Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.204
Filtrar
1.
Front Immunol ; 15: 1408710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947320

RESUMO

Background: Interleukin-17 (IL-17) family cytokines promote protective inflammation for pathogen resistance, but also facilitate autoimmunity and tumor development. A direct signal of IL-17 to regulatory T cells (Tregs) has not been reported and may help explain these dichotomous responses. Methods: We generated a conditional knockout of Il17ra in Tregs by crossing Foxp3-YFP-Cre mice to Il17ra-flox mice (Il17ra ΔTreg mice). Subsequently, we adoptively transferred bone marrow cells from Il17ra ΔTreg mice to a mouse model of sporadic colorectal cancer (Cdx2-Cre +/Apc F/+), to selectively ablate IL-17 direct signaling on Tregs in colorectal cancer. Single cell RNA sequencing and bulk RNA sequencing were performed on purified Tregs from mouse colorectal tumors, and compared to those of human tumor infiltrating Treg cells. Results: IL-17 Receptor A (IL-17RA) is expressed in Tregs that reside in mouse mesenteric lymph nodes and colon tumors. Ablation of IL-17RA, specifically in Tregs, resulted in increased Th17 cells, and exacerbated tumor development. Mechanistically, tumor-infiltrating Tregs exhibit a unique gene signature that is linked to their activation, maturation, and suppression function, and this signature is in part supported by the direct signaling of IL-17 to Tregs. To study pathways of Treg programming, we found that loss of IL-17RA in tumor Tregs resulted in reduced RNA splicing, and downregulation of several RNA binding proteins that are known to regulate alternative splicing and promote Treg function. Conclusion: IL-17 directly signals to Tregs and promotes their maturation and function. This signaling pathway constitutes a negative feedback loop that controls cancer-promoting inflammation in CRC.


Assuntos
Interleucina-17 , Camundongos Knockout , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Interleucina-17/metabolismo , Camundongos , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais , Modelos Animais de Doenças
2.
Clin Exp Hypertens ; 46(1): 2373467, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38963020

RESUMO

BACKGROUND: Aortic endothelial diastolic dysfunction is an early complication of diabetes and the abnormal differentiation of Th17 cells is involved in the development of diabetes. However, the exact role of exercise on regulating the Th17 cells differentiation and the underlying molecular mechanisms remain to be elucidated in diabetic mice. METHODS: db/db and db/m+ mice were randomly divided into exercise and sedentary groups. Mice in exercise group were exercised daily, 6 days/week, for 6 weeks and mice in sedentary groups were placed on a nonmoving treadmill for 6 weeks. Vascular endothelial function was measured via wire myograph and the frequencies of Th17 from peripheral blood in mice were assessed via flow cytometry. RESULTS: Our data showed that exercise improved insulin resistance and aortic endothelial diastolic function in db/db mice. In addition, the proportion of Th17 cells and IL-17A level in peripheral blood of db/db mice were significantly increased, and exercise could promote Th17 cell differentiation and reduce IL-17A level. More importantly, STAT3 or ROR-γt inhibitors could promote Th17 cell differentiation in db/db mice, while exercise significantly down-regulated p-STAT3/ROR-γt signaling in db/db mice, suggesting that exercise regulated Th17 differentiation through STAT3/ROR-γt signaling. CONCLUSIONS: This study demonstrated that exercise improved vascular endothelial function in diabetic mice via reducing Th17 cell differentiation through p-STAT3/ROR-γt pathway, suggesting exercise may be an important non-pharmacological intervention strategy for the treatment of diabetes-related vascular complications.


Assuntos
Diferenciação Celular , Diabetes Mellitus Experimental , Interleucina-17 , Condicionamento Físico Animal , Fator de Transcrição STAT3 , Células Th17 , Vasodilatação , Animais , Camundongos , Condicionamento Físico Animal/fisiologia , Condicionamento Físico Animal/métodos , Vasodilatação/fisiologia , Fator de Transcrição STAT3/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Experimental/terapia , Masculino , Interleucina-17/sangue , Interleucina-17/metabolismo , Endotélio Vascular/fisiopatologia , Resistência à Insulina/fisiologia , Transdução de Sinais , Camundongos Endogâmicos C57BL , Aorta/fisiopatologia
3.
Exp Dermatol ; 33(7): e15129, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984465

RESUMO

Hidradenitis suppurativa (HS) is an inflammatory skin disease characterized by painful nodules, abscesses and purulent secretions in intertriginous regions. Intense pruritus frequently accompanies HS lesions, adding further discomfort for patients. While Th17 pathway activation is implicated in HS pathogenesis, disease mechanisms are still not fully understood, and therapeutics are lacking. Previous reports raise a potential role for eosinophils in HS, showing a strong association of eosinophil levels with disease severity. To investigate eosinophils in HS, we recruited patients and matched healthy controls and then performed flow-cytometry studies, eosinophil stimulation assays, and lesional skin staining for eosinophils. We found that HS patients reported similar levels of pain and itch. Compared to matched controls, HS blood exhibited decreased mature eosinophils and increased numbers of immature eosinophils, coupled with a significant increase in dermal eosinophilic infiltrates. Additionally, IL-17RA+ eosinophils were highly and significantly correlated with multiple HS-related clinical scores. In both stimulated and unstimulated conditions, HS eosinophils showed an inflammatory phenotype versus controls, including an increase in costimulatory T- and B-cell markers (e.g. CD5 and CD40) following all stimulations (TNFα/IL-17A/IL-17F). These findings highlight the significance of pruritus in HS and suggest a higher turnover of eosinophils in HS blood, potentially due to the consumption of eosinophils in skin lesions. Our data delineate the features and functions of eosinophils in HS and suggest that eosinophils participate in disease pathogenesis, advancing Th17-related inflammation. Further studies are needed to investigate eosinophils' response to current HS treatments and their potential as a therapeutic target in the disease.


Assuntos
Eosinófilos , Hidradenite Supurativa , Humanos , Hidradenite Supurativa/imunologia , Hidradenite Supurativa/complicações , Eosinófilos/metabolismo , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Prurido/etiologia , Prurido/imunologia , Interleucina-17/metabolismo , Pele/patologia , Pele/metabolismo , Inflamação , Índice de Gravidade de Doença , Dor/etiologia
4.
Rev Assoc Med Bras (1992) ; 70(7): e20240136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045937

RESUMO

OBJECTIVE: Cisplatin, a widely used anticancer agent, induces hepatotoxicity alongside organ damage. Understanding Cisplatin's toxicity mechanism and developing preventive measures are crucial. Our study explores Myricetin, a flavonoid, for its protective effects against Cisplatin-induced hepatotoxicity. METHODS: In our study, a total of 32 Wistar albino male rats were utilized, which were categorized into four distinct groups: Control, Myricetin, Cisplatin, and Myricetin+Cisplatin. For the histological assessment of hepatic tissues, hematoxylin-eosin and periodic acid Schiff staining were employed, alongside immunohistochemical measurements of TNF-α, interleukin-17, and interleukin-6 immunoreactivity. Additionally, aspartate transaminase and alanine transaminase values were examined by biochemical analysis. RESULTS: In the histological evaluation of the tissues, a normal healthy cell structure and a strong periodic acid Schiff (+) reaction were observed in the hepatocyte cells in the tissues of the Control and Myricetin groups, while intense eosinophilia, minimal vacuolization, congestion, and sinusoidal expansions were observed in the hematoxylin-eosin stainings, and a decrease in the positive reaction in the periodic acid Schiff staining was observed in the Cisplatin group. Consistent with these histological findings, an increase in TNF-α, interleukin-17, and interleukin-6 expressions (p<0.0001) and a concomitant increase in aspartate transaminase and alanine transaminase values were observed in the Cisplatin group. In the group protected by Myricetin, a significant improvement was observed in all these histological and biochemical values. CONCLUSION: Cisplatin induces notable histopathological alterations in the liver. In this context, Myricetin exhibits the potential to alleviate Cisplatin-induced damage by modulating histological parameters and biochemical processes.


Assuntos
Alanina Transaminase , Antineoplásicos , Aspartato Aminotransferases , Doença Hepática Induzida por Substâncias e Drogas , Cisplatino , Flavonoides , Interleucina-6 , Ratos Wistar , Fator de Necrose Tumoral alfa , Animais , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Cisplatino/toxicidade , Masculino , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/patologia , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Antineoplásicos/efeitos adversos , Antineoplásicos/toxicidade , Interleucina-6/análise , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Ratos , Interleucina-17/metabolismo , Imuno-Histoquímica
5.
Clin Exp Med ; 24(1): 163, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039306

RESUMO

Primary Sjögren's syndrome (pSS) is a prevalent autoimmune disorder wherein CD4+ T cells play a pivotal role in its pathogenesis. However, the underlying mechanisms driving the hyperactivity of CD4+ T cells in pSS remain poorly understood. This study aimed to investigate the potential role of immunometabolic alterations in driving the hyperactivity of CD4+ T cells in pSS. We employed Seahorse XF assay to evaluate the metabolic phenotype of CD4+ T cells, conducted flow cytometry to assess the effector function and differentiation of CD4+ T cells and measured the level of intracellular reactive oxygen species (ROS). Additionally, transcriptome sequencing, PCR, and Western blotting were utilized to examine the expression of glycolytic genes. Our investigation revealed that activated CD4+ T cells from pSS patients exhibited elevated aerobic glycolysis, rather than oxidative phosphorylation, resulting in excessive production of IFN-γ and IL-17A. Inhibition of glycolysis by 2-Deoxy-D-glucose reduced the expression of IFN-γ and IL-17A in activated CD4+ T cells and mitigated the differentiation of Th1 and Th17 cells. Furthermore, the expression of glycolytic genes, including CD3E, CD28, PIK3CA, AKT1, mTOR, MYC, LDHA, PFKL, PFKFB3, and PFKFB4, was upregulated in activated CD4+ T cells from pSS patients. Specifically, the expression and activity of LDHA were enhanced, contributing to an increased level of intracellular ROS. Targeting LDHA with FX-11 or inhibiting ROS with N-acetyl-cysteine had a similar effect on reversing the dysfunction of activated CD4+ T cells from pSS patients. Our study unveils heightened aerobic glycolysis in activated CD4+ T cells from pSS patients, and inhibition of glycolysis or its metabolite normalizes the dysfunction of activated CD4+ T cells. These findings suggest that aerobic glycolysis may be a promising therapeutic target for the treatment of pSS.


Assuntos
Linfócitos T CD4-Positivos , Glicólise , Espécies Reativas de Oxigênio , Síndrome de Sjogren , Humanos , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Células Th17/imunologia , Diferenciação Celular , Interferon gama/metabolismo , Interleucina-17/metabolismo , Células Th1/imunologia
6.
Am J Reprod Immunol ; 92(1): e13901, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39042523

RESUMO

PROBLEM: Adenomyosis (AM) is associated with immune response and inflammation. However, the role of T cell subsets in AM development has not been thoroughly understood. METHOD OF STUDY: Patients with focal or diffuse AM were recruited. Serum cytokines were quantified by enzyme-linked immunosorbent assay (ELISA). Different T cell subsets in the blood and ectopic endometrium were determined by flow cytometry. RESULTS: Serum interleukin-6 (IL-6) and macrophage-colony-stimulating factor (GM-CSF) were increased in patients with focal or diffuse AM before focused ultrasound ablation surgery (FUAS), but not after FUAS. Compared with the healthy control, the frequencies of CD8+ interferon-gamma (IFN-γ)-expressing cytotoxic T lymphocytes (CTLs), interleukin-17A (IL-17A)-expressing Tc17 cells, CD4+ T helper 1 (Th1) cells, and GM-CSF-expressing T helper (ThGM) cells were up-regulated in the blood of patients with AM, especially those with diffuse AM. However, these changes were eradicated after FUAS. Meanwhile, the frequencies of these T cell subsets were positively correlated with the CA-125 level. Furthermore, these T cell subsets were also increased in ectopic endometrium. CONCLUSIONS: Our study delineates for the first time the presence of CTLs, Tc17 cells, Th1, and ThGM cells in the blood and ectopic endometrium in AM. The results imply that T cell response might impact AM development.


Assuntos
Adenomiose , Endométrio , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Células Th1 , Humanos , Feminino , Endométrio/imunologia , Endométrio/patologia , Adulto , Adenomiose/imunologia , Adenomiose/sangue , Adenomiose/patologia , Células Th1/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/sangue , Linfócitos T Citotóxicos/imunologia , Pessoa de Meia-Idade , Interleucina-17/metabolismo , Interleucina-17/sangue , Interleucina-6/sangue , Interleucina-6/metabolismo , Células Th17/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
7.
Nutrients ; 16(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999871

RESUMO

IL-17A drives inflammation and oxidative stress, affecting the progression of chronic lung diseases (asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and cystic fibrosis). Oleuropein (OLP) is a polyphenolic compound present in olive oil and widely included in the Mediterranean diet. It exerts antioxidant and anti-inflammatory activities, oxidative stress resistance, and anticarcinogenic effects with a conceivable positive impact on human health. We hypothesized that OLP positively affects the mechanisms of oxidative stress, apoptosis, DNA damage, cell viability during proliferation, and cell growth in alveolar epithelial cells and tested its effect in a human alveolar epithelial cell line (A549) in the presence of IL-17A. Our results show that OLP decreases the levels of oxidative stress (Reactive Oxygen Species, Mitochondrial membrane potential) and DNA damage (H2AX phosphorylation-ser139, Olive Tail Moment data) and increases cell apoptosis in A549 cells exposed to IL-17A. Furthermore, OLP decreases the number of viable cells during proliferation, the migratory potential (Scratch test), and the single cell capacity to grow within colonies as a cancer phenotype in A549 cells exposed to IL-17A. In conclusion, we suggest that OLP might be useful to protect lung epithelial cells from oxidative stress, DNA damage, cell growth, and cell apoptosis. This effect might be exerted in lung diseases by the downregulation of IL-17A activities. Our results suggest a positive effect of the components of olive oil on human lung health.


Assuntos
Apoptose , Proliferação de Células , Dano ao DNA , Interleucina-17 , Glucosídeos Iridoides , Iridoides , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Interleucina-17/metabolismo , Glucosídeos Iridoides/farmacologia , Proliferação de Células/efeitos dos fármacos , Células A549 , Dano ao DNA/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Iridoides/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Azeite de Oliva/farmacologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo
8.
PLoS Pathog ; 20(7): e1012302, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949991

RESUMO

Oropharyngeal candidiasis (OPC) is the most common human fungal infection, arising typically from T cell immune impairments. IL-17 and IL-22 contribute individually to OPC responses, but here we demonstrate that the combined actions of both cytokines are essential for resistance to OPC. Mice lacking IL-17RA and IL-22RA1 exhibited high fungal loads in esophagus- and intestinal tract, severe weight loss, and symptoms of colitis. Ultimately, mice succumbed to infection. Dual loss of IL-17RA and IL-22RA impaired expression of small proline rich proteins (SPRRs), a class of antimicrobial effectors not previously linked to fungal immunity. Sprr2a1 exhibited direct candidacidal activity in vitro, and Sprr1-3a-/- mice were susceptible to OPC. Thus, cooperative actions of Type 17 cytokines mediate oral mucosal anti-Candida defenses and reveal a role for SPRRs.


Assuntos
Candidíase Bucal , Interleucina-17 , Interleucina 22 , Interleucinas , Camundongos Knockout , Animais , Camundongos , Candida albicans/imunologia , Candidíase Bucal/imunologia , Candidíase Bucal/microbiologia , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Receptores de Interleucina/imunologia , Receptores de Interleucina/metabolismo , Receptores de Interleucina-17/imunologia , Receptores de Interleucina-17/metabolismo
9.
Cell Death Dis ; 15(7): 491, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982043

RESUMO

IL-17+ γδ T cells (γδ T17) are kick-starters of inflammation due to their strict immunosurveillance of xenobiotics or cellular damages and rapid response to pro-inflammatory stimulators. IL-27 is a well-recognized pleiotropic immune regulator with potent inhibitory effects on type 17 immune responses. However, its actions on γδ T17 mediated inflammation and the underlying mechanisms are less well understood. Here we find that IL-27 inhibits the production of IL-17 from γδ T cells. Mechanistically, IL-27 promotes lipolysis while inhibits lipogenesis, thus reduces the accumulation of lipids and subsequent membrane phospholipids, which leads to mitochondrial deactivation and ensuing reduction of IL-17. More importantly, Il27ra deficient γδ T cells are more pathogenic in an imiquimod-induced murine psoriasis model, while intracutaneous injection of rmIL-27 ameliorates psoriatic inflammation. In summary, this work uncovered the metabolic basis for the immune regulatory activity of IL-27 in restraining γδ T17 mediated inflammation, which provides novel insights into IL-27/IL-27Ra signaling, γδ T17 biology and the pathogenesis of psoriasis.


Assuntos
Interleucina-17 , Metabolismo dos Lipídeos , Mitocôndrias , Psoríase , Animais , Mitocôndrias/metabolismo , Camundongos , Psoríase/patologia , Psoríase/imunologia , Psoríase/metabolismo , Interleucina-17/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/patologia , Inflamação/metabolismo , Pele/patologia , Pele/metabolismo , Pele/imunologia , Pele/efeitos dos fármacos , Modelos Animais de Doenças , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Transdução de Sinais , Humanos
10.
PLoS One ; 19(7): e0307307, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39024223

RESUMO

Tuberculosis (TB) is an infectious, chronic, and progressive disease occurring globally. Human TB is caused mainly by Mycobacterium tuberculosis (M. tuberculosis), while the main causative agent of bovine TB is Mycobacterium bovis (M. bovis). The latter is one of the most important cattle pathogens and is considered the main cause of zoonotic TB worldwide. The mechanisms responsible for tissue damage (necrosis) during post-primary TB remain elusive. Recently, IL-17A was reported to be important for protection against M. tuberculosis infection, but it is also related to the production of an intense inflammatory response associated with necrosis. We used two M. bovis isolates with different levels of virulence and high IL-17A production to study this important cytokine's contrasting functions in a BALB/c mouse model of pulmonary TB. In the first part of the study, the gene expression kinetics and cellular sources of IL-17A were determined by real time PCR and immunohistochemistry respectively. Non-infected lungs showed low production of IL-17A, particularly by the bronchial epithelium, while lungs infected with the low-virulence 534 strain showed high IL-17A expression on Day 3 post-infection, followed by a decrease in expression in the early stage of the infection and another increase during late infection, on Day 60, when very low bacillary burdens were found. In contrast, infection with the highly virulent strain 04-303 induced a peak of IL-17A expression on Day 14 of infection, 1 week before extensive pulmonary necrosis was seen, being lymphocytes and macrophages the most important sources. In the second part of the study, the contribution of IL-17A to immune protection and pulmonary necrosis was evaluated by suppressing IL-17A via the administration of specific blocking antibodies. Infection with M. bovis strain 534 and treatment with IL-17A neutralizing antibodies did not affect mouse survival but produced a significant increase in bacillary load and a non-significant decrease in inflammatory infiltrate and granuloma area. In contrast, mice infected with the highly virulent 04-303 strain and treated with IL-17A blocking antibodies showed a significant decrease in survival, an increase in bacillary loads on Day 24 post-infection, and significantly more and earlier necrosis. Our results suggest that high expression of IL-17A is more related to protection than necrosis in a mouse model of pulmonary TB induced by M. bovis strains.


Assuntos
Interleucina-17 , Camundongos Endogâmicos BALB C , Mycobacterium bovis , Tuberculose Pulmonar , Interleucina-17/metabolismo , Interleucina-17/imunologia , Animais , Mycobacterium bovis/patogenicidade , Mycobacterium bovis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/patologia , Camundongos , Virulência , Pulmão/microbiologia , Pulmão/patologia , Pulmão/imunologia , Feminino , Bovinos
11.
Arch Dermatol Res ; 316(7): 474, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007937

RESUMO

Psoriasis, a chronic and easily recurring inflammatory skin disease, causes a great economic burden to the patient's family because the etiology and mechanism are still unclear and the treatment cycle is long. In this study, the function and related mechanisms of Momordin Ic in psoriasis were investigated. The IMQ-induced mouse psoriasis model was constructed. The protective effects of different doses of Momordin Ic on psoriasis skin damage in mice were detected by PASI score, HE staining and Ki-67 staining. A psoriasis-like keratinocyte model was established at the cellular level using M5 (IL-17A, IL-22, oncostatin M, IL-1α, and TNF-α) triggered HaCaT. The effects of Momordin Ic upon HaCaT cell biological behavior were examined using MTT and CCK-8 assays. In terms of mechanism, the expression level of each inflammatory factor was assessed using IHC staining and/or ELISA, qRT-PCR, the expression of oxidative stress-related indicators was detected biochemically, and western blot was performed to detect the levels of key proteins of the Wnt signaling and VEGF. As the results shown,  at the in vivo level, Momordin Ic significantly alleviated skin damage, reduced PASI score and inhibited hyperproliferation of keratinized cells in psoriasis mice. At the cellular level, Momordin Ic also significantly reversed M5-induced hyperproliferation of HaCaT keratinocytes. In terms of mechanism, Momordin Ic significantly inhibited the IL-23/IL-17 axis, dramatically elevated the levels of intracellular antioxidants including SOD, GSH-Px, and CAT, and significantly down-regulated the levels of the indicator of oxidative damage, malondialdehyde (MDA). In addition, Momordin Ic also significantly inhibited the level of ß-catenin, a pivotal protein of the Wnt signaling, C-Myc, a target gene of the Wnt signaling, and VEGF, a critical protein of angiogenesis. In conclusion, Momordin Ic can be involved in the skin-protective effects of psoriasis by multiple mechanisms, including inhibition of the Wnt signaling pathway and the IL-23/IL-17 axis, and suppression of oxidative damageand VEGF expression. Momordin Ic has been proven to be an underlying therapeutic drug for the treatment of psoriasis.


Assuntos
Modelos Animais de Doenças , Interleucina-17 , Interleucina-23 , Queratinócitos , Psoríase , Pele , Via de Sinalização Wnt , Animais , Humanos , Camundongos , Proliferação de Células/efeitos dos fármacos , Células HaCaT , Imiquimode , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos Endogâmicos BALB C , Estresse Oxidativo/efeitos dos fármacos , Psoríase/tratamento farmacológico , Psoríase/patologia , Psoríase/induzido quimicamente , Psoríase/imunologia , Pele/patologia , Pele/efeitos dos fármacos , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Via de Sinalização Wnt/efeitos dos fármacos
12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 744-748, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38948276

RESUMO

Objective: To investigate the roles of histone H3K27me3 methylation and its regulatory enzymes JMJD3 and EZH2 in the differentiation of Th17 cells in ankylosing spondylitis (AS), to unveil their potential involvement in the pathogenesis of AS, and to provide new strategies and targets for the clinical treatment of AS by analyzing the methylation state of H3K27me3 and its interactions with Th17-related factors. Methods: A total of 84 AS patients (42 active AS patiens and 42 patients in the stable phase of AS) were enrolled for the study, while 84 healthy volunteers were enrolled as the controls. Blood samples were collected. Peripheral blood mononuclear cells were isolated. ELISA assay was performed to examine Th17 cells and the relevant cytokines IL-21, IL-22, and IL-17. The mRNA expressions of RORc, JAK2, and STAT3 were analyzed by RT-PCR, the protein expressions of RORc, JAK2/STAT3 pathway protein, H3K27me3 and the relevant protease (EZH2 and JMJD3) were determined by Western blot. Correlation between H3K27me3, EZH2 and JMJD3 and the key signaling pathway molecules of Th cell differentiation was analyzed by Pearson correlation analysis. Results: The mRNA expressions of RORc, JAK2, and STAT3 were significantly higher in the active phase group than those in the stable phase group ( P<0.05). The relative grayscale values of H3K27me3 and EZH2 in the active phase group were lower than those of the stable phase group, which were lower than those of the control group, with the differences being statistically significant ( P<0.05). The relative grayscale values of JMJD3, RORc, JAK2, pJAK2, STAT3, and pSTAT3 proteins were significantly higher in the active phase group than those in the stable phase group, which were higher than those in the control group (all P<0.05). The proportion of Th17 and the expression level of inflammatory factors in the active period group were higher than those in the other two groups (P<0.05). H3K27me3 was negatively correlated with RORc, JAK2, STAT3, and IL-17, JMJD3 was positvely correlated with JAK2, STAT3, and IL-17, and EZH2 was negatively correlated with JAK2, STAT3, and IL-17 (all P<0.05). Conclusion: The low expression of H3K27me3 in AS is influenced by the gene loci JMJD3 and EZH2, which can regulate the differentiation of Th17 cells and thus play a role in the pathogenesis and progression of AS.


Assuntos
Diferenciação Celular , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Histonas , Interleucina-17 , Histona Desmetilases com o Domínio Jumonji , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Fator de Transcrição STAT3 , Espondilite Anquilosante , Células Th17 , Humanos , Espondilite Anquilosante/genética , Espondilite Anquilosante/metabolismo , Células Th17/metabolismo , Células Th17/citologia , Células Th17/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histonas/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Metilação , Interleucinas/metabolismo , Interleucinas/genética , Interleucina 22 , Masculino , Feminino , Adulto
13.
Pharmacol Res Perspect ; 12(4): e1234, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961539

RESUMO

The association of hormonal contraception with increased risk of inflammatory bowel disease (IBD) observed in females suggests involvement of ovarian hormones, such as estradiol, and the estrogen receptors in the progression of intestinal inflammation. Here, we investigated the effects of prophylactic SERM2 and estradiol supplementation in dextran sulfate sodium-induced colitis using mice with intact ovaries and ovariectomized (OVX) female mice. We found that graded colitis score was threefold reduced in the OVX mice, compared to mice with intact ovaries. Estradiol supplementation, however, aggravated the colitis in OVX mice, increasing the colitis score to a similar level than what was observed in the intact mice. Further, we observed that immune infiltration and gene expression of inflammatory interleukins Il1b, Il6, and Il17a were up to 200-fold increased in estradiol supplemented OVX colitis mice, while a mild but consistent decrease was observed by SERM2 treatment in intact animals. Additionally, cyclo-oxygenase 2 induction was increased in the colon of colitis mice, in correlation with increased serum estradiol levels. Measured antagonist properties of SERM2, together with the other results presented here, indicates an exaggerating role of ERα signaling in colitis. Our results contribute to the knowledge of ovarian hormone effects in colitis and encourage further research on the potential use of ER antagonists in the colon, in order to alleviate inflammation.


Assuntos
Colite , Sulfato de Dextrana , Estradiol , Receptor alfa de Estrogênio , Ovariectomia , Animais , Feminino , Receptor alfa de Estrogênio/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colite/tratamento farmacológico , Camundongos , Estradiol/farmacologia , Estradiol/sangue , Camundongos Endogâmicos C57BL , Estrogênios/farmacologia , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Interleucina-17/metabolismo , Colo/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Interleucina-6/metabolismo , Interleucina-1beta/metabolismo
14.
Commun Biol ; 7(1): 804, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961129

RESUMO

Oral administration of harmless antigens can induce suppression of reactive immune responses, a process that capitalises on the ability of the gastrointestinal tract to tolerate exposure to food and commensal microbiome without triggering inflammatory responses. Repeating exposure to type II collagen induces oral tolerance and inhibits induction of arthritis, a chronic inflammatory joint condition. Although some mechanisms underlying oral tolerance are described, how dysregulation of gut immune networks impacts on inflammation of distant tissues like the joints is unclear. We used undenatured type II collagen in a prophylactic regime -7.33 mg/kg three times/week- to describe the mechanisms associated with protective oral immune-therapy (OIT) in gut and joint during experimental Collagen-Induced Arthritis (CIA). OIT reduced disease incidence to 50%, with reduced expression of IL-17 and IL-22 in the joints of asymptomatic mice. Moreover, whilst the gut tissue of arthritic mice shows substantial damage and activation of tissue-specific immune networks, oral administration of undenatured type II collagen protects against gut pathology in all mice, symptomatic and asymptomatic, rewiring IL-17/IL-22 networks. Furthermore, gut fucosylation and microbiome composition were also modulated. These results corroborate the relevance of the gut-joint axis in arthritis, showing novel regulatory mechanisms linked to therapeutic OIT in joint disease.


Assuntos
Artrite Experimental , Colágeno Tipo II , Microbioma Gastrointestinal , Homeostase , Animais , Artrite Experimental/imunologia , Artrite Experimental/prevenção & controle , Colágeno Tipo II/imunologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Articulações/imunologia , Articulações/efeitos dos fármacos , Articulações/patologia , Camundongos Endogâmicos DBA , Interleucina-17/metabolismo , Interleucina 22 , Administração Oral
15.
Sci Rep ; 14(1): 13968, 2024 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886451

RESUMO

The complexity of systemic lupus erythematosus (SLE) arises from intricate genetic and environmental interactions, with STING playing a pivotal role. This study aims to comprehend the function of STING using the pristane-induced lupus (PIL) model in Sting missense mutant mice (Goldenticket or StingGt), which contrasts with previous research using Sting knockout mice. Investigating two-month-old StingGt mice over six months post-PIL induction, we observed a profound reduction in autoimmune markers, including antinuclear and anti-dsDNA antibodies, germinal center B cells, and plasma cells, compared to their wild-type counterparts. A pivotal finding was the marked decrease in IL-17-producing T cells. Notably, the severity of lupus nephritis and pulmonary hemorrhages was significantly diminished in StingGt mice. These findings demonstrate that different genetic approaches to interfere with STING signaling can lead to contrasting outcomes in SLE pathogenesis, which highlights the need for a nuanced understanding of the role of STING in drug development for SLE. In summary, the loss of Sting function in Goldenticket mutant mice rescued autoimmune phenotypes in PIL. This study reveals the critical nature of STING in SLE, suggesting that the method of STING modulation significantly influences disease phenotypes and should be a key consideration in developing targeted therapies.


Assuntos
Modelos Animais de Doenças , Lúpus Eritematoso Sistêmico , Proteínas de Membrana , Animais , Camundongos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Anticorpos Antinucleares/imunologia , Terpenos , Feminino , Interleucina-17/metabolismo , Interleucina-17/genética , Nefrite Lúpica/genética , Nefrite Lúpica/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/metabolismo , Mutação de Sentido Incorreto , Linfócitos B/imunologia , Linfócitos B/metabolismo
16.
PLoS Pathog ; 20(6): e1012316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38905308

RESUMO

Histone demethylase JMJD2D (also known as KDM4D) can specifically demethylate H3K9me2/3 to activate its target gene expression. Our previous study has demonstrated that JMJD2D can protect intestine from dextran sulfate sodium (DSS)-induced colitis by activating Hedgehog signaling; however, its involvement in host defense against enteric attaching and effacing bacterial infection remains unclear. The present study was aimed to investigate the role of JMJD2D in host defense against enteric bacteria and its underlying mechanisms. The enteric pathogen Citrobacter rodentium (C. rodentium) model was used to mimic clinical colonic infection. The responses of wild-type and JMJD2D-/- mice to oral infection of C. rodentium were investigated. Bone marrow chimeric mice were infected with C. rodentium. JMJD2D expression was knocked down in CMT93 cells by using small hairpin RNAs, and Western blot and real-time PCR assays were performed in these cells. The relationship between JMJD2D and STAT3 was studied by co-immunoprecipitation and chromatin immunoprecipitation. JMJD2D was significantly up-regulated in colonic epithelial cells of mice in response to Citrobacter rodentium infection. JMJD2D-/- mice displayed an impaired clearance of C. rodentium, more body weight loss, and more severe colonic tissue pathology compared with wild-type mice. JMJD2D-/- mice exhibited an impaired expression of IL-17F in the colonic epithelial cells, which restricts C. rodentium infection by inducing the expression of antimicrobial peptides. Accordingly, JMJD2D-/- mice showed a decreased expression of ß-defensin-1, ß-defensin-3, and ß-defensin-4 in the colonic epithelial cells. Mechanistically, JMJD2D activated STAT3 signaling by inducing STAT3 phosphorylation and cooperated with STAT3 to induce IL-17F expression by interacting with STAT3 and been recruited to the IL-17F promoter to demethylate H3K9me3. Our study demonstrates that JMJD2D contributes to host defense against enteric bacteria through up-regulating IL-17F to induce ß-defensin expression.


Assuntos
Citrobacter rodentium , Colo , Infecções por Enterobacteriaceae , Interleucina-17 , Histona Desmetilases com o Domínio Jumonji , Camundongos Knockout , Regulação para Cima , beta-Defensinas , Animais , Camundongos , beta-Defensinas/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/imunologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Interleucina-17/metabolismo , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Camundongos Endogâmicos C57BL , Colite/metabolismo , Colite/microbiologia , Fator de Transcrição STAT3/metabolismo
17.
Nat Commun ; 15(1): 5413, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926424

RESUMO

Diet composition impacts metabolic health and is now recognized to shape the immune system, especially in the intestinal tract. Nutritional imbalance and increased caloric intake are induced by high-fat diet (HFD) in which lipids are enriched at the expense of dietary fibers. Such nutritional challenge alters glucose homeostasis as well as intestinal immunity. Here, we observed that short-term HFD induced dysbiosis, glucose intolerance and decreased intestinal RORγt+ CD4 T cells, including peripherally-induced Tregs and IL17-producing (Th17) T cells. However, supplementation of HFD-fed male mice with the fermentable dietary fiber fructooligosaccharides (FOS) was sufficient to maintain RORγt+ CD4 T cell subsets and microbial species known to induce them, alongside having a beneficial impact on glucose tolerance. FOS-mediated normalization of Th17 cells and amelioration of glucose handling required the cDC2 dendritic cell subset in HFD-fed animals, while IL-17 neutralization limited FOS impact on glucose tolerance. Overall, we uncover a pivotal role of cDC2 in the control of the immune and metabolic effects of FOS in the context of HFD feeding.


Assuntos
Células Dendríticas , Dieta Hiperlipídica , Homeostase , Camundongos Endogâmicos C57BL , Oligossacarídeos , Animais , Oligossacarídeos/farmacologia , Dieta Hiperlipídica/efeitos adversos , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Masculino , Camundongos , Células Th17/imunologia , Células Th17/metabolismo , Células Th17/efeitos dos fármacos , Glucose/metabolismo , Interleucina-17/metabolismo , Fibras na Dieta/farmacologia , Intolerância à Glucose/imunologia , Intolerância à Glucose/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Disbiose/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos
18.
BMC Pulm Med ; 24(1): 286, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38890643

RESUMO

BACKGROUND: Cystic fibrosis (CF) is a genetic multisystem disorder. Inflammatory processes, which presumably begin early in infancy, play a crucial role in the progression of the disease. The detection of inflammatory biomarkers, especially in the airways, has therefore gained increasing attention. Due to improved treatment options, patients with CF produce less sputum. Nasal lavage samples therefore represent a promising alternative to induced sputum or bronchoalveolar lavage specimens. However, methodology of cytokine measurements is not standardised and comparisons of results are therefore often difficult. The aim of this study was to identify suitable detection methods of cytokines in nasal lavage samples by comparison of two different assays. METHODS: Nasal lavage samples were obtained from the same patient at the same time by trained respiratory physiotherapists using a disposable syringe and 10 ml of 0.9% sodium chloride per nostril during outpatient visits. The cytokines IL-17 A, IL-2, IL-6 and IL-10 were measured using two different assays (BD™ and Milliplex®), which have already been applied in sputum and nasal lavage samples, despite different lower detection limits. RESULTS: 22 participants were included in the study. In 95.5% of measurements, values were below the limit of detection with respect to the BD™ assay. Only IL-6 could be detected in approximately half of the patients. Individual cytokine levels were considerably higher when measured with Milliplex®, which is also reflected in a statistically significant manner (p = < 0.01). CONCLUSION: The right choice of analysis method is crucial for measuring inflammatory markers in nasal lavage samples. Compared to the literature, Milliplex® showed higher detection rates and similar concentrations to other studies. TRIAL REGISTRATION: Ethics approval was obtained from the ethics committee at Medical University of Innsbruck (EK Nr: 1055/2022).


Assuntos
Fibrose Cística , Citocinas , Líquido da Lavagem Nasal , Humanos , Fibrose Cística/diagnóstico , Masculino , Feminino , Citocinas/análise , Citocinas/metabolismo , Adulto , Adolescente , Líquido da Lavagem Nasal/química , Adulto Jovem , Biomarcadores/análise , Biomarcadores/metabolismo , Criança , Interleucina-6/análise , Interleucina-6/metabolismo , Interleucina-10/análise , Interleucina-10/metabolismo , Interleucina-2/análise , Interleucina-2/metabolismo , Interleucina-17/análise , Interleucina-17/metabolismo
19.
Hepatol Commun ; 8(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829197

RESUMO

BACKGROUND: The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study, we aimed to investigate and characterize the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. METHODS: Cholangiocytes obtained from patients with PSC and without PSC by endoscopic retrograde cholangiography were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing. RESULTS: Unsupervised clustering of all integrated single-cell RNA sequencing data identified 8 cholangiocyte clusters that did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, as noted by an increased number of differentially expressed genes by transcriptomics and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, genome sequencing identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. CONCLUSIONS: PSC and non-PSC patient-derived ECO respond differently to IL-17 stimulation, implicating this pathway in the pathogenesis of PSC.


Assuntos
Colangite Esclerosante , Interleucina-17 , Organoides , Transdução de Sinais , Humanos , Interleucina-17/metabolismo , Colangite Esclerosante/imunologia , Colangite Esclerosante/genética , Transcriptoma , Masculino
20.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38861022

RESUMO

The IL-17 receptor adaptor molecule Act1, an RNA-binding protein, plays a critical role in IL-17-mediated cancer progression. Here, we report a novel mechanism of how IL-17/Act1 induces chemoresistance by modulating redox homeostasis through epitranscriptomic regulation of antioxidant RNA metabolism. Transcriptome-wide mapping of direct Act1-RNA interactions revealed that Act1 binds to the 5'UTR of antioxidant mRNAs and Wilms' tumor 1-associating protein (WTAP), a key regulator in m6A methyltransferase complex. Strikingly, Act1's binding sites are located in proximity to m6A modification sites, which allows Act1 to promote the recruitment of elF3G for cap-independent translation. Loss of Act1's RNA binding activity or Wtap knockdown abolished IL-17-induced m6A modification and translation of Wtap and antioxidant mRNAs, indicating a feedforward mechanism of the Act1-WTAP loop. We then developed antisense oligonucleotides (Wtap ASO) that specifically disrupt Act1's binding to Wtap mRNA, abolishing IL-17/Act1-WTAP-mediated antioxidant protein production during chemotherapy. Wtap ASO substantially increased the antitumor efficacy of cisplatin, demonstrating a potential therapeutic strategy for chemoresistance.


Assuntos
Antioxidantes , Resistencia a Medicamentos Antineoplásicos , Homeostase , Oxirredução , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Animais , Linhagem Celular Tumoral , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Interleucina-17/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Regiões 5' não Traduzidas , Cisplatino/farmacologia , Fatores de Processamento de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA