Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.869
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34433692

RESUMO

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. We hypothesized that perturbations in FoxP3+ T regulatory cells (Treg), key enforcers of immune homeostasis, contribute to COVID-19 pathology. Cytometric and transcriptomic profiling revealed a distinct Treg phenotype in severe COVID-19 patients, with an increase in Treg proportions and intracellular levels of the lineage-defining transcription factor FoxP3, correlating with poor outcomes. These Tregs showed a distinct transcriptional signature, with overexpression of several suppressive effectors, but also proinflammatory molecules like interleukin (IL)-32, and a striking similarity to tumor-infiltrating Tregs that suppress antitumor responses. Most marked during acute severe disease, these traits persisted somewhat in convalescent patients. A screen for candidate agents revealed that IL-6 and IL-18 may individually contribute different facets of these COVID-19-linked perturbations. These results suggest that Tregs may play nefarious roles in COVID-19, by suppressing antiviral T cell responses during the severe phase of the disease, and by a direct proinflammatory role.


Assuntos
COVID-19/etiologia , Linfócitos T Reguladores/fisiologia , Adulto , Idoso , Linfócitos T CD4-Positivos/virologia , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Inflamação/metabolismo , Inflamação/virologia , Interleucina-18/genética , Interleucina-18/metabolismo , Subunidade alfa de Receptor de Interleucina-2/genética , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Linfócitos do Interstício Tumoral/fisiologia , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/virologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Gene ; 805: 145909, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34419568

RESUMO

BACKGROUND: Adenosine deaminase acting on RNA 3 (ADAR3) was known as a prognosis factor in gliomas, while its function on neuropathic pain (NP) is barely investigated. Therefore, our present study concentrated on the potential role of ADAR3 in NP. METHODS: The chronic constriction injury (CCI) mouse model was established to induce NP in vivo. Behavioral experiments were carried out to analyze mechanical allodynia and thermal hyperalgesia. RT-qPCR and western blotting assays were used to detect the mRNA and protein expressions. The ADAR3-overexpressed adenovirus was injected into the CCI mice through an intrathecal catheter. ELISA was used to detect the contents of IL (interleukin)-6, IL-10, TNF (tumor necrosis factor)-α, IL-1ß and IL-18. NLR Family Pyrin Domain Containing 3 (NLRP3) was predicted to be the target gene of ADAR3 using Starbase. The interaction between ADAR3 and NLRP3 was verified via RNA pull-down, RNA immunoprecipitation and Pearson's correlation coefficient assays. Immunohistochemical staining assay visualized the expressions of NLRP3 and caspase1. RESULTS: Allodynia and hyperalgesia were exacerbated in the CCI mice, which implied a successful establishment of the NP model, while ADAR3 expression level was suppressed. After injecting ADAR3-overexpressed adenovirus into the CCI mice, allodynia, hyperalgesia and inflammation were all restrained. Moreover, NLRP3 was verified to negatively correlated with ADAR3. Additionally, the pyroptosis-related protein NLRP3, ASC, caspase1, IL-1ß, IL-18 and GSDMD expressions were all decreased by ADAR3. CONCLUSION: In conclusion, ADAR3 alleviated inflammation and pyroptosis of NP through targeting NLRP3, which suggested a therapeutical target for NP.


Assuntos
Adenosina Desaminase/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuralgia/genética , Adenosina Desaminase/metabolismo , Animais , Constrição Patológica/fisiopatologia , Hiperalgesia/genética , Inflamação/genética , Inflamação/metabolismo , Interleucina-10/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Neuralgia/metabolismo , Piroptose/genética , Piroptose/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
3.
Mol Immunol ; 137: 212-220, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34280771

RESUMO

As a proinflammatory cytokine of the interleukin-1 (IL-1) family, IL-18 plays important roles in host protection against bacterial, viral, and fungal infection. We cloned the open reading frame of snakehead (Channa argus) IL-18 (shIL-18) and found that it contained 609 base pairs and encoded 202 amino acid residues. The shIL-18 included a conserved IL-1-like family signature and two potential IL-1ß-converting enzyme cutting sites; one was conserved in all analyzed IL-18s, but the other was unique to shIL-18. Unlike other IL-18s, shIL-18 also contained a predicted signal peptide. In this study, shIL-18 was constitutively expressed in all tested tissues, and its expression was induced by Aeromonas schubertii and Nocardia seriolae in the head kidney and spleen in vivo and by lipoteichoic acid, lipopolysaccharides, and polyinosinic-polycytidylic acid in head kidney leukocytes in vitro. Moreover, recombinant shIL-18 upregulated the expression of interferon-γ, IL-1ß, and tumor necrosis factor-α1 and -α2 and promoted the proliferation of leukocytes. Taken together, these results showed that IL-18 played crucial roles in host defense against bacterial infection in fish, as it does in mammals.


Assuntos
Aeromonas/patogenicidade , Doenças dos Peixes/metabolismo , Peixes/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Interleucina-18/metabolismo , Nocardiose/metabolismo , Nocardia/patogenicidade , Animais , Clonagem Molecular/métodos , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Peixes/microbiologia , Rim Cefálico/metabolismo , Rim Cefálico/microbiologia , Lipopolissacarídeos/metabolismo , Baço/metabolismo , Baço/microbiologia , Ácidos Teicoicos/metabolismo
4.
Immunity ; 54(8): 1772-1787.e9, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289378

RESUMO

As substantial constituents of the multiple myeloma (MM) microenvironment, pro-inflammatory macrophages have emerged as key promoters of disease progression, bone destruction, and immune impairment. We identify beta-2-microglobulin (ß2m) as a driver in initiating inflammation in myeloma-associated macrophages (MAMs). Lysosomal accumulation of phagocytosed ß2m promotes ß2m amyloid aggregation in MAMs, resulting in lysosomal rupture and ultimately production of active interleukin-1ß (IL-1ß) and IL-18. This process depends on activation of the NLRP3 inflammasome after ß2m accumulation, as macrophages from NLRP3-deficient mice lack efficient ß2m-induced IL-1ß production. Moreover, depletion or silencing of ß2m in MM cells abrogates inflammasome activation in a murine MM model. Finally, we demonstrate that disruption of NLRP3 or IL-18 diminishes tumor growth and osteolytic bone destruction normally promoted by ß2m-induced inflammasome signaling. Our results provide mechanistic evidence for ß2m's role as an NLRP3 inflammasome activator during MM pathogenesis. Moreover, inhibition of NLRP3 represents a potential therapeutic approach in MM.


Assuntos
Amiloide/metabolismo , Mieloma Múltiplo/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos Associados a Tumor/metabolismo , Microglobulina beta-2/metabolismo , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fagocitose/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Microglobulina beta-2/genética
5.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203170

RESUMO

Acidovorax avenae is a flagellated, pathogenic bacterium to various plant crops that has also been found in human patients with haematological malignancy, fever, and sepsis; however, the exact mechanism for infection in humans is not known. We hypothesized that the human innate immune system could be responsive to the purified flagellin isolated from A. avenae, named FLA-AA. We observed the secretion of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8 by treating FLA-AA to human dermal fibroblasts, as well as macrophages. This response was exclusively through TLR5, which was confirmed by using TLR5-overexpression cell line, 293/hTLR5, as well as TLR5-specific inhibitor, TH1020. We also observed the secretion of inflammatory cytokine, IL-1ß, by the activation of NLRC4 with FLA-AA. Overall, our results provide a molecular basis for the inflammatory response caused by FLA-AA in cell-based assays.


Assuntos
Comamonadaceae/química , Flagelina/farmacologia , Imunidade Inata/fisiologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Imunidade Inata/genética , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
6.
Ecotoxicol Environ Saf ; 221: 112433, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34146983

RESUMO

Fine particulate matter (PM2.5) is one of the most important components of environmental pollutants and is associated with lung injury. Pyroptosis, a form of programmed cell death mainly mediated by the NLRP3 inflammasome, has been reported to be involved in sepsis-induced or ischemia/reperfusion-induced lung injury. However, the specific mechanisms of pyroptosis in PM2.5-induced lung injury are not yet clear. We constructed macrophage-specific NLRP3 knockout mice to explore the mechanism of PM2.5-induced lung injury in terms of inflammatory response, oxidative stress, and apoptosis levels, including the relationship between these effects and pyroptosis. The results disclosed that PM2.5 exposure increased the infiltration of macrophages and leukocytes and the secretion of inflammatory cytokines, including TNF-α and IL-6, in lung tissue. The activity of antioxidant enzymes, including SOD, GSH-PX, and CAT, significantly decreased, while MDA, the end product of lipid oxidation, remarkably increased. The level of apoptosis in lung tissue, measured by the TUNEL assay and apoptosis-related proteins (BAX and BCL-2), was significantly increased. Macrophage-specific NLRP3 knockout could offset these effects. We further observed that PM2.5 treatment activated the NLRP3 inflammasome and subsequently induced pyroptosis, as evidenced by the increased production of IL-1ß and IL-18 and the increase of the protein levels of NLRP3, ASC, caspase-1, and GSDMD, which were inhibited when NLRP3 was knocked out in macrophages. Taken together, these results revealed that NLRP3-mediated macrophage pyroptosis promoted PM2.5-induced lung injury through aggravating inflammation, oxidative stress, and apoptosis. Targeting the inhibition of NLRP3-mediated macrophage pyroptosis provides a new way to study lung injury induced by the exposure to PM2.5.


Assuntos
Lesão Pulmonar/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Material Particulado/toxicidade , Animais , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Técnicas de Inativação de Genes , Inflamassomos/metabolismo , Inflamação , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lesão Pulmonar/induzido quimicamente , Macrófagos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/efeitos dos fármacos , Piroptose/genética
7.
Int J Mol Sci ; 22(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073872

RESUMO

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common and devastating clinical disorders with high mortality and no specific therapy. Lipopolysaccharide (LPS) is usually used intratracheally to induce ALI in mice. The aim of this study was to examine the effects of an ultramicronized preparation of palmitoylethanolamide (um-PEA) in mice subjected to LPS-induced ALI. Histopathological analysis reveals that um-PEA reduced alteration in lung after LPS intratracheal administration. Besides, um-PEA decreased wet/dry weight ratio and myeloperoxidase, a marker of neutrophils infiltration, macrophages and total immune cells number and mast cells degranulation in lung. Moreover, um-PEA could also decrease cytokines release of interleukin (IL)-6, interleukin (IL)-1ß, tumor necrosis factor (TNF)-α and interleukin (IL)-18. Furthermore, um-PEA significantly inhibited the phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in ALI, and at the same time decreased extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK) expression, that was increased after LPS administration. Our study suggested that um-PEA contrasted LPS-induced ALI, exerting its potential role as an adjuvant anti-inflammatory therapeutic for treating lung injury, maybe also by p38/NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Amidas/farmacologia , Citocinas/metabolismo , Etanolaminas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ácidos Palmíticos/farmacologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Amidas/uso terapêutico , Animais , Etanolaminas/uso terapêutico , Imuno-Histoquímica , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ácidos Palmíticos/uso terapêutico , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Elife ; 102021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34047696

RESUMO

Neutrophil responses against pathogens must be balanced between protection and immunopathology. Factors that determine these outcomes are not well-understood. In a mouse model of genital herpes simplex virus-2 (HSV-2) infection, which results in severe genital inflammation, antibody-mediated neutrophil depletion reduced disease. Comparative single-cell RNA-sequencing analysis of vaginal cells against a model of genital HSV-1 infection, which results in mild inflammation, demonstrated sustained expression of interferon-stimulated genes (ISGs) only after HSV-2 infection primarily within the neutrophil population. Both therapeutic blockade of IFNα/ß receptor 1 (IFNAR1) and genetic deletion of IFNAR1 in neutrophils concomitantly decreased HSV-2 genital disease severity and vaginal IL-18 levels. Therapeutic neutralization of IL-18 also diminished genital inflammation, indicating an important role for this cytokine in promoting neutrophil-dependent immunopathology. Our study reveals that sustained type I interferon (IFN) signaling is a driver of pathogenic neutrophil responses and identifies IL-18 as a novel component of disease during genital HSV-2 infection.


Assuntos
Herpes Genital/virologia , Herpesvirus Humano 2/patogenicidade , Imunidade nas Mucosas , Interferon Tipo I/metabolismo , Interleucina-18/metabolismo , Membrana Mucosa/virologia , Ativação de Neutrófilo , Neutrófilos/virologia , Vagina/virologia , Animais , Anticorpos/farmacologia , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Herpes Genital/imunologia , Herpes Genital/metabolismo , Herpes Genital/prevenção & controle , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 2/imunologia , Interações Hospedeiro-Patógeno , Imunidade nas Mucosas/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membrana Mucosa/efeitos dos fármacos , Membrana Mucosa/inervação , Membrana Mucosa/metabolismo , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptor de Interferon alfa e beta/antagonistas & inibidores , Receptor de Interferon alfa e beta/metabolismo , Transdução de Sinais , Vagina/efeitos dos fármacos , Vagina/imunologia , Vagina/metabolismo , Células Vero
9.
Biochem Biophys Res Commun ; 561: 33-39, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34000515

RESUMO

OBJECTIVE: Ferroptosis is a new form of programmed cell death characterized by an iron-dependent increase in lipid ROS. It has recently been reported that elevated iron levels in macrophages in plaques are associated with atherosclerosis(AS). However, it is not clear whether iron induces ferroptosis and the mechanism of ferroptosis induced by iron in macrophages in plaque. METHODS: THP-1 macrophages were treated with ox-LDL and ferric ammonium citrate(FAC). Activate SIRT1 using SRT1720. Use of RAPA and CQ to promote and suppress autophagy. The expression of SIRT1, GPX4 was detected by Western Blot, and the cell activity and lipid ROS level were also performed. IL-1ß and IL-18 levels were measured using qRT-PCR and ELISA. RESULTS: In this study, we determined that FAC can induce a decrease in foam cell activity rather than macrophage activity, increase lipid ROS levels, decrease GPX4 expression and inhibit SIRT1 expression, and increase IL-1ß and IL-18 levels. SRT1720 activated SIRT1 and reversed the above changes induced by FAC. CQ partially prevents the above changes caused by activating SIRT1. CONCLUSION: Activation of SIRT1 can inhibit the ferroptosis and IL-1ß and IL-18 levels of foam cells in excess iron by autophagy, providing a novel therapeutic target for AS.


Assuntos
Aterosclerose/patologia , Células Espumosas/patologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Sobrecarga de Ferro/patologia , Sirtuína 1/metabolismo , Animais , Aterosclerose/metabolismo , Autofagia/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Ferroptose/fisiologia , Células Espumosas/metabolismo , Humanos , Interleucina-18/genética , Interleucina-1beta/genética , Sobrecarga de Ferro/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout para ApoE , Transdução de Sinais , Sirtuína 1/genética
10.
Am J Physiol Cell Physiol ; 321(1): C117-C133, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34010066

RESUMO

Sepsis is a life-threatening condition that can lead to several organ failures including kidney. In this study, we investigated the roles of GAS5 and miR-579-3p in regulating cell pyroptosis in the sepsis-induced renal injury model. Lipopolysaccharide (LPS) treatment or cecal ligation and puncture (CLP) surgery was used to create the in vitro and in vivo sepsis-induced renal injury model. The interactions between GAS5 and miR-579-3p, and miR-579-3p and SIRT1 were determined by bioinformatic prediction, luciferase reporter assay, and RIP assay. In vitro cell pyroptosis was examined by flow cytometry marked with active caspase-1 and PI. The protein levels of IL-1ß and IL-18 induced by cell pyroptosis were quantified using ELISA assay. In vivo renal injuries were evaluated with HE and TUNEL stainings, bacterial load in serum and creatinine, and blood urea nitrogen content analyses. Expression levels of GAS5, miR-579-3p, pyroptosis, and SIRT1/PGC-1a/Nrf2 pathway-related molecules were evaluated by qRT-PCR or Western blot. GAS5 and SIRT1 were downregulated, whereas miR-579-3p was upregulated in in vitro and in vivo sepsis-induced renal injury models. GAS5 negatively and directly regulated miR-579-3p to reduce cell pyroptosis via the activation of SIRT1/PGC-1a/Nrf2 pathway. In addition, miR-579-3p suppressed PGC-1a/Nrf2 pathway to induce cell pyroptosis by directly targeting SIRT1. What's more, overexpression of GAS5, or knockdown of miR-579-3p, enhanced SIRT1 expression that led to the improved survival rate, reduced the weight loss, and relieved renal injuries in septic mice. Overexpression of GAS5 demonstrated protective effects against sepsis-induced renal injury via downregulating miR-579-3p and activating SIRT1/PGC-1α/Nrf2 pathway to inhibit cell pyroptosis.


Assuntos
Injúria Renal Aguda/genética , MicroRNAs/genética , Fator 2 Relacionado a NF-E2/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , RNA Longo não Codificante/genética , Sepse/genética , Sirtuína 1/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/mortalidade , Injúria Renal Aguda/patologia , Animais , Nitrogênio da Ureia Sanguínea , Caspase 1/genética , Caspase 1/metabolismo , Creatinina/sangue , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Genes Reporter , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Lipopolissacarídeos/farmacologia , Luciferases/genética , Luciferases/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Piroptose/genética , RNA Longo não Codificante/metabolismo , Sepse/metabolismo , Sepse/mortalidade , Sepse/patologia , Transdução de Sinais , Sirtuína 1/metabolismo , Análise de Sobrevida
11.
Cells ; 10(3)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799608

RESUMO

Pulmonary fibrosis is the chronic-progressive replacement of healthy lung tissue by extracellular matrix, leading to the destruction of the alveolar architecture and ultimately death. Due to limited pathophysiological knowledge, causal therapies are still missing and consequently the prognosis is poor. Thus, there is an urgent clinical need for models to derive effective therapies. Polo-like kinase 2 (PLK2) is an emerging regulator of fibroblast function and fibrosis. We found a significant downregulation of PLK2 in four different entities of human pulmonary fibrosis. Therefore, we characterized the pulmonary phenotype of PLK2 knockout (KO) mice. Isolated pulmonary PLK2 KO fibroblasts displayed a pronounced myofibroblast phenotype reflected by increased expression of αSMA, reduced proliferation rates and enhanced ERK1/2 and SMAD2/3 phosphorylation. In PLK2 KO, the expression of the fibrotic cytokines osteopontin and IL18 was elevated compared to controls. Histological analysis of PLK2 KO lungs revealed early stage remodeling in terms of alveolar wall thickening, increased alveolar collagen deposition and myofibroblast foci. Our results prompt further investigation of PLK2 function in pulmonary fibrosis and suggest that the PLK2 KO model displays a genetic predisposition towards pulmonary fibrosis, which could be leveraged in future research on this topic.


Assuntos
Colágeno/metabolismo , Fibroblastos/enzimologia , Pulmão/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Fibrose Pulmonar/enzimologia , Adulto , Animais , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos/patologia , Deleção de Genes , Predisposição Genética para Doença , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Pulmão/patologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Pessoa de Meia-Idade , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Osteopontina/genética , Osteopontina/metabolismo , Fenótipo , Proteínas Serina-Treonina Quinases/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Transdução de Sinais
12.
Front Immunol ; 12: 578548, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815355

RESUMO

Objectives: To explore the potential role of CD3+CD8+CD161high TCRVα7.2+ mucosal-associated invariant T (MAIT) cells in the pathogenesis of primary biliary cholangitis (PBC). Methods: We enrolled 55 patients with PBC, 69 healthy controls (HCs), and 8 patients with hepatic hemangioma. Circulating MAIT cells and their chemokine receptor profiles and cytokine production were quantified using flow cytometry. Liver-resident MAIT cells were examined by immunofluorescence staining. CXCL12-mediated chemotaxis of MAIT cells was measured using a transwell migration assay. Plasma interleukin (IL)-18 was measured using ELISA, and cytokine production in IL-18-stimulated MAIT cells was detected using flow cytometry. Result: Peripheral MAIT cells were found to be significantly lower in patients with PBC (3.0 ± 3.2% vs. 9.4 ± 8.0%, p < 0.01) and negatively correlated with alkaline phosphatase (ALP) levels (r = -0.3209, p < 0.05). Liver immunofluorescence staining suggested that MAIT cells might accumulate in PBC liver. MAIT cells from patients with PBC expressed higher levels of CXCR4 (84.8 ± 18.0% vs. 58.7 ± 11.4%, p < 0.01), and the expression of CXCL12 was higher in PBC liver. CXCL12 promoted MAIT cell chemotaxis (70.4 ± 6.8% vs. 52.2 ± 3.5%, p < 0.01), which was attenuated by CXCR4 antagonist. MAIT cells from PBC produced significantly more interferon-γ (IFN-γ) (88.3 ± 4.2% vs. 64.2 ± 10.1%, p < 0.01), tumor necrosis factor-α (TNF-α) (93.0 ± 1.1% vs. 80.1 ± 5.3%, p < 0.01), Granzyme B (89.3 ± 3.3% vs. 72.1 ± 7.0%, p < 0.01), and perforin (46.8 ± 6.6% vs. 34.8 ± 7.7%, p < 0.05). MAIT cells from PBC expressed higher levels of IL18-Rα (83.8 ± 10.2% vs. 58.3 ± 8.7%, p < 0.01). Plasma IL-18 was more abundant in patients with PBC (286.8 ± 75.7 pg/ml vs. 132.9 ± 78.1 pg/ml, p < 0.01). IL-18 promoted IFN-γ production in MAIT cells (74.9 ± 6.6% vs. 54.7 ± 6.7%, p < 0.01), which was partially attenuated by blocking IL-18R (68.6 ± 8.3% vs. 43.5 ± 4.2%, p < 0.01). Conclusion: Mucosal-associated invariant T cells from patients with PBC accumulated in the liver via CXCL12-CXCR4-mediated chemotaxis, produced pro-inflammatory cytokines, and contributed to portal inflammation, which was potentially mediated by elevated IL-18. Targeting MAIT cells might be a therapeutic approach for PBC.


Assuntos
Quimiocina CXCL12/imunologia , Cirrose Hepática Biliar/imunologia , Fígado/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Receptores CXCR4/imunologia , Adulto , Fosfatase Alcalina/imunologia , Fosfatase Alcalina/metabolismo , Quimiocina CXCL12/metabolismo , Quimiotaxia/imunologia , Feminino , Granzimas/imunologia , Granzimas/metabolismo , Humanos , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-18/imunologia , Interleucina-18/metabolismo , Fígado/metabolismo , Cirrose Hepática Biliar/sangue , Cirrose Hepática Biliar/metabolismo , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Células T Invariantes Associadas à Mucosa/metabolismo , Perforina/imunologia , Perforina/metabolismo , Receptores CXCR4/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
13.
PLoS Pathog ; 17(4): e1009417, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33861800

RESUMO

Macrophages are important drivers of pathogenesis and progression to AIDS in HIV infection. The virus in the later phases of the infection is often predominantly macrophage-tropic and this tropism contributes to a chronic inflammatory and immune activation state that is observed in HIV patients. Pattern recognition receptors of the innate immune system are the key molecules that recognise HIV and mount the inflammatory responses in macrophages. The innate immune response against HIV-1 is potent and elicits caspase-1-dependent pro-inflammatory cytokine production of IL-1ß and IL-18. Although, NLRP3 has been reported as an inflammasome sensor dictating this response little is known about the pattern recognition receptors that trigger the "priming" signal for inflammasome activation, the NLRs involved or the HIV components that trigger the response. Using a combination of siRNA knockdowns in monocyte derived macrophages (MDMs) of different TLRs and NLRs as well as chemical inhibition, it was demonstrated that HIV Vpu could trigger inflammasome activation via TLR4/NLRP3 leading to IL-1ß/IL-18 secretion. The priming signal is triggered via TLR4, whereas the activation signal is triggered by direct effects on Kv1.3 channels, causing K+ efflux. In contrast, HIV gp41 could trigger IL-18 production via NAIP/NLRC4, independently of priming, as a one-step inflammasome activation. NAIP binds directly to the cytoplasmic tail of HIV envelope protein gp41 and represents the first non-bacterial ligand for the NAIP/NLRC4 inflammasome. These divergent pathways represent novel targets to resolve specific inflammatory pathologies associated with HIV-1 infection in macrophages.


Assuntos
Infecções por HIV/virologia , Inflamassomos/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/virologia , Fragmentos de Peptídeos/metabolismo , Comunicação Celular/genética , Comunicação Celular/imunologia , Expressão Gênica/genética , Expressão Gênica/imunologia , Infecções por HIV/metabolismo , Humanos , Imunidade Inata/genética , Imunidade Inata/imunologia , Inflamassomos/metabolismo , Macrófagos/imunologia , Proteína Inibidora de Apoptose Neuronal/genética , Transdução de Sinais/imunologia
14.
Infect Immun ; 89(6)2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33685942

RESUMO

Porcine pleuropneumonia is a common infectious disease of pigs caused by Actinobacillus pleuropneumoniae Interferon gamma (IFN-γ) expression increases in the lung of pigs after A. pleuropneumoniae infection, but the role of IFN-γ during the infection is still obscure. In this study, an IFN-γ-/- mouse infection model was established, and bacterial load, levels of inflammatory cytokines, and types of neutrophils in the lungs were studied at different times post-A. pleuropneumoniae infection. We found that wild-type (WT) mice were more susceptible to A. pleuropneumoniae than IFN-γ-/- mice. At 6 h postinfection (hpi), the expression of interleukin 18 (IL-18) and IL-1ß in the lungs of IFN-γ-/- mice was significantly increased compared to WT mice. The bacterial load and levels of inflammatory cytokines (IL-1ß and IL-6) of IFN-γ-/- mice were significantly reduced at 12 hpi compared to WT mice. After an initial loss, the numbers of lung polymorphonuclear (PMN)-I cells dramatically increased in the lungs of IFN-γ-/- but not WT mice, whereas PMN-II cells continually decreased. Finally, in vivo administration of IL-18 significantly reduced clinical scores and bacterial load in the lungs of A. pleuropneumoniae-infected mice. This study identifies IFN-γ as a target for regulating the inflammatory response in the lung and provides a basis for understanding the course of clinical bacterial pneumonia and for the formulation of treatment protocols.


Assuntos
Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Actinobacillus pleuropneumoniae/imunologia , Interações Hospedeiro-Patógeno , Interleucina-18/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/patologia , Animais , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/patologia
15.
Front Immunol ; 12: 604157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33708202

RESUMO

Mucosal-associated invariant T (MAIT) cells have been implicated in various forms of autoimmunity, including type 1 diabetes (T1D). Here, we tested the hypothesis that CD8 and double negative (DN) MAIT cell frequencies were altered among diagnosed T1D subjects compared to controls. To do this, we analyzed cryopreserved peripheral blood mononuclear cells (PBMCs) from age-matched T1D and control children using flow cytometry. We observed that CD8 and DN MAIT cell frequencies were similarly abundant between the two groups. We tested for associations between MAIT cell frequency and T1D-associated parameters, which could reveal a pathogenic role for MAIT cells in the absence of changes in frequency. We found no significant associations between CD8 and DN MAIT cell frequency and levels of islet cell autoantibodies (ICA), glutamate decarboxylase 65 (GAD65) autoantibodies, zinc transporter 8 (ZNT8) autoantibodies, and insulinoma antigen 2 (IA-2) autoantibodies. Furthermore, CD8 and DN MAIT cell frequencies were not significantly associated with time since diagnosis, c-peptide levels, HbA1c, and BMI. As we have examined this cohort for multiple soluble factors previously, we tested for associations between relevant factors and MAIT cell frequency. These could help to explain the broad range of MAIT frequencies we observed and/or indicate disease-associated processes. Although we found nothing disease-specific, we observed that levels of IL-7, IL-18, 25 (OH) vitamin D, and the ratio of vitamin D binding protein to 25 (OH) vitamin D were all associated with MAIT cell frequency. Finally, previous cytomegalovirus infection was associated with reduced CD8 and DN MAIT cells. From this evaluation, we found no connections between CD8 and DN MAIT cells and children with T1D. However, we did observe several intrinsic and extrinsic factors that could influence peripheral MAIT cell abundance among all children. These factors may be worth consideration in future experimental design.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diabetes Mellitus Tipo 1/imunologia , Contagem de Linfócitos , Células T Invariantes Associadas à Mucosa/imunologia , Fatores Etários , Autoanticorpos/sangue , Autoanticorpos/imunologia , Autoimunidade , Biomarcadores/sangue , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Criança , Citocinas/sangue , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Imunofenotipagem , Interleucina-18/sangue , Interleucina-18/metabolismo , Interleucina-7/sangue , Interleucina-7/metabolismo , Masculino , Células T Invariantes Associadas à Mucosa/metabolismo
16.
Korean J Radiol ; 22(5): 801-810, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33660455

RESUMO

OBJECTIVE: To investigate imaging biomarkers of microperfusion in contrast-induced nephropathy (CIN) using contrast-enhanced ultrasound (CEUS). MATERIALS AND METHODS: The CIN model was fabricated by administering indomethacin (10 mg/kg), L-NAME (15 mg/kg), and iopamidol (10 mL/kg) to Sprague-Dawley rats. After 24 hours, CEUS was performed on CIN (n = 6) and control (n = 6) rats with sulphur hexafluoride microbubbles (SonoVue). From time-intensity curves obtained from the kidney arriving time (AT), acceleration time (AC), time to peak (TTP), and peak enhancement (PE) were measured and compared between the groups. After CEUS, the rats were sacrificed, and cell apoptosis markers were evaluated to confirm the development of CIN. RESULTS: Among CEUS parameters, AT (7.8 ± 1.6 vs. 4.2 ± 0.5 s, p = 0.002), AC (4.7 ± 1.4 vs. 2.0 ± 0.4 s, p = 0.002), and TTP (12.5 ± 2.9 vs. 6.2 ± 0.6 s, p = 0.002) were significantly prolonged in the CIN group compared to controls. PE was significantly higher in the control group than in the CIN group (17.1 ± 1.9 vs. 12.2 ± 2.0 dB, p = 0.004). In kidney tissue, mRNA and protein levels of the apoptotic makers were significantly higher in the CIN group than in the control group (p = 0.003 and p = 0.002). CONCLUSION: CEUS parameters can be used as imaging biomarkers for microperfusion in CIN. In rats with CIN, AT, AC, and TTP were significantly prolonged, while PE was significantly lower compared to controls.


Assuntos
Injúria Renal Aguda/etiologia , Fosfolipídeos/efeitos adversos , Hexafluoreto de Enxofre/efeitos adversos , Ultrassonografia , Injúria Renal Aguda/diagnóstico , Animais , Modelos Animais de Doenças , Interleucina-18/genética , Interleucina-18/metabolismo , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Lipocalina-2/genética , Lipocalina-2/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Regulação para Cima , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
17.
Biomed Res Int ; 2021: 3287053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681353

RESUMO

Oxidative stress is a crucial factor and key promoter of a variety of cardiovascular diseases associated with cardiomyocyte injury. Emerging literatures suggest that pyroptosis plays a key role in cardiac damages. However, whether pyroptosis contributes to cardiomyocyte injury under oxidative stress and the underlying molecular mechanisms are totally unclear. This study was designed to investigate the potential role of pyroptosis in H2O2-induced cardiomyocyte injury and to elucidate the potential mechanisms. Primary cardiomyocytes from neonatal Wistar rats were utilized. These myocytes were treated with different concentrations of H2O2 (25, 50, and 100 µM) for 24 h to induce oxidative injury. Our results indicated that mRNA and protein levels of ASC were remarkably upregulated and caspase-1 was activated. Moreover, the expressions of inflammatory factors IL-1ß and IL-18 were also increased. Luciferase assay showed that miR-599 inhibited ASC expression through complementary binding with its 3'UTR. MiR-599 expression was substantially reduced in H2O2-treated cardiomyocytes. Upregulation of miR-599 inhibited cardiomyocyte pyroptosis under oxidative stress, and opposite results were found by decreasing the expression of miR-599. Consistently, miR-599 overexpression ameliorated cardiomyocyte injury caused by H2O2. Therefore, miR-599 could be a promising therapeutic approach for the management of cardiac injury under oxidative condition.


Assuntos
MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Piroptose , Animais , Peróxido de Hidrogênio/farmacologia , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , MicroRNAs/genética , Ratos , Ratos Wistar
18.
Ecotoxicol Environ Saf ; 212: 112012, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550074

RESUMO

Microplastics (MPs) considered as a new persistent environmental pollutant could enter into the circulatory system and result in decrease of sperm quantity and quality in mice. However, the effects of Polystyrene MPs (PS MPs) on the ovary and its mechanism in rats remained unclear. In this present study, thirty-two healthy female Wistar rats were exposed to different concentrations of 0.5 µm PS MPs dispersed in deionized water for 90 days. Using hematoxylin-eosin (HE) staining, the number of growing follicles was decreased compared to the control group. In addition, the activity of glutathione peroxidase (GSH-Px), catalase (CAT) and superoxide dismutase (SOD) were decreased while the expression level of malondialdehyde (MDA) was increased in ovary tissue. Confirmed by immunohistochemistry, the integrated optical density of NLRP3 and Cleaved-Caspase-1 had been elevated by 13.9 and 14 in granulosa cells in the 1.5 mg/kg/d group. Furthermore, compared to the control group, the level of AMH had been decreased by 23.3 pg/ml while IL-1ß and IL-18 had been increased by 32 and 18.5 pg/ml in the 1.5 mg/kg/d group using the enzyme-linked immune sorbent assay (ELISA). Besides, the apoptosis of granulosa cells was elevated measured by terminal deoxyribonucleotide transferase-mediated nick end labeling (TUNEL) staining and flow cytometry. Moreover, western blot assays showed that the expressions of NLRP3/Caspase-1 signaling pathway related factors and Cleaved-Caspase-3 were increased. These results demonstrated that PS MPs could induce pyroptosis and apoptosis of ovarian granulosa cells via the NLRP3/Caspase-1 signaling pathway maybe triggered by oxidative stress. The present study suggested that exposure to microplastics had adverse effects on ovary and could be a potential risk factor for female infertility, which provided new insights into the toxicity of MPs on female reproduction.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 1/metabolismo , Microplásticos/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ovário/efeitos dos fármacos , Poliestirenos/toxicidade , Piroptose/efeitos dos fármacos , Animais , Feminino , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Malondialdeído/metabolismo , Ovário/metabolismo , Ovário/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Transdução de Sinais
19.
Life Sci ; 270: 119123, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548287

RESUMO

Chronic ulceration of the colon is associated with the activation of TLR4/NF-κB and P2X7R/NLRP3 signaling pathways. We investigated the effect of individual or combined administration of BBG, a P2X7R blocker, and OLT1177, a selective NLRP3 inhibitor, in the dextran sodium sulfate-induced ulcerative colitis (UC) rat model. The ulcerative rats were treated orally with brilliant blue G (BBG) (50 mg/kg/day) or OLT1177 (200 mg/kg/day) or a combination of both. Myd88 and NF-κB levels were measured by ELISA, qRT-PCR, and immunohistochemical staining. Cytokines known to be associated with TLR4/NF-κB or P2X7R/NLRP3 signaling were measured by ELISA. P2X7R and NLRP3 expression were measured by ELISA and qRT-PCR. The administration of BBG or OLT1177 ameliorated the toxic effects of DSS on the colon as they restored normal colonic macroscopic and microscopic morphology. BBG administration, but not OLT1177, reduced the expression of Myd88, NF-κB, IL-6, and TNF-α in addition to lowering P2X7R and oxidative stress levels. Individual BBG or OLT1177 administration decreased NLRP3 inflammasome recruitment and subsequent activation of caspase-1, IL-1ß, and IL-18. However, the combined administration of OLT1177 with BBG potentiated its inhibitory effect on the NLRP3, which was reflected by the additional suppressive effect on caspase-1, IL-1ß, IL-18 levels. In conclusion, BBG/OLT1177 exhibited complementary effects and effectively ameliorated UC. This novel approach provides a basis for the clinical application of this combination for the treatment of IBDs and might also be promising for the pharmacological intervention of other NLRP3 inflammasome-dependent inflammatory conditions.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Nitrilas/farmacologia , Corantes de Rosanilina/farmacologia , Animais , Caspase 1/metabolismo , Colite/induzido quimicamente , Colite Ulcerativa/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana/farmacologia , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Masculino , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Nitrilas/metabolismo , Ratos , Ratos Wistar , Receptores Purinérgicos P2X7/metabolismo , Corantes de Rosanilina/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Med Sci Monit ; 27: e927968, 2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33582700

RESUMO

BACKGROUND Intestinal injury plays a key role in the pathogenesis of severe acute pancreatitis (SAP). In this study, we investigated the protective function of downregulated Gasdermin D (GSDMD) in intestinal damage in a mouse model of severe acute pancreatitis (SAP). MATERIAL AND METHODS Twenty-four healthy male C57BL/6 mice were randomly divided into 4 groups - the NS group, the siRNA-NS group, the SAP group, and the siRNA-SAP group - with 6 mice in each group. SAP was induced in mice by intraperitoneal injection of caerulein and lipopolysaccharide. The pathological changes of pancreatic and the intestinal mucosa and the relative gene and protein expressions in each group were compared, and the levels of GSDMD and serum IL-1ß and IL-18 were evaluated after induction of the SAP model. RESULTS The mice in the SAP group were in more serious condition than those in the siRNA-SAP group, with various degrees of edema and hemorrhage in the intestinal tract. Under an optical microscope, the pathological changes of pancreatic tissue such as edema, inflammatory cell infiltration, and the damage of lobular structural were gradually increased in the SAP group and the siRNA-NS group. In addition, intestinal mucosal damage and intestinal villus breakage were found in the SAP group and the siRNA-NS group, and the latter was lighter than the former. Compared with the SAP group, the level of GSDMD protein expression in the siRNA-SAP group was lower, and the serum levels of IL-1ß and IL-18 were higher in the SAP group and siRNA-SAP group (P<0.05). Immunohistochemical analysis showed the occludin and ZO-1 proteins in the NS group had a strong brown linear signal, while the brown-positive signals were weaker in the siRNA-SAP group and the SAP group. CONCLUSIONS Downregulating GSDMD protein can reduce pancreatitis associated with pyroptosis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pancreatite/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Piroptose/fisiologia , Doença Aguda , Animais , Modelos Animais de Doenças , Interleucina-18/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos/efeitos adversos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/patologia , Pancreatite/genética , Proteínas de Ligação a Fosfato/genética , Piroptose/genética , Quinidina , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...