well as their main effectors (IL-1ß and IL-18) and key inflammation-related genes were analyzed. The impact of inflammation-related factors, different metabolites and Akkermansia muciniphila in the regulation of inflammasomes and intestinal integrity genes was evaluated. The effect of blocking NLRP6 by using siRNA in inflammation was also studied. RESULTS: Increased circulating levels (P < 0.01) of the intestinal damage markers endotoxin, LBP, and zonulin in patients with obesity decreased (P < 0.05) after weight loss. Patients with obesity and T2D exhibited decreased (P < 0.05) jejunum gene expression levels of NLRP6 and its main effector IL18 together with increased (P < 0.05) mRNA levels of inflammatory markers. We further showed that while NLRP6 was primarily localized in goblet cells, NLRP3 was localized in the intestinal epithelial cells. Additionally, decreased (P < 0.05) mRNA levels of Nlrp1, Nlrp3 and Nlrp6 in the small intestinal tract obtained from rats with diet-induced obesity were found. NLRP6 expression was regulated by taurine, parthenolide and A. muciniphila in the human enterocyte cell line CCL-241. Finally, a significant decrease (P < 0.01) in the expression and release of MUC2 after the knockdown of NLRP6 was observed. CONCLUSIONS: The increased levels of intestinal damage markers together with the downregulation of NLRP6 and IL18 in the jejunum in obesity-associated T2D suggest a defective inflammasome sensing, driving to an impaired epithelial intestinal barrier that may regulate the progression of multiple obesity-associated comorbidities.


Assuntos
Diabetes Mellitus Tipo 2 , Inflamassomos , Humanos , Ratos , Animais , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Estudos de Casos e Controles , Inflamação , Obesidade/complicações , RNA Mensageiro/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores de Angiotensina/metabolismo , Receptores de Vasopressinas/metabolismo
17.
Nat Commun ; 15(1): 1096, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321014

RESUMO

Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory condition resulting from monoallelic NLRP3 variants that facilitate IL-1ß production. Although these are gain-of-function variants characterized by hypersensitivity to cell priming, patients with CAPS and animal models of the disease may present inflammatory flares without identifiable external triggers. Here we find that CAPS-associated NLRP3 variants are forming constitutively active inflammasome, which induce increased basal cleavage of gasdermin D, IL-18 release and pyroptosis, with a concurrent basal pro-inflammatory gene expression signature, including the induction of nuclear receptors 4 A. The constitutively active NLRP3-inflammasome of CAPS is responsive to the selective NLRP3 inhibitor MCC950 and its activation is regulated by deubiquitination. Despite their preactivated state, the CAPS inflammasomes are responsive to activation of the NF-κB pathway. NLRP3-inflammasomes with CAPS-associated variants affect the immunometabolism of the myeloid compartment, leading to disruptions in lipids and amino acid pathways and impaired glycolysis, limiting IL-1ß production. In summary, NLRP3 variants causing CAPS form a constitutively active inflammasome inducing pyroptosis and IL-18 release without cell priming, which enables the host's innate defence against pathogens while also limiting IL-1ß-dependent inflammatory episodes through immunometabolism modulation.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Interleucina-18 , Síndromes Periódicas Associadas à Criopirina/genética , Sulfonamidas/farmacologia , Interleucina-1beta/metabolismo
18.
BMC Cardiovasc Disord ; 24(1): 18, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172711

RESUMO

OBJECTIVE: Many studies have found that miR-26a-5p plays an essential role in the progression of pathological cardiac hypertrophy, however, there is still no evidence on whether miR-26a-5p is related to the activation of autophagy and NLRP3 inflammasome. And the mechanism of miR-26a-5p and NLRP3 inflammasome aggravating pathological cardiac hypertrophy remain unclear. METHODS: Cardiomyocytes were treated with 200µM PE to induce cardiac hypertrophy and intervened with 10mM NLRP3 inhibitor INF39. In addition, we also used the MiR-26a-5p mimic and inhibitor to transfect PE-induced cardiac hypertrophy. RT-qPCR and western blotting were used to detect the expressions of miR-26a-5p, NLRP3, ASC and Caspase-1 in each group, and we used α-SMA immunofluorescence to detect the change of cardiomyocyte area. The expression levels of autophagy proteins LC3, beclin-1 and p62 were detected by western blotting. Finally, we induced the SD rat cardiac hypertrophy model through aortic constriction (TAC) surgery. In the experimental group, rats were intervened with MiR-26a-5p mimic, MiR-26a-5p inhibitor, autophagy inhibitor 3-MA, and autophagy activator Rapamycin. RESULTS: In cell experiments, we observed that the expression of miR-26a-5p was associated with cardiomyocyte hypertrophy and increased surface area. Furthermore, miR-26a-5p facilitated autophagy and activated the NLRP3 inflammasome pathway, which caused changes in the expression of genes and proteins including LC3, beclin-1, p62, ACS, NLRP3, and Caspase-1. We discovered similar outcomes in the TAC rat model, where miR-26a-5p expression corresponded with cardiomyocyte enlargement and fibrosis in the cardiac interstitial and perivascular regions. In conclusion, miR-26a-5p has the potential to regulate autophagy and activate the NLRP3 inflammasome, contributing to the development of cardiomyocyte hypertrophy. CONCLUSION: Our study found a relationship between the expression of miR-26a-5p and cardiomyocyte hypertrophy. The mechanism behind this relationship appears to involve the activation of the NLRP3 inflammasome pathway, which is caused by miR-26a-5p promoting autophagy. Targeting the expression of miR-26a-5p, as well as inhibiting the activation of autophagy and the NLRP3 inflammasome pathway, could offer additional treatments for pathological cardiac hypertrophy.


Assuntos
Cardiopatias Congênitas , MicroRNAs , Ratos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Beclina-1/metabolismo , Ratos Sprague-Dawley , MicroRNAs/genética , MicroRNAs/metabolismo , Cardiopatias Congênitas/metabolismo , Cardiomegalia/genética , Autofagia , Caspases/metabolismo
19.
J Headache Pain ; 25(1): 3, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177990

RESUMO

BACKGROUND: Neuroinflammation, mediated by the activation of microglia, contributes to central sensitization, which is associated with the development of chronic migraine (CM). TREM1 receptors amplify the inflammatory response. However, their relationship to CM is unclear. Thus, this study endeavoured to elucidate the exact role of TREM1 in CM. METHODS: Nitroglycerin (NTG) was repeatedly administered intraperitoneally to establish the CM model. Mechanical and thermal sensitivities were assessed using von Frey filaments and hot plate assays. Using Western blotting, TREM1, NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were all detected. Immunofluorescence was used to examine the cellular distribution of TREM1 and NLRP3, the number of microglia, immunoreactivity, and morphological changes. We examined the effects of TREM1 antagonists (LR12) and NF-κB inhibitors (PDTC) on pain behaviour, as well as the production of c-fos and CGRP. Additionally, we investigated whether LR12 and PDTC affect the activation of microglia and the NLRP3 inflammasome. We synthesized siRNA and TREM1-overexpressing plasmids to transfect BV2 cells treated with LPS and normal BV2 cells and treated TREM1-overexpressing BV2 cells with PDTC. The NF-κB pathway, NLRP3 inflammasome components, and proinflammatory cytokines were quantified using Western blotting. RESULTS: Following NTG administration, the expression of TREM1 was significantly upregulated and exclusively localized in microglia in the TNC, and was well co-localized with NLRP3. Furthermore, activation of the classical NF-κB pathway was observed. Pre-treatment with LR12 and PDTC effectively attenuated mechanical hypersensitivity, suppressed the expression of c-fos and CGRP, and inhibited NF-κB activity in CM mice. Additionally, inhibition of TREM1 and NF-κB activity mitigated NTG-induced microglia and NLRP3 activation, as well as proinflammatory cytokines production. In vitro, knockdown of TREM1 resulted in attenuated activation of the NF-κB pathway following lipopolysaccharide (LPS) treatment and reduced expression of NLRP3 inflammasome components as well as proinflammatory cytokines. After TREM1 overexpression, the NF-κB pathway was activated, NLRP3 inflammasome components and proinflammatory cytokines were upregulated, and PDTC reversed this phenomenon. CONCLUSIONS: Our findings suggest that TREM1 regulates microglia and NLRP3 activation via the NF-κB pathway, thereby contributing to central sensitization and implicating its involvement in chronic migraine pathogenesis.


Assuntos
Transtornos de Enxaqueca , NF-kappa B , Animais , Camundongos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Sensibilização do Sistema Nervoso Central/fisiologia , Citocinas/metabolismo , Inflamassomos/efeitos adversos , Inflamassomos/metabolismo , Lipopolissacarídeos , Microglia/metabolismo , Transtornos de Enxaqueca/metabolismo , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Nitroglicerina/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
20.
J Transl Med ; 22(1): 23, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178174

RESUMO

BACKGROUND: Inflammatory response has been recognized as a pivotal pathophysiological process during cerebral ischemia. ChemR23 signaling is involved in the pathophysiology of various inflammatory diseases. Nevertheless, the role of ChemR23 signaling in ischemic stroke remains largely unknown. METHODS: Permanent ischemic stroke mouse model was accomplished by middle cerebral artery occlusion (MCAO). Resolvin E1 (RvE1) or chemerin-9 (C-9), the agonists of ChemR23, were administered by intracerebroventricular (i.c.v) injection before MCAO induction. Then, analysis of neurobehavioral deficits and brain sampling were done at Day 1 after MCAO. The brain samples were further analyzed by histological staining, immunofluorescence, RNA sequencing, ELISA, transmission electron microscope, and western blots. Furthermore, oxygen-glucose deprivation (OGD) was employed in SH-SY5Y to mimic MCAO in vitro, and ChemR23 signaling pathway was further studied by overexpression of ChemR23 or administration of related agonists or antagonists. Analysis of cell death and related pathway markers were performed. RESULTS: ChemR23 expression was upregulated following MCAO. Under in vitro and in vivo ischemic conditions, ChemR23 deficiency or inhibition contributed to excessive NLRP3-mediated maturation and release of IL-1ß and IL-18, as well as enhanced cleavage of GSDMD-N and neuronal pyroptosis. These influences ultimately aggravated brain injury and neuronal damage. On the other hand, ChemR23 activation by RvE1 or C-9 mitigated the above pathophysiological abnormalities in vivo and in vitro, and overexpression of ChemR23 in SH-SY5Y cells also rescued OGD-induced neuronal pyroptosis. Blockade of NLRP3 mimics the protective effects of ChemR23 activation in vitro. CONCLUSION: Our data indicated that ChemR23 modulates NLRP3 inflammasome-mediated neuronal pyroptosis in ischemic stroke. Activation of ChemR23 may serve as a promising potential target for neuroprotection in cerebral ischemia.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Neuroblastoma , Receptores de Quimiocinas , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Quimiocinas , Infarto da Artéria Cerebral Média/complicações , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , AVC Isquêmico/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Traumatismo por Reperfusão/patologia , Transdução de Sinais , Receptores de Quimiocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...