RESUMO
Chronic neuropathic pain resulting from peripheral nerve damage is a significant clinical problem, which makes it imperative to develop the mechanism-based therapeutic approaches. Enhancement of endogenous cannabinoids by blocking their hydrolysis has been shown to reduce inflammation and neuronal damage in a number of neurological disorders and neurodegenerative diseases. However, recent studies suggest that inhibition of their hydrolysis can shift endocannabinoids 2-arachidonoyl glycerol (2-AG) and anandamide (AEA) toward the oxygenation pathway mediated by cyclooxygenase-2 (COX-2) to produce proinflammatory prostaglandin glycerol esters (PG-Gs) and prostaglandin ethanolamides (PG-EAs). Thus, blocking both endocannabinoid hydrolysis and oxygenation is likely to be more clinically beneficial. In this study, we used the chronic constriction injury (CCI) mouse model to explore the therapeutic effects of simultaneous inhibition of AEA hydrolysis and oxygenation in the treatment of neuropathic pain. We found that the fatty acid amide hydrolase (FAAH) inhibitor PF04457845 and the substrate-selective COX-2 inhibitor LM4131 dose-dependently reduced thermal hyperalgesia and mechanical allodynia in the CCI mice. In addition to ameliorating the pain behaviors, combined treatment with subeffective doses of these inhibitors greatly attenuated the accumulation of inflammatory cells in both sciatic nerve and spinal cord. Consistently, the increased proinflammatory cytokines IL-1ß, IL-6, and chemokine MCP-1 in the CCI mouse spinal cord and sciatic nerve were also significantly reduced by combination of low doses of PF04457845 and LM4131 treatment. Therefore, our study suggests that simultaneous blockage of endocannabinoid hydrolysis and oxygenation by using the substrate-selective COX-2 inhibitor, which avoids the cardiovascular and gastrointestinal side effects associated with the use of general COX-2 inhibitors, might be a suitable strategy for the treatment of inflammatory and neuropathic pain.
Assuntos
Endocanabinoides , Neuralgia , Camundongos , Animais , Endocanabinoides/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Hidrólise , Glicerol , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , ProstaglandinasRESUMO
Cyclooxygenase-2 (COX-2) is the key enzyme responsible for the conversion of arachidonic acid to prostaglandins that display pro-inflammatory properties and thus, it is a potential target protein to develop anti-inflammatory drugs. In this study, chemical and bio-informatics approaches have been employed to find a novel potent andrographolide (AGP) analog as a COX-2 inhibitor having better pharmacological properties than aspirin and rofecoxib (controls). The full amino acid sequenced human Alpha fold (AF) COX-2 protein (604AA) was selected and validated for its accuracy against the reported COX-2 protein structures (PDB ID: 5F19, 5KIR, 5F1A, 5IKQ and 1V0X) followed by multiple sequence alignment analysis to establish the sequence conservation. The systematic virtual screening of 237 AGP analogs against AF-COX-2 protein yielded 22 lead compounds based on the binding energy score (< - 8.0 kcal/mol). These were further screened out to 7 analogs by molecular docking analysis and investigated further for ADMET prediction, ligand efficiency metrics calculations, quantum mechanical analysis, MD simulation, electrostatic potential energy (EPE) docking simulation, and MM/GBSA. In-depth analysis revealed that AGP analog A3 (3-[2-[(1R,4aR,5R,6R,8aR)-6-hydroxy-5,6,8a-trimethyl-2-methylidene-3,4,4a,5,7,8-hexahydro-1H-naphthalen-1-yl]ethylidene]-4-hydroxyoxolan-2-one) forms the most stable complex with the AF-COX-2 showing the least RMSD value (0.37 ± 0.03 nm), a good number of hydrogen bonds (protein-ligand H-bond = 11, and protein H-bond = 525), minimum EPE score (- 53.81 kcal/mol), and lowest MM-GBSA before and after simulation (- 55.37 and - 56.25 kcal/mol, respectively) value compared to other analogs and controls. Thus, we suggest that the identified A3 AGP analog could be developed as a promising plant-based anti-inflammatory drug by inhibiting COX-2.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Simulação de Dinâmica Molecular , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Simulação de Acoplamento Molecular , Ciclo-Oxigenase 2 , Ligantes , Eletricidade Estática , ConsensoRESUMO
Major obstacles faced by the use of nonsteroidal anti-inflammatory drugs (NSAID) are their gastrointestinal toxicity induced by non-selective inhibition of both cyclooxygenases (COX) 1 and 2 and their cardiotoxicity associated with a certain class of COX-2 selective inhibitors. Recent studies have demonstrated that selective COX-1 and COX-2 inhibition generates compounds with no gastric damage. The aim of the current study is to develop novel anti-inflammatory agents with a better gastric profile. In our previous paper, we investigated the anti-inflammatory activity of 4-methylthiazole-based thiazolidinones. Thus, based on these observations, herein we report the evaluation of anti-inflammatory activity, drug action, ulcerogenicity and cytotoxicity of a series of 5-adamantylthiadiazole-based thiazolidinone derivatives. The in vivo anti-inflammatory activity revealed that the compounds possessed moderate to excellent anti-inflammatory activity. Four compounds 3, 4, 10 and 11 showed highest potency (62.0, 66.7, 55.8 and 60.0%, respectively), which was higher than the control drug indomethacin (47.0%). To determine their possible mode of action, the enzymatic assay was conducted against COX-1, COX-2 and LOX. The biological results demonstrated that these compounds are effective COX-1 inhibitors. Thus, the IC50 values of the three most active compounds 3, 4 and 14 as COX-1 inhibitors were 1.08, 1.12 and 9.62 µΜ, respectively, compared to ibuprofen (12.7 µΜ) and naproxen (40.10 µΜ) used as control drugs. Moreover, the ulcerogenic effect of the best compounds 3, 4 and 14 were evaluated and revealed that no gastric damage was observed. Furthermore, compounds were found to be nontoxic. A molecular modeling study provided molecular insight to rationalize the COX selectivity. In summary, we discovered a novel class of selective COX-1 inhibitors that could be effectively used as potential anti-inflammatory agents.
Assuntos
Antineoplásicos , Tiadiazóis , Humanos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Tiadiazóis/uso terapêutico , Simulação de Acoplamento Molecular , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Edema/tratamento farmacológicoRESUMO
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used medications to treat conditions such as arthritis, pain, and fever. They reduce inflammation by inhibiting cyclooxygenase (COX) enzymes that catalyze the committed step in prostaglandin (PG) biosynthesis. Despite their significant therapeutic benefits, many NSAIDS have undesirable adverse effects. The aim of this study was to discover novel COX inhibitors from natural sources. Here, we describe the synthesis and anti-inflammatory activity of the COX-2 inhibitor axinelline A (A1), which was isolated from Streptomyces axinellae SCSIO02208, and its analogues. Compared to the synthetic analogues, the natural product A1 has stronger COX inhibitory activity. Although A1 is more active against COX-2 than COX-1, its selectivity index is low; therefore, it may be classified as a nonselective COX inhibitor. Its overall activity is comparable to the clinically used drug diclofenac. In silico studies showed that A1 binds to COX-2 in a similar manner to diclofenac. Inhibition of COX enzymes by A1 in LPS-stimulated murine RAW264.7 macrophages resulted in suppression of the NF-κB signaling pathway, leading to reduced expression of pro-inflammatory factors such as iNOS, COX-2, TNF-α, IL-6, and IL-1ß and reduced production of PGE2, NO, and ROS. The potent in vitro anti-inflammatory activity of A1, together with its lack of cytotoxicity, makes it an attractive candidate for a new anti-inflammatory lead.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Diclofenaco , Camundongos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologiaRESUMO
Cyclooxygenase-2 (COX-2) is a key aspect of the physiology and pathogenesis of various cancer types. Overexpression of this enzyme is responsible for the elevated prostaglandin production and characteristic feature of breast cancer. Inhibition of COX-2 derived prostanoids facilitates anti-inflammatory, analgesic, and antipyretic effects of non-steroid anti-inflammation drugs. The overexpression of COX-2 is associated with inflammation, pain, and fever. The present study provides the updated relevant literature describing the role of well-characterized isoforms of cyclooxygenase with particular emphasis on COX-2, mechanism of action, the effect of the drug, combinatorial drugs, and microarray-based differential expression analysis and network analysis. We have discussed the currently used combinatorial treatments and their challenges in breast cancer. This article is categorized under: Cancer > Computational Models Cancer > Molecular and Cellular Physiology.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Ciclo-Oxigenase 2 , Neoplasias da Mama/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Isoenzimas , Anti-Inflamatórios não Esteroides/farmacologiaRESUMO
c-Met kinase and cyclooxygenase 2 (COX-2) enzymes are two significant targets in tumor progression. Chalcone and benzamide moieties were combined using molecular hybridization to assess their potential as c-Met kinase and COX-2 inhibitors. 4-Methylbenzamide and 4-chlorobenzamide chalcone analogs were synthesized, characterized, and evaluated for antiproliferative activity on Michigan Cancer Foundation-7 (MCF-7), HT-29, MDA-MB-231, COLO-205, and A549 cell lines by sulforhodamine-B stain (SRB) assay. Following the SRB assay, compounds were evaluated for their c-Met kinase and COX-2 inhibitory potential. All compounds inhibited COX-2 with half-maximal inhibitory concentration (IC50 ) <10 µM. Compounds 7h, 7i, 7j, 8f, and 8j inhibited c-Met with IC50 <10 µM. Compound 7h was evaluated for its long-term antiproliferative and anti-migratory effects by colony formation and wound healing assay. It exerted these effects in a concentration-dependent manner. Compounds 7j and 8j were further evaluated for in vitro antiangiogenic effects. Compound 7j exhibited moderate antiangiogenic effect while compound 8j exhibited strong effect. Compounds 7h, 7i, 7j, 8f, and 8j were evaluated for the serum protein binding, using the in vitro bovine serum albumin binding assay. The results indicated that the tested compounds bind to bovine serum albumin (BSA) and can be further explored by other studies.
Assuntos
Antineoplásicos , Chalcona , Chalconas , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores de Ciclo-Oxigenase 2/farmacologia , Chalconas/farmacologia , Chalcona/farmacologia , Ciclo-Oxigenase 2/metabolismo , Soroalbumina Bovina , Benzamidas/farmacologia , Proliferação de Células , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Simulação de Acoplamento MolecularRESUMO
Selective cyclooxygenase (COX)-1 inhibitors can be employed as potential cardioprotective drugs. Moreover, COX-1 plays a key role in inflammatory processes and its activity is associated with some types of cancer. In this work, we designed and synthesized a set of compounds that structurally mimic the selective COX-1 inhibitors, SC-560 and mofezolac, the central cores of which were replaced either with triazole or benzene rings. The advantage of this approach is a relatively simple synthesis in comparison with the syntheses of parent compounds. The newly synthesized compounds exhibited remarkable activity and selectivity toward COX-1 in the enzymatic in vitro assay. The most potent compound, 10a (IC50 = 3 nM for COX-1 and 850 nM for COX-2), was as active as SC-560 (IC50 = 2.4 nM for COX-1 and 470 nM for COX-2) toward COX-1 and it was even more selective. The in vitro COX-1 enzymatic activity was further confirmed in the cell-based whole-blood antiplatelet assay, where three out of four selected compounds (10a,c,d, and 3b) exerted outstanding IC50 values in the nanomolar range (9-252 nM). Moreover, docking simulations were performed to reveal key interactions within the COX-1 binding pocket. Furthermore, the toxicity of the selected compounds was tested using the normal human kidney HK-2 cell line.
Assuntos
Anti-Inflamatórios não Esteroides , Inibidores de Ciclo-Oxigenase 2 , Humanos , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Estrutura Molecular , Anti-Inflamatórios não Esteroides/farmacologiaRESUMO
Targeted therapies have come into prominence in the ongoing battle against non-small cell lung cancer (NSCLC) because of the shortcomings of traditional chemotherapy. In this context, indole-based small molecules, which were synthesized efficiently, were subjected to an in vitro colorimetric assay to evaluate their cyclooxygenase (COX) inhibitory profiles. Compounds 3b and 4a were found to be the most selective COX-1 inhibitors in this series with IC50 values of 8.90 µM and 10.00 µM, respectively. In vitro and in vivo assays were performed to evaluate their anti-NSCLC and anti-inflammatory action, respectively. 2-(1H-Indol-3-yl)-N'-(4-morpholinobenzylidene)acetohydrazide (3b) showed selective cytotoxic activity against A549 human lung adenocarcinoma cells through apoptosis induction and Akt inhibition. The in vivo experimental data revealed that compound 3b decreased the serum myeloperoxidase and nitric oxide levels, pointing out its anti-inflammatory action. Moreover, compound 3b diminished the serum aminotransferase (particularly aspartate aminotransferase) levels. Based on the in vitro and in vivo experimental data, compound 3b stands out as a lead anti-NSCLC agent endowed with in vivo anti-inflammatory action, acting as a dual COX-1 and Akt inhibitor.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Inibidores da Angiogênese/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteínas Proto-Oncogênicas c-akt , Relação Estrutura-Atividade , Ciclo-Oxigenase 1/metabolismoRESUMO
Nimesulide is a nonsteroidal anti-inflammatory drug and a COX-2 inhibitor with antitumor and antiproliferative activities that induces apoptosis in oral, esophagus, breast, and pancreatic cancer cells. Despite being removed from the market due to hepatotoxicity, nimesulide is still an important research tool being used to develop new anticancer drugs. Multiple studies have been done to modify the nimesulide skeleton to develop more potent anticancer agents and related compounds are promising scaffolds for future development. As such, establishing a mechanism of action for nimesulide remains an important part of realizing its potential. Here, we show that nimesulide enhances TRAIL-induced apoptosis in resistant pancreatic cancer cells by promoting clustering of DR5 in the plasma membrane. In this way, nimesulide acts like a related compound, DuP-697, which sensitizes TRAIL-resistant colon cancer cells in a similar manner. Our approach applies a time-resolved FRET-based biosensor that monitors DR5 clustering and conformational states in the plasma membrane. We show that this tool can be used for future high-throughput screens to identify novel, nontoxic small molecule scaffolds to overcome TRAIL resistance in cancer cells.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Neoplasias Pancreáticas , Humanos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Apoptose , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismoRESUMO
A new series of linker-based derivatives of non-steroidal anti-inflammatory drugs were designed and synthesized. All the compounds were well characterized with the help of various spectroscopic techniques such as FT-IR, 1H NMR, 13C NMR, and HRMS. The main emphasis of this paper is to understand the switching of the most promising compounds 8 and 10 towards anti-inflammatory and anticancer activity in terms of in-silico and in-vitro studies in detail. During the molecular docking study, compounds 8 and 10 demonstrated the importance of hetero atoms as well as the perfect alignment of a compound in the binding pocket of a target site, which may affect their bioactivity. Here, the presence of 1,3dicarbonyl interactions with ASN 351 in compound 8 (not found in compound 10) may be responsible for its better inhibitory activity against the COX-2 target site. On the other hand, a slight increase in the potency of compound 10 towards anticancer activity may be due to the instantaneous participation of the OH group and carbonyl group to give conventional hydrogen bonds towards THR 149 amino acid residue, which was missing in compound 8. Molecular dynamics simulation was also performed for compounds 10 and 8 toward COX-2 and HER-2 protein sites. Further, compounds 8 and 10 were subjected to in-vitro COX-2 inhibition and cytotoxicity assay and the results obtained were in accordance with the in-silico study. Thus, compound 8 become more potent towards COX-2 inhibition with IC50 value of 48.51 µg/ml and compound 10 showed good bioactivity toward cytotoxic activity with IC50 value of 93.03 µg/ml.
Assuntos
Anti-Inflamatórios não Esteroides , Anti-Inflamatórios , Antineoplásicos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/química , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Relação Estrutura-Atividade , Antineoplásicos/farmacologiaRESUMO
New sets of ibuprofen and indomethacin conjugates comprising triazolyl heterocycle were synthesized via click chemistry, adopting an optimized protocol through the molecular hybridization approach affording the targeted agents in good yields. The new non-steroidal anti-inflammatory drug (NSAID) conjugates were designed and synthesized and could be considered as potential drug candidates for the treatment of pain and inflammation. The anti-inflammatory properties were investigated for all the synthesized conjugates. Among 14 synthesized conjugates, four (5a, 5b, 5d, and 5e) were found to have significant anti-inflammatory properties potency 117.6%, 116.5%, 93.8%, and 109.1% in comparison to reference drugs ibuprofen (97.2%) and indomethacin (100%) in the rat paw edema carrageenan test without any ulcerogenic liability. The suppression effect of cytokines IL-6, TNF-α, and iNOS in addition to NO in the LPS-induced RAW264.7 cells supports the promising anti-inflammatory properties observed in the ibuprofen conjugates. In addition, several conjugates showed promising peripheral and central analgesic activity. The selectivity index (SI) of compound 5a (23.096) indicates the significant efficacy and selectivity for COX-2 over COX-1. Molecular modeling (docking and QSAR) studies described the observed biological properties.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ibuprofeno , Ratos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ibuprofeno/uso terapêutico , Relação Estrutura-Atividade , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios/farmacologia , Indometacina/farmacologia , Carragenina/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Edema/tratamento farmacológico , Simulação de Acoplamento MolecularRESUMO
We investigated the effects of celecoxib combined with (-)-epigallocatechin-3-gallate (EGCG) or polyphenon E in a cisplatin-induced lung tumorigenesis model. Four-week-old female A/J mice were divided into seven groups: (i) Control, (ii) 150 mg/kg celecoxib (150Cel), (iii) 1,500 mg/kg celecoxib (1500Cel), (iv) EGCG+150 mg/kg celecoxib (EGCG+150Cel), (v) EGCG+1,500 mg/kg celecoxib (EGCG+1500Cel), (vi) polyphenon E+150 mg/kg celecoxib (PolyE+150Cel), and (vii) polyphenon E+1,500 mg/kg celecoxib (PolyE+1500Cel). All mice were administered cisplatin (1.62 mg/kg of body weight, i.p.) 1×/week for 10 weeks and sacrificed at week 30; the numbers of tumors on the lung surface were then determined. The tumor incidence and multiplicity (no. of tumors/mouse, mean±SD) were respectively 95% and 2.15±1.50 in Control, 95% and 2.10±1.29 in 150Cel, 86% and 1.67±1.20 in 1500Cel, 71% and 1.38±1.24 in EGCG+150Cel, 67% and 1.29±1.38 in EGCG+1500Cel, 80% and 1.95±1.36 in PolyE+150Cel, and 65% and 1.05±0.10 in PolyE+1500Cel. The combination of high-dose celecoxib with EGCG or polyphenon E significantly reduced multiplicity in cisplatin-induced lung tumors.
Assuntos
Cisplatino , Inibidores de Ciclo-Oxigenase 2 , Animais , Feminino , Camundongos , Anti-Inflamatórios não Esteroides , Carcinogênese/induzido quimicamente , Celecoxib/farmacologia , Celecoxib/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia , PulmãoRESUMO
Searching for new compounds with anti-inflammatory properties is a significant target since inflammation is a major cause of pain. A series of pyrazole, imidazopyrazolone, and pyrazolopyrimidine derivatives were designed and synthesized by reaction of 3,5-diamino-1H-pyrazole derivative with cyclic and acyclic carbonyl reagents. The structure of the newly synthesized derivatives were fully characterized using different spectroscopic data and elemental analysis, and therefore, evaluated as COX-2 inhibitors. The in vitro COX-2 activity of the tested derivatives 2-13 displayed moderate to good potency with two derivatives 8 and 13 that exhibiting high potency to COX-2 with IC50 values of 5.68 ± 0.08 and 3.37 ± 0.07 µM compared with celecoxib (IC50 = 3.60 ± 0.07 µM) and meloxicam (IC50 = 7.58 ± 0.13 µM). Furthermore, the most active pyrazolo[1,5-a]pyrimidine derivatives 8 and 13 were evaluated to measure the levels of pro-inflammatory proteins such as TNF-α and IL-6 using qRT-PCR in RAW264.7 cells, and the results showed down-regulation of two immunomodulatory proteins. Surprisingly, these derivatives 8 and 13 revealed a decrease in IL-6 level with inhibition percentages of 65.8 and 70.3%, respectively, compared with celecoxib (% = 76.8). Further, compounds 8 and 13 can regulate and suppress the TNF-α with percentage inhibition of 63.1 and 59.2% to controls, while celecoxib displayed an inhibition percentage of 72.7. The Quantum chemical calculation was conducted, and data explained the structural features crucial to the activity. The molecular docking simulation and ADMET predictions revealed that the most active derivatives have good binding affinity, possess appropriate drug-likeness properties and low toxicity profiles. Finally, compounds 8 and 13 demonstrated COX-2 inhibitors with α-TNF and IL-6 suppression capabilities as a dual-action strategy to get more effective treatment.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Interleucina-6 , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Celecoxib/farmacologia , Ciclo-Oxigenase 2/metabolismo , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa , Estrutura Molecular , Relação Estrutura-Atividade , Pirazóis/farmacologia , Pirazóis/química , Pirimidinas/farmacologia , Pirimidinas/químicaRESUMO
Glutathione-responsive nanogels (CDNPs) crosslinked via crosslinker DBHD with the BRAF inhibitor dabrafenib and the COX2 inhibitor celecoxib were fabricated. The CDNPs can effectively induce tumor cell pyroptosis to activate robust antitumor immunity. Additionally, CDNPs combined with αPD-1 antibody greatly inhibited tumor growth in a melanoma mouse model with a prolonged survival time.
Assuntos
Inibidores de Ciclo-Oxigenase 2 , Melanoma , Camundongos , Animais , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Nanogéis , Piroptose , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases , Bioengenharia , Imunoterapia , Oximas , MutaçãoRESUMO
The anti-inflammatory drug celecoxib, the only inhibitor of cyclooxygenase-2 (COX-2) with anticancer activity, is used to treat rheumatoid arthritis and can cause endoplasmic reticulum (ER) stress by inhibiting sarco/ER Ca2 +-ATPase activity in cancer cells. This study aimed to investigate the correlation between celecoxib-induced ER stress and the effects of celecoxib against cell death signaling. Treatment of human colon cancer HCT116 cells with celecoxib reduced their viability and resulted in a loss of mitochondrial membrane potential ([Formula: see text]). Additionally, celecoxib treatment reduced the expression of genes involved in mitochondrial biogenesis and metabolism such as mitochondrial transcription factor A (TFAM) and uncoupling protein 2 (UCP2). Furthermore, celecoxib reduced transmembrane protein 117 (TMEM117), and RNAi-mediated knockdown of TMEM117 reduced TFAM and UCP2 expressions. These results suggest that celecoxib treatment results in the loss of [Formula: see text] by reducing TMEM117 expression and provide insights for the development of novel drugs through TMEM117 expression.
Assuntos
Neoplasias do Colo , Sulfonamidas , Humanos , Celecoxib/farmacologia , Sulfonamidas/farmacologia , Pirazóis/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Anti-Inflamatórios/farmacologia , Morte Celular , ApoptoseRESUMO
A novel series of 12 antipyrine derivatives containing 1,3,4-oxadiazoles (4a-d), 1,3,4-thiadiazoles (6a-d), and pyrimidines (8a-d), was preparedand assessed for its potential in vitro COX-2 inhibitors. Compared to Celecoxib, compounds 4b-d and 8d were the most potent derivatives c with a half-maximal inhibitory concentration range of 53-69 nM. Considering COX-2 selectivity index, compounds 4 b and 4c were chosen among these most potent derivatives for further investigation. The in vivo ability of compounds 4 b and 4c to counteract carrageenan-induced paw edoema has been assessed and their potential underlying mechanisms have been elucidated and the results have been further validated using molecular docking simulations.
Assuntos
Anti-Inflamatórios , Antipirina , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Antipirina/farmacologia , Celecoxib/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Desenho de Fármacos , Edema/tratamento farmacológico , Simulação de Acoplamento Molecular , Relação Estrutura-AtividadeRESUMO
We recently showed that a minimally-invasive removal of MDA-MB-231HM primary tumors (PTs) and elimination of their secreted factors (including IL-6, IL-8, VEGF, EGF, PDGF-aa, MIF, SerpinE1, and M-CSF), caused regression of spontaneous micro-metastases into a non-growing dormant state. To explore the underlying mechanisms and potential clinical ramifications of this phenomenon, we herein used the MDA-MB-231HM human breast cancer cell-line, in-vitro, and in vivo following orthotopic implantation in immune-deficient BALB/C nu/nu mice. Employing bioluminescence imaging, we found that adding laparotomy to minimally-invasive removal of the PT caused an outbreak of micro-metastases. However, perioperative ß-adrenergic and COX-2 inhibition, using propranolol + etodolac, maintained metastatic dormancy following laparotomy. In-vitro, ß-adrenergic agonists (epinephrine or metaproterenol) and prostaglandin-E2 markedly increased MDA-MB-231HM secretion of the pro-metastatic factors IL-6, IL-8, and VEGF, whereas cortisol reduced their secretion, effects that were maintained even 12 h after the washout of these agonists. In-vivo, laparotomy elevated IL-6 and IL-8 levels in both plasma and ex-vivo PT spontaneous secretion, whereas perioperative propranolol + etodolac administration blocked these effects. Similar trends were evident for EGF and MIF. Promoter-based bioinformatics analyses of excised PT transcriptomes implicated elevated NF-kB activity and reduced IRF1 activity in the gene regulatory effects of laparotomy, and these effects were inhibited by pre-surgical propranolol + etodolac. Taken together, our findings suggest a novel mechanism of post-operative metastatic outbreak, where surgery-induced adrenergic and prostanoid signaling increase the secretion of pro-metastatic factors, including IL-6, IL-8, and VEGF, from PT and possibly residual malignant tissue, and thereby prevent residual disease from entering dormancy.
Assuntos
Etodolac , Propranolol , Camundongos , Animais , Humanos , Propranolol/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Interleucina-6 , Interleucina-8 , Fator A de Crescimento do Endotélio Vascular , Adrenérgicos , Prostaglandinas , Fator de Crescimento Epidérmico , Camundongos Endogâmicos BALB C , Linhagem Celular TumoralRESUMO
In this study, a series of structurally novel N-(benzene sulfonyl) acetamide derivatives were designed, synthesized, and biologically evaluated as COX-2/5-LOX/TRPV1 multitarget inhibitors for anti-inflammatory and analgesic therapy. Among them, 9a and 9b displayed favorable COX-2 (9a IC50 = 0.011 µM, 9b IC50 = 0.023 µM), 5-LOX (9a IC50 = 0.046 µM, 9b IC50 = 0.31 µM) and TRPV1 (9a IC50 = 0.008 µM, 9b IC50 = 0.14 µM) inhibitory activities. The pharmacokinetic (PK) study of 9a in SD rats at the dosage of 10 mg/kg demonstrated a high oral exposure, an acceptable clearance and a favorable bioavailability (Cmax = 5807.18 ± 2657.83 ng/mL, CL = 3.24 ± 1.47 mL/min/kg, F = 96.8 %). Further in vivo efficacy studies illustrated that 9a was capable of ameliorating formalin-induced pain and inhibiting capsaicin-induced ear edema.
Assuntos
Analgésicos , Benzeno , Ratos , Animais , Ciclo-Oxigenase 2/metabolismo , Ratos Sprague-Dawley , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Amidas/uso terapêutico , Acetamidas/farmacologia , Acetamidas/uso terapêutico , Relação Estrutura-Atividade , Edema/induzido quimicamente , Edema/tratamento farmacológico , Simulação de Acoplamento Molecular , Anti-Inflamatórios não Esteroides/farmacologia , Canais de Cátion TRPVRESUMO
The long-term effects of cyclooxygenase 1 and 2 (COX-1/2) inhibitors are usually tested in terms of the periphery of the organism. Therefore, we studied the effects of SC560 (selective COX-1 inhibitor) and celecoxib (selective COX-2 inhibitor) on the activity of brain monoaminergic systems and animal behaviour. Additionally, we tested the effect of these inhibitors during inflammation. We have observed that long-term administration of celecoxib reduces the activity of the noradrenergic system, increases the activity of dopaminergic and serotonergic systems, increases locomotor activity, and enhances the exploratory behaviour of rats. Administration of SC560 also increases the activity of dopaminergic and serotonergic systems but reduces locomotor activity and impairs the exploratory behaviour of rats. The mechanism responsible for decreased activity of the noradrenergic system may be related to the weakening of activity of the positive feedback loop between the paraventricular nucleus and coeruleus locus. We suggest that the effect of used inhibitors on the dopaminergic system is associated with a possible increase in anandamide concentration and its effect on dopamine reuptake in synaptic clefts. It also appears that cyclooxygenase peroxidase activity may play a role in this process. In turn, changes in the activity of the serotonergic system may be related to the activity of indoleamine-2,3-dioxygenase, which decreases because of the decreased concentration of pro-inflammatory compounds. We believe that behavioural changes induced by COX inhibitors are the result of the modified activity of monoaminergic CNS systems in the brainstem, hypothalamus, and medial prefrontal cortex.
Assuntos
Comportamento Animal , Inibidores de Ciclo-Oxigenase 2 , Ratos , Animais , Celecoxib/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Norepinefrina/farmacologia , Dopamina/farmacologia , Encéfalo , Ciclo-Oxigenase 2 , Ciclo-Oxigenase 1RESUMO
Recent studies have shown that activation of the cGAS-STING pathway is a key process in antitumor immune responses and various kinds of STING agonists have been developed for cancer immunotherapy. Despite promising preclinical studies, preliminary clinical results have shown only a modest effect of STING agonists. There is therefore a need to develop more effective treatment strategies. Based on previous observations that COX-2 is frequently overexpressed not only in a variety of cancers but also in tumor myeloid cells and that it suppresses antitumor immunity and promotes tumor survival by producing PGE2, we investigated the antitumor effects of combination therapy with a STING agonist cGAMP and the selective COX-2 inhibitor celecoxib in mouse models. Combination treatment with cGAMP and celecoxib inhibited tumor growth compared with either monotherapy, and the combination therapy induced both local and systemic antitumor immunity. cGAMP treatment decreased PD-1 expression on tumor-infiltrating T-cells and enhanced T-cell activation in tumor-draining lymph nodes regardless of the presence of celecoxib. Meanwhile, although celecoxib treatment did not alter the frequency of CD4+ CD25+ Foxp3+ regulatory T-cells, it enhanced the expression of costimulatory molecules and glycolysis-associated genes in tumor-infiltrating CD11b+ Ly6G+ cells. Moreover, we also found that celecoxib decreased lactate efflux and increased the frequency of IFN-γ- and TNF-α-producing CD8+ T-cells in the tumor microenvironment. Taken together, our findings suggest that combined treatment with celecoxib may be an effective strategy to improve the antitumor efficacy of STING agonists.