Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.654
Filtrar
1.
Zhonghua Gan Zang Bing Za Zhi ; 32(6): 484-488, 2024 Jun 20.
Artigo em Chinês | MEDLINE | ID: mdl-38964888

RESUMO

Portal vein thrombosis (PVT) is divided into cirrhotic and non-cirrhotic PVTs. The incidence rate of PVT varies greatly among different clinical stages of cirrhosis, with an overall incidence rate of about 13.92%, and the prevalence of cirrhotic PVT following splenectomy is as high as 60%. The pathogenesis of cirrhotic PVT is still unclear. However, the activation of Janus kinase/signal transduction and activator transcription signaling pathways, the rise in the expression of von Willebrand factor, and the gut microbiota along with its metabolite trimethylamine-N-oxide play an important role in the injury of vascular endothelial cells and the formation of PVT in cirrhosis. Therefore, these could be a new target for cirrhotic PVT prevention and treatment.


Assuntos
Cirrose Hepática , Veia Porta , Trombose Venosa , Humanos , Trombose Venosa/etiologia , Trombose Venosa/prevenção & controle , Cirrose Hepática/complicações , Transdução de Sinais , Metilaminas/metabolismo , Microbioma Gastrointestinal , Fator de von Willebrand/metabolismo , Janus Quinases/metabolismo
2.
Front Immunol ; 15: 1381802, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966637

RESUMO

Background: Yishen-Tongbi Decoction (YSTB), a traditional Chinese prescription, has been used to improve syndromes of rheumatoid arthritis (RA) for many years. Previous research has shown that YSTB has anti-inflammatory and analgesic properties. However, the underlying molecular mechanism of the anti-RA effects of YSTB remains unclear. Purpose and study design: The purpose of this research was to investigate how YSTB affected mice with collagen-induced arthritis (CIA) and RAW264.7 cells induced with lipopolysaccharide (LPS). Results: The findings show that YSTB could significantly improve the clinical arthritic symptoms of CIA mice (mitigate paw swelling, arthritis score, thymus and spleen indices, augment body weight), downregulated expression of pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α), interleukin-1ß (IL-1ß), IL-6 and IL-17, while upregulated the level of anti-inflammatory like IL-10 and transforming growth factor-ß (TGF-ß). Meanwhile, YSTB inhibits bone erosion and reduces inflammatory cell infiltration, synovial proliferation, and joint destruction in CIA mice. In addition, we found that YSTB was able to suppress the LPS-induced inflammation of RAW264.7 cells, which was ascribed to the suppression of nitric oxide (NO) production and reactive oxygen species formation (ROS). YSTB also inhibited the production of inducible nitric oxide synthase and reduced the releases of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 in LPS-induced RAW264.7 cells. Furthermore, the phosphorylation expression of JAK2, JAK3, STAT3, p38, ERK and p65 protein could be suppressed by YSTB, while the expression of SOCS3 could be activated. Conclusion: Taken together, YSTB possesses anti-inflammatory and prevention bone destruction effects in RA disease by regulating the JAK/STAT3/SOCS3 signaling pathway.


Assuntos
Artrite Experimental , Artrite Reumatoide , Medicamentos de Ervas Chinesas , Janus Quinases , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas , Animais , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT3/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Transdução de Sinais/efeitos dos fármacos , Janus Quinases/metabolismo , Masculino , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Camundongos Endogâmicos DBA , Modelos Animais de Doenças
3.
Front Immunol ; 15: 1393799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38975347

RESUMO

SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.


Assuntos
Transformação Celular Neoplásica , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Humanos , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Animais , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Transformação Celular Neoplásica/imunologia , Transformação Celular Neoplásica/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Dermatite/imunologia , Dermatite/metabolismo , Janus Quinases/metabolismo , Pele/imunologia , Pele/patologia , Pele/metabolismo
4.
J Nanobiotechnology ; 22(1): 409, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992688

RESUMO

OBJECTIVE: This study aimed to investigate the critical role of MDSCs in CRC immune suppression, focusing on the CSF1R and JAK/STAT3 signaling axis. Additionally, it assessed the therapeutic efficacy of LNCs@CSF1R siRNA and anti-PD-1 in combination. METHODS: Single-cell transcriptome sequencing data from CRC and adjacent normal tissues identified MDSC-related differentially expressed genes. RNA-seq analysis comprehensively profiled MDSC gene expression in murine CRC tumors. LNCs@CSF1R siRNA nanocarriers effectively targeted and inhibited CSF1R. Flow cytometry quantified changes in MDSC surface markers post-CSF1R inhibition. RNA-seq and pathway enrichment analyses revealed the impact of CSF1R on MDSC metabolism and signaling. The effect of CSF1R inhibition on the JAK/STAT3 signaling axis was validated using Colivelin and metabolic assessments. Glucose and fatty acid uptake were measured via fluorescence-based flow cytometry. The efficacy of LNCs@CSF1R siRNA and anti-PD-1, alone and in combination, was evaluated in a murine CRC model with extensive tumor section analyses. RESULTS: CSF1R played a significant role in MDSC-mediated immune suppression. LNCs@CSF1R siRNA nanocarriers effectively targeted MDSCs and inhibited CSF1R. CSF1R regulated MDSC fatty acid metabolism and immune suppression through the JAK/STAT3 signaling axis. Inhibition of CSF1R reduced STAT3 activation and target gene expression, which was rescued by Colivelin. Combined treatment with LNCs@CSF1R siRNA and anti-PD-1 significantly slowed tumor growth and reduced MDSC abundance within CRC tumors. CONCLUSION: CSF1R via the JAK/STAT3 axis critically regulates MDSCs, particularly in fatty acid metabolism and immune suppression. Combined therapy with LNCs@CSF1R siRNA and anti-PD-1 enhances therapeutic efficacy in a murine CRC model, providing a strong foundation for future clinical applications.


Assuntos
Neoplasias Colorretais , Células Supressoras Mieloides , RNA Interferente Pequeno , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos , Fator de Transcrição STAT3 , Animais , Células Supressoras Mieloides/metabolismo , Camundongos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Humanos , Transdução de Sinais/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Janus Quinases/metabolismo , Imunomodulação/efeitos dos fármacos , Receptor de Fator Estimulador de Colônias de Macrófagos
6.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38999955

RESUMO

B-cell lymphoblastic leukemia is a hematologic neoplasm that poses a serious health concern in childhood. Genetic aberrations, such as mutations in the genes IL-7, IL7R, JAK1, JAK2, TLSP, CRLF2, and KTM2A or gene fusions involving BCR::ABL1, ETV6::RUNX1, and PAX5::JAK2, often correlate with the onset of this disease. These aberrations can lead to malfunction of the JAK-STAT signaling pathway, which is implicated in various important biological processes, including those related to immunology. Understanding the mechanisms underlying the malfunction of the JAK-STAT pathway holds potential for research on drugs targeting its components. Available drugs that interfere with the JAK-STAT pathway include fludarabine, ruxolitinib, and fedratinib.


Assuntos
Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Humanos , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Janus Quinases/metabolismo , Criança , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Mutação
7.
PLoS Pathog ; 20(7): e1012349, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950076

RESUMO

Innate immune responses that allow hosts to survive infection depend on the action of multiple conserved signaling pathways. Pathogens and parasites in turn have evolved virulence factors to target these immune signaling pathways in an attempt to overcome host immunity. Consequently, the interactions between host immune molecules and pathogen virulence factors play an important role in determining the outcome of an infection. The immune responses of Drosophila melanogaster provide a valuable model to understand immune signaling and host-pathogen interactions. Flies are commonly infected by parasitoid wasps and mount a coordinated cellular immune response following infection. This response is characterized by the production of specialized blood cells called lamellocytes that form a tight capsule around wasp eggs in the host hemocoel. The conserved JAK-STAT signaling pathway has been implicated in lamellocyte proliferation and is required for successful encapsulation of wasp eggs. Here we show that activity of Stat92E, the D. melanogaster STAT ortholog, is induced in immune tissues following parasitoid infection. Virulent wasp species are able to suppress Stat92E activity during infection, suggesting they target JAK-STAT pathway activation as a virulence strategy. Furthermore, two wasp species (Leptopilina guineaensis and Ganaspis xanthopoda) suppress phenotypes associated with a gain-of-function mutation in hopscotch, the D. melanogaster JAK ortholog, indicating that they inhibit the activity of the core signaling components of the JAK-STAT pathway. Our data suggest that parasitoid wasp virulence factors block JAK-STAT signaling to overcome fly immune defenses.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Interações Hospedeiro-Parasita , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Vespas , Animais , Drosophila melanogaster/parasitologia , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Virulência , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Imunidade Inata
8.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 520-526, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38952091

RESUMO

Objective To investigate whether vitamin D3 (VD3) can alleviate Helicobacter pylori (Hp) infection by reducing blood lipids and inhibiting the Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) signaling pathway. Methods High-cholesterol mouse model and Hp infected mouse model were established. Each was treated with VD3 via oral administration for 8 weeks. Real-time quantitative PCR was used to detect the expression of vitamin D receptor (VDR), insulin-induced gene 2 (Insig-2), and gastrin mRNA. Western blot analysis was used to examine the expression of JAK, STAT3, and cyclooxygenase-2 (COX2) proteins in gastric tissues. Biochemical analyses were performed to measure serum cholesterol levels, and ELISA was utilized to evaluate serum gastrin, interleukin 6 (IL-6), and IL-8 levels, along with histopathological examination of liver and gastric tissues using HE staining. Results After oral administration of VD3, the levels of VDR and Insig-2 in mouse liver tissue significantly increased in the high cholesterol group and the high cholesterol combined with Hp infection group. And the expression of serum gastrin decreased. The expression of JAK, STAT3 in gastric tissues reduced, as did the expression of COX2. Serum cholesterol levels decreased, with no significant changes in IL-6 levels, but a reduction in IL-8 levels. Compared to the control group, the high cholesterol combined with Hp infection group showed reduced hepatic ballooning degeneration and alleviated gastric tissue inflammation. In addition, inflammation in gastric tissue was also reduced in the cholesterol group and the Hp infection group. Conclusion VD3 alleviates gastritis by enhancing the activity of VDR in liver tissues, blocking the JAK/STAT3 signaling pathway, and inhibiting the expression of inflammatory factors.


Assuntos
Colecalciferol , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Hipercolesterolemia , Janus Quinases , Fígado , Receptores de Calcitriol , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/metabolismo , Fator de Transcrição STAT3/metabolismo , Colecalciferol/farmacologia , Colecalciferol/administração & dosagem , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Transdução de Sinais/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Janus Quinases/metabolismo , Gastrite/tratamento farmacológico , Gastrite/metabolismo , Gastrite/microbiologia , Masculino , Hipercolesterolemia/metabolismo , Hipercolesterolemia/tratamento farmacológico
9.
J Exp Med ; 221(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39028870

RESUMO

Identification of monogenic causes of immune dysregulation provides insight into human immune response and signaling pathways associated with autoimmunity. Here, Jeanpierre et al. (https://doi.org/10.1084/jem.20232337) identify new germline variants in the gene encoding PTPN2 associated with loss of regulatory function, enhanced JAK/STAT signaling, and early-onset autoimmunity.


Assuntos
Janus Quinases , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Fatores de Transcrição STAT , Transdução de Sinais , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Janus Quinases/metabolismo , Janus Quinases/genética , Autoimunidade , Mutação em Linhagem Germinativa
10.
Microb Biotechnol ; 17(7): e14522, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39016683

RESUMO

As a Gram-negative anaerobic bacterium, Akkermansia muciniphila (AKK) participates in the immune response in many cancers. Our study focused on the factors and molecular mechanisms of AKK affecting immune escape in lung adenocarcinoma (LUAD). We cultured AKK bacteria, prepared AKK outer membrane protein Amuc_1100 and constructed a subcutaneous graft tumour mouse model. A549, NCI-H1395 cells and mice were respectively treated with inactivated AKK, Amuc_1100, Ruxolitinib (JAK inhibitor) and RO8191 (JAK activator). CD8+ T cells that penetrated the membrane were counted in the Transwell assay. The toxicity of CD8+ T cells was evaluated by lactate dehydrogenase assay. Western blot was applied to determine JAK/STAT-related protein and PD-L1 expression, whilst CCL5, granzyme B and INF-γ expression were assessed through enzyme-linked immunosorbent assay (ELISA). The proportion of tumour-infiltrating CD8+ T cells and the levels of granzyme B and INF-γ were determined by flow cytometry. AKK markedly accelerated A549 and NCI-H1395 recruiting CD8+ T cells and enhanced CD8+ T cell toxicity. Amuc_1100 purified from AKK exerted the same promoting effects. Besides, Amuc_1100 dramatically suppressed PD-L1, p-STAT and p-JAK expression and enhanced CCL5, granzyme B and INF-γ expression. Treatment with Ruxolitinib accelerated A549 and NCI-H1395 cells recruiting CD8+ T cells, enhanced CD8+ T cell toxicity, CCL5, granzyme B and INF-γ expression, and inhibited PD-L1 expression. In contrast, the RO8191 treatment slowed down the changes induced by Amuc_1100. Animal experiments showed that Amuc_1100 was found to increase the number of tumour-infiltrating CD8+ T cells, increase the levels of granzyme B and INF-γ and significantly inhibit the expression of PD-L1, p-STAT and p-JAK, which exerted an antitumour effect in vivo. In conclusion, through inhibiting the JAK/STAT signalling pathway, AKK outer membrane protein facilitated the recruitment of CD8+ T cells in LUAD and suppressed the immune escape of cells.


Assuntos
Adenocarcinoma de Pulmão , Akkermansia , Proteínas da Membrana Bacteriana Externa , Linfócitos T CD8-Positivos , Janus Quinases , Transdução de Sinais , Linfócitos T CD8-Positivos/imunologia , Animais , Camundongos , Humanos , Janus Quinases/metabolismo , Adenocarcinoma de Pulmão/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/imunologia , Neoplasias Pulmonares/imunologia , Linhagem Celular Tumoral , Fatores de Transcrição STAT/metabolismo , Modelos Animais de Doenças
11.
Front Immunol ; 15: 1406886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983855

RESUMO

Protein-protein interactions (PPIs) play critical roles in a wide range of biological processes including the dysregulation of cellular pathways leading to the loss of cell function, which in turn leads to diseases. The dysfunction of several signaling pathways is linked to the insurgence of pathological processes such as inflammation, cancer development and neurodegeneration. Thus, there is an urgent need for novel chemical modulators of dysregulated PPIs to drive progress in targeted therapies. Several PPIs have been targeted by bioactive compounds, and, often, to properly cover interacting protein regions and improve the biological activities of modulators, a particular focus concerns the employment of macrocycles as proteomimetics. Indeed, for their physicochemical properties, they occupy an intermediate space between small organic molecules and macromolecular proteins and are prominent in the drug discovery process. Peptide macrocycles can modulate fundamental biological mechanisms and here we will focus on peptidomimetics active on the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathways.


Assuntos
Janus Quinases , Peptidomiméticos , Fatores de Transcrição STAT , Transdução de Sinais , Peptidomiméticos/farmacologia , Humanos , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Descoberta de Drogas
12.
Biomed Pharmacother ; 176: 116911, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861857

RESUMO

Atopic dermatitis (AD) is a globally increasing chronic inflammatory skin disease with limited and potentially side-effect-prone treatment options. Monotropein is the predominant iridoid glycoside in Morinda officinalis How roots, which has previously shown promise in alleviating AD symptoms. This study aimed to systematically investigate the pharmacological effects of monotropein on AD using a 2, 4-dinitrochlorobenzene (DNCB)/Dermatophagoides farinae extract (DFE)-induced AD mice and tumor necrosis factor (TNF)-α/interferon (IFN)-γ-stimulated keratinocytes. Oral administration of monotropein demonstrated a significant reduction in AD phenotypes, including scaling, erythema, and increased skin thickness in AD-induced mice. Histological analysis revealed a marked decrease in immune cell infiltration in skin lesions. Additionally, monotropein effectively downregulated inflammatory markers, encompassing pro-inflammatory cytokines, T helper (Th)1 and Th2 cytokines, and pro-inflammatory chemokines in skin tissues. Notably, monotropein also led to a considerable decrease in serum immunoglobulin (Ig)E and IgG2a levels. At a mechanistic level, monotropein exerted its anti-inflammatory effects by suppressing the phosphorylation of Janus kinase / signal transducer and activator of transcription proteins in both skin tissues of AD-induced mice and TNF-α/IFN-γ-stimulated keratinocytes. In conclusion, monotropein exhibited a pronounced alleviation of AD symptoms in the experimental models used. These findings underscore the potential application of monotropein as a therapeutic agent in the context of AD, providing a scientific basis for further exploration and development.


Assuntos
Dermatite Atópica , Janus Quinases , Queratinócitos , Transdução de Sinais , Pele , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/patologia , Dermatite Atópica/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Camundongos , Janus Quinases/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Citocinas/metabolismo , Camundongos Endogâmicos BALB C , Fatores de Transcrição STAT/metabolismo , Humanos , Dinitroclorobenzeno , Anti-Inflamatórios/farmacologia , Feminino , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/patologia , Imunoglobulina E/sangue , Dermatophagoides farinae/imunologia , Iridoides/farmacologia
13.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 505-511, 2024 Jun 18.
Artigo em Chinês | MEDLINE | ID: mdl-38864137

RESUMO

OBJECTIVE: To investigate the effect of tofacitinib, a pan-Janus kinase (JAK) inhibitor, on transforming growth factor-beta 1 (TGF-ß1)-induced fibroblast to myofibroblast transition (FMT) and to explore its mechanism. To provide a theoretical basis for the clinical treatment of connective tissue disease-related interstitial lung disease (CTD-ILD). METHODS: (1) Human fetal lung fibroblast 1 (HFL-1) were cultured in vitro, and 6 groups were established: DMSO blank control group, TGF-ß1 induction group, and TGF-ß1 with different concentrations of tofacitinib (0.5, 1.0, 2.0, 5.0 µmol/L) drug intervention experimental groups. CCK-8 was used to measure the cell viability, and wound-healing assay was performed to measure cell migration ability. After 48 h of combined treatment, quantitative real-time PCR (RT-PCR) and Western blotting were used to detect the gene and protein expression levels of α-smooth muscle actin (α-SMA), fibronectin (FN), and collagen type Ⅰ (COL1). (2) RT-PCR and enzyme-linked immunosorbnent assay (ELISA) were used to detect the interleukin-6 (IL-6) gene and protein expression changes, respectively. (3) DMSO carrier controls, 1.0 µmol/L and 5.0 µmol/L tofacitinib were added to the cell culture media of different groups for pre-incubation for 30 min, and then TGF-ß1 was added to treat for 1 h, 6 h and 24 h. The phosphorylation levels of Smad2/3 and signal transducer and activator of transcription 3 (STAT3) protein were detected by Western blotting. RESULTS: (1) Tofacitinib inhibited the viability and migration ability of HFL-1 cells after TGF-ß1 induction. (2) The expression of α-SMA, COL1A1 and FN1 genes of HFL-1 in the TGF-ß1-induced groups was significantly up-regulated compared with the blank control group (P < 0.05). Compared with the TGF-ß1 induction group, α-SMA expression in the 5.0 µmol/L tofacitinib intervention group was significantly inhi-bited (P < 0.05). Compared with the TGF-ß1-induced group, FN1 gene was significantly inhibited in each intervention group at a concentration of 0.5-5.0 µmol/L (P < 0.05). Compared with the TGF-ß1-induced group, the COL1A1 gene expression in each intervention group did not change significantly. (3) Western blotting results showed that the protein levels of α-SMA and FN1 in the TGF-ß1-induced group were significantly higher than those in the control group (P < 0.05), and there was no significant difference in the expression of COL1A1. Compared with the TGF-ß1-induced group, the α-SMA protein level in the intervention groups with different concentrations decreased. And the differences between the TGF-ß1-induced group and 2.0 µmol/L or 5.0 µmol/L intervention groups were statistically significant (P < 0.05). Compared with the TGF-ß1-induced group, the FN1 protein levels in the intervention groups with different concentrations showed a downward trend, but the difference was not statistically significant. There was no difference in COL1A1 protein expression between the intervention groups compared with the TGF-ß1-induced group. (4) After TGF-ß1 acted on HFL-1 cells for 48 h, the gene expression of the IL-6 was up-regulated and IL-6 in culture supernatant was increased, the intervention with tofacitinib partly inhibited the TGF-ß1-induced IL-6 gene expression and IL-6 in culture supernatant. TGF-ß1 induced the increase of Smad2/3 protein phosphorylation in HFL-1 cells for 1 h and 6 h, STAT3 protein phosphorylation increased at 1 h, 6 h and 24 h, the pre-intervention with tofacitinib inhibited the TGF-ß1-induced Smad2/3 phosphorylation at 6 h and inhibited TGF-ß1-induced STAT3 phosphorylation at 1 h, 6 h and 24 h. CONCLUSION: Tofacitinib can inhibit the transformation of HFL-1 cells into myofibroblasts induced by TGF-ß1, and the mechanism may be through inhibiting the classic Smad2/3 pathway as well as the phosphorylation of STAT3 induced by TGF-ß1, thereby protecting the disease progression of pulmonary fibrosis.


Assuntos
Fibroblastos , Pulmão , Miofibroblastos , Piperidinas , Pirimidinas , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Humanos , Pirimidinas/farmacologia , Piperidinas/farmacologia , Fator de Transcrição STAT3/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Pulmão/citologia , Transdução de Sinais/efeitos dos fármacos , Fibronectinas/metabolismo , Movimento Celular/efeitos dos fármacos , Pirróis/farmacologia , Actinas/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Janus Quinases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína Smad2/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Interleucina-6/metabolismo , Proteína Smad3/metabolismo , Células Cultivadas
14.
Front Immunol ; 15: 1395809, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38938568

RESUMO

Human respiratory viruses are the most prevalent cause of disease in humans, with the highly infectious RSV being the leading cause of infant bronchiolitis and viral pneumonia. Responses to type I IFNs are the primary defense against viral infection. However, RSV proteins have been shown to antagonize type I IFN-mediated antiviral innate immunity, specifically dampening intracellular IFN signaling. Respiratory epithelial cells are the main target for RSV infection. In this study, we found RSV-NS1 interfered with the IFN-α JAK/STAT signaling pathway of epithelial cells. RSV-NS1 expression significantly enhanced IFN-α-mediated phosphorylation of STAT1, but not pSTAT2; and neither STAT1 nor STAT2 total protein levels were affected by RSV-NS1. However, expression of RSV-NS1 significantly reduced ISRE and GAS promoter activity and anti-viral IRG expression. Further mechanistic studies demonstrated RSV-NS1 bound STAT1, with protein modeling indicating a possible interaction site between STAT1 and RSV-NS1. Nuclear translocation of STAT1 was reduced in the presence of RSV-NS1. Additionally, STAT1's interaction with the nuclear transport adapter protein, KPNA1, was also reduced, suggesting a mechanism by which RSV blocks STAT1 nuclear translocation. Indeed, reducing STAT1's access to the nucleus may explain RSV's suppression of IFN JAK/STAT promoter activation and antiviral gene induction. Taken together these results describe a novel mechanism by which RSV controls antiviral IFN-α JAK/STAT responses, which enhances our understanding of RSV's respiratory disease progression.


Assuntos
Interferon-alfa , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Fator de Transcrição STAT1 , Transdução de Sinais , Proteínas não Estruturais Virais , Fator de Transcrição STAT1/metabolismo , Humanos , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Interferon-alfa/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas não Estruturais Virais/metabolismo , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Janus Quinases/metabolismo , Núcleo Celular/metabolismo , Fosforilação , Transporte Ativo do Núcleo Celular , Linhagem Celular
15.
J Agric Food Chem ; 72(26): 14678-14683, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38910321

RESUMO

Matrix metalloproteinase 9 (MMP9), an MMP isozyme, plays a crucial role in tumor progression by degrading basement membranes. It has therefore been proposed that the pharmacological inhibition of MMP9 expression or activity could inhibit tumor metastasis. We previously isolated two novel methoxylated flavones, casedulones A and B, from the leaves and/or roots of Casimiroa edulis La Llave and determined that these casedulones have antitumor activity that acts via the reduction of MMP9. Here, we examined how these casedulones suppress lipopolysaccharide (LPS)-induced MMP9 expression in human monocytic THP-1 cells. The casedulones suppressed the LPS-induced signal transducer and activator of transcription 3 (STAT3) pathway, which participates in MMP9 induction. In addition, AG490 and S3I-201, inhibitors of Janus kinase (JAK) and STAT3, suppressed LPS-mediated MMP9 induction, suggesting that the casedulones suppressed MMP9 induction through the inhibition of JAK/STAT3 pathways. Based on the findings that cycloheximide, an inhibitor of de novo protein synthesis, completely inhibited LPS-mediated MMP9 induction, the role of de novo proteins in MMP9 induction was further investigated. We found that the casedulones inhibited the induction of interleukin-6 (IL-6), a key inflammatory cytokine that participates in STAT3 activation. Moreover, tumor necrosis factor-α (TNFα)-mediated MMP9 induction was significantly suppressed in the presence of the casedulones. Taken together, these findings suggest that casedulones inhibit the IL-6/STAT3 and TNFα pathways, which all involve LPS-mediated MMP9 induction.


Assuntos
Flavonas , Janus Quinases , Metaloproteinase 9 da Matriz , Extratos Vegetais , Fator de Transcrição STAT3 , Transdução de Sinais , Fator de Necrose Tumoral alfa , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonas/farmacologia , Flavonas/química , Janus Quinases/metabolismo , Janus Quinases/genética , Transdução de Sinais/efeitos dos fármacos
16.
Science ; 384(6702): eade8520, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38900864

RESUMO

Unleashing antitumor T cell activity by checkpoint inhibitor immunotherapy is effective in cancer patients, but clinical responses are limited. Cytokine signaling through the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway correlates with checkpoint immunotherapy resistance. We report a phase I clinical trial of the JAK inhibitor ruxolitinib with anti-PD-1 antibody nivolumab in Hodgkin lymphoma patients relapsed or refractory following checkpoint inhibitor immunotherapy. The combination yielded a best overall response rate of 53% (10/19). Ruxolitinib significantly reduced neutrophil-to-lymphocyte ratios and percentages of myeloid suppressor cells but increased numbers of cytokine-producing T cells. Ruxolitinib rescued the function of exhausted T cells and enhanced the efficacy of immune checkpoint blockade in preclinical solid tumor and lymphoma models. This synergy was characterized by a switch from suppressive to immunostimulatory myeloid cells, which enhanced T cell division.


Assuntos
Doença de Hodgkin , Inibidores de Checkpoint Imunológico , Inibidores de Janus Quinases , Nitrilas , Nivolumabe , Pirazóis , Pirimidinas , Linfócitos T , Adulto , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Sinergismo Farmacológico , Doença de Hodgkin/tratamento farmacológico , Doença de Hodgkin/imunologia , Doença de Hodgkin/terapia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Nitrilas/uso terapêutico , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos BALB C
17.
Sci Transl Med ; 16(752): eabq7074, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38896602

RESUMO

Epidermal growth factor receptor inhibitors (EGFRis) are used to treat many cancers, but their use is complicated by the development of a skin rash that may be severe, limiting their use and adversely affecting patient quality of life. Most studies of EGFRi-induced rash have focused on the fully developed stage of this skin disorder, and early pathological changes remain unclear. We analyzed high-throughput transcriptome sequencing of skin samples from rats exposed to the EGFRi afatinib and identified that keratinocyte activation is an early pathological alteration in EGFRi-induced rash. Mechanistically, the induction of S100 calcium-binding protein A9 (S100A9) occurred before skin barrier disruption and led to keratinocyte activation, resulting in expression of specific cytokines, chemokines, and surface molecules such as interleukin 6 (Il6) and C-C motif chemokine ligand 2 (CCL2) to recruit and activate monocytes through activation of the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, further recruiting more immune cells. Topical JAK inhibition suppressed the recruitment of immune cells and ameliorated the severity of skin rash in afatinib-treated rats and mice with epidermal deletion of EGFR, while having no effect on EGFRi efficacy in tumor-bearing mice. In a pilot clinical trial (NCT05120362), 11 patients with EGFRi-induced rash were treated with delgocitinib ointment, resulting in improvement in rash severity by at least one grade in 10 of them according to the MASCC EGFR inhibitor skin toxicity tool (MESTT) criteria. These findings provide a better understanding of the early pathophysiology of EGFRi-induced rash and suggest a strategy to manage this condition.


Assuntos
Receptores ErbB , Exantema , Inibidores de Janus Quinases , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos , Administração Tópica , Afatinib/farmacologia , Afatinib/uso terapêutico , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Exantema/induzido quimicamente , Exantema/patologia , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Estudos Prospectivos
18.
Mol Med ; 30(1): 81, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862942

RESUMO

BACKGROUND: Studies have highlighted a possible crosstalk between the pathogeneses of COVID-19 and systemic lupus erythematosus (SLE); however, the interactive mechanisms remain unclear. We aimed to elucidate the impact of COVID-19 on SLE using clinical information and the underlying mechanisms of both diseases. METHODS: RNA-seq datasets were used to identify shared hub gene signatures between COVID-19 and SLE, while genome-wide association study datasets were used to delineate the interaction mechanisms of the key signaling pathways. Finally, single-cell RNA-seq datasets were used to determine the primary target cells expressing the shared hub genes and key signaling pathways. RESULTS: COVID-19 may affect patients with SLE through hematologic involvement and exacerbated inflammatory responses. We identified 14 shared hub genes between COVID-19 and SLE that were significantly associated with interferon (IFN)-I/II. We also screened and obtained four core transcription factors related to these hub genes, confirming the regulatory role of the IFN-I/II-mediated Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway on these hub genes. Further, SLE and COVID-19 can interact via IFN-I/II and IFN-I/II receptors, promoting the levels of monokines, including interleukin (IL)-6/10, tumor necrosis factor-α, and IFN-γ, and elevating the incidence rate and risk of cytokine release syndrome. Therefore, in SLE and COVID-19, both hub genes and core TFs are enriched within monocytes/macrophages. CONCLUSIONS: The interaction between SLE and COVID-19 promotes the activation of the IFN-I/II-triggered JAK-STAT signaling pathway in monocytes/macrophages. These findings provide a new direction and rationale for diagnosing and treating patients with SLE-COVID-19 comorbidity.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/genética , Lúpus Eritematoso Sistêmico/genética , SARS-CoV-2/fisiologia , Feminino , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Masculino , Transcriptoma , Perfilação da Expressão Gênica , Multiômica
19.
Cell Death Dis ; 15(6): 401, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849370

RESUMO

The triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor that affects cellular phenotypes by modulating phagocytosis and metabolism, promoting cell survival, and counteracting inflammation. Its role in renal injury, in particular, unilateral ureteral obstruction (UUO) or ischemia-reperfusion injury (IRI)-induced renal injury remains unclear. In our study, WT and Trem2-/- mice were employed to evaluate the role of TREM2 in renal macrophage infiltration and tissue injury after UUO. Bone marrow-derived macrophages (BMDM) from both mouse genotypes were cultured and polarized for in vitro experiments. Next, the effects of TREM2 on renal injury and macrophage polarization in IRI mice were also explored. We found that TREM2 expression was upregulated in the obstructed kidneys. TREM2 deficiency exacerbated renal inflammation and fibrosis 3 and 7 days after UUO, in association with reduced macrophage infiltration. Trem2-/- BMDM exhibited increased apoptosis and poorer survival compared with WT BMDM. Meanwhile, TREM2 deficiency augmented M1 and M2 polarization after UUO. Consistent with the in vivo observations, TREM2 deficiency led to increased polarization of BMDM towards the M1 proinflammatory phenotype. Mechanistically, TREM2 deficiency promoted M1 and M2 polarization via the JAK-STAT pathway in the presence of TGF-ß1, thereby affecting cell survival by regulating mTOR signaling. Furthermore, cyclocreatine supplementation alleviated cell death caused by TREM2 deficiency. Additionally, we found that TREM2 deficiency promoted renal injury, fibrosis, and macrophage polarization in IRI mice. The current data suggest that TREM2 deficiency aggravates renal injury by promoting macrophage apoptosis and polarization via the JAK-STAT pathway. These findings have implications for the role of TREM2 in the regulation of renal injury that justify further evaluation.


Assuntos
Apoptose , Macrófagos , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Receptores Imunológicos , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Macrófagos/metabolismo , Receptores Imunológicos/metabolismo , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Fatores de Transcrição STAT/metabolismo , Janus Quinases/metabolismo , Rim/patologia , Rim/metabolismo , Camundongos Knockout , Masculino , Fibrose , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/genética , Obstrução Ureteral/patologia , Obstrução Ureteral/metabolismo , Obstrução Ureteral/complicações , Polaridade Celular , Serina-Treonina Quinases TOR/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Injúria Renal Aguda/genética
20.
Pestic Biochem Physiol ; 202: 105915, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38879296

RESUMO

The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling is activated by infections of bacteria, fungi, viruses and parasites and mediated cellular and humoral immune responses. In the pea aphid Acyrthosiphon pisum little is known about the function of JAK/STAT signaling in its immune system. In this study, we first showed that expression of genes in the JAK/STAT signaling, including the receptors Domeless1/2, Janus kinase (JAK) and transcriptional factor Stat92E, is up-regulated upon bacteria Escherichia coli and Staphylococcus aureus and fungus Beauveria bassiana infections. After knockdown of expression of these genes by means of dsRNA injection, the aphids harbored more bacteria and suffered more death after infected with E. coli and S. aureus, but showed no significant change after B. bassiana infection. Our study suggests the JAK/STAT signaling contributes to the defense against bacterial infection in the pea aphid.


Assuntos
Afídeos , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Staphylococcus aureus/fisiologia , Escherichia coli , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Beauveria/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA