Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.705
Filtrar
1.
Microb Genom ; 10(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949867

RESUMO

Lactobacillus species are common inhabitants of the 'healthy' female urinary and vaginal communities, often associated with a lack of symptoms in both anatomical sites. Given identification by prior studies of similar bacterial species in both communities, it has been hypothesized that the two microbiotas are in fact connected. Here, we carried out whole-genome sequencing of 49 Lactobacillus strains, including 16 paired urogenital samples from the same participant. These strains represent five different Lactobacillus species: L. crispatus, L. gasseri, L. iners, L. jensenii, and L. paragasseri. Average nucleotide identity (ANI), alignment, single-nucleotide polymorphism (SNP), and CRISPR comparisons between strains from the same participant were performed. We conducted simulations of genome assemblies and ANI comparisons and present a statistical method to distinguish between unrelated, related, and identical strains. We found that 50 % of the paired samples have identical strains, evidence that the urinary and vaginal communities are connected. Additionally, we found evidence of strains sharing a common ancestor. These results establish that microbial sharing between the urinary tract and vagina is not limited to uropathogens. Knowledge that these two anatomical sites can share lactobacilli in females can inform future clinical approaches.


Assuntos
Lactobacillus , Microbiota , Polimorfismo de Nucleotídeo Único , Vagina , Humanos , Feminino , Vagina/microbiologia , Lactobacillus/genética , Lactobacillus/classificação , Genoma Bacteriano , Filogenia , Sistema Urinário/microbiologia , Sequenciamento Completo do Genoma , Urina/microbiologia
2.
Parasit Vectors ; 17(1): 284, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956725

RESUMO

BACKGROUND: Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS: Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS: Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION: Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.


Assuntos
Lesões Encefálicas , Microbioma Gastrointestinal , Camundongos Knockout , Toxoplasma , Animais , Camundongos , Toxoplasma/imunologia , Lesões Encefálicas/imunologia , Probióticos/administração & dosagem , Encéfalo/imunologia , Lactobacillus , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Toxoplasmose/imunologia , RNA Ribossômico 16S/genética , Masculino , Intestinos/imunologia
3.
Sci Rep ; 14(1): 15387, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965339

RESUMO

Probiotics offer a promising prophylactic approach against various pathogens and represent an alternative strategy to combat biofilm-related infections. In this study, we isolated vaginal commensal microbiota from 54 healthy Indian women to investigate their probiotic traits. We primarily explored the ability of cell-free supernatant (CFS) from Lactobacilli to prevent Uropathogenic Escherichia coli (UPEC) colonization and biofilm formation. Our findings revealed that CFS effectively reduced UPEC's swimming and swarming motility, decreased cell surface hydrophobicity, and hindered matrix production by downregulating specific genes (fimA, fimH, papG, and csgA). Subsequent GC-MS analysis identified Tryptamine, a monoamine compound, as the potent bioactive substance from Lactobacilli CFS, inhibiting UPEC biofilms with an MBIC of 4 µg/ml and an MBEC of 8 µg/ml. Tryptamine induced significant changes in E. coli colony biofilm morphology, transitioning from the Red, Dry, and Rough (RDAR) to the Smooth and White phenotype, indicating reduced extracellular matrix production. Biofilm time-kill assays demonstrated a four-log reduction in UPEC viability when treated with Tryptamine, highlighting its potent antibacterial properties, comparable to CFS treatment. Biofilm ROS assays indicated a significant elevation in ROS generation within UPEC biofilms, suggesting a potential antibacterial mechanism. Gene expression studies with Tryptamine-treated samples showed a reduction in expression of curli gene (csgA), consistent with CFS treatment. This study underscores the potential of Tryptamine from probiotic Lactobacilli CFS as a promising antibiofilm agent against UPEC biofilms.


Assuntos
Biofilmes , Lactobacillus , Probióticos , Triptaminas , Escherichia coli Uropatogênica , Vagina , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Triptaminas/farmacologia , Feminino , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/fisiologia , Probióticos/farmacologia , Vagina/microbiologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/metabolismo , Lactobacillus/fisiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Adulto , Antibacterianos/farmacologia
4.
Nat Commun ; 15(1): 5697, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972900

RESUMO

Climate and environmental changes threaten human mental health, but the impacts of specific environmental conditions on neuropsychiatric disorders remain largely unclear. Here, we show the impact of a humid heat environment on the brain and the gut microbiota using a conditioned housing male mouse model. We demonstrate that a humid heat environment can cause anxiety-like behaviour in male mice. Microbial 16 S rRNA sequencing analysis reveals that a humid heat environment caused gut microbiota dysbiosis (e.g., decreased abundance of Lactobacillus murinus), and metabolomics reveals an increase in serum levels of secondary bile acids (e.g., lithocholic acid). Moreover, increased neuroinflammation is indicated by the elevated expression of proinflammatory cytokines in the serum and cortex, activated PI3K/AKT/NF-κB signalling and a microglial response in the cortex. Strikingly, transplantation of the microbiota from mice reared in a humid heat environment readily recapitulates these abnormalities in germ-free mice, and these abnormalities are markedly reversed by Lactobacillus murinus administration. Human samples collected during the humid heat season also show a decrease in Lactobacillus murinus abundance and an increase in the serum lithocholic acid concentration. In conclusion, gut microbiota dysbiosis induced by a humid heat environment drives the progression of anxiety disorders by impairing bile acid metabolism and enhancing neuroinflammation, and probiotic administration is a potential therapeutic strategy for these disorders.


Assuntos
Ansiedade , Ácidos e Sais Biliares , Disbiose , Microbioma Gastrointestinal , Temperatura Alta , Animais , Masculino , Camundongos , Ácidos e Sais Biliares/metabolismo , Humanos , Disbiose/microbiologia , Ansiedade/microbiologia , Camundongos Endogâmicos C57BL , Umidade , Ácido Litocólico/metabolismo , Lactobacillus , Encéfalo/metabolismo , NF-kappa B/metabolismo , RNA Ribossômico 16S/genética , Modelos Animais de Doenças , Transtornos de Ansiedade/metabolismo , Transtornos de Ansiedade/microbiologia , Transtornos de Ansiedade/etiologia , Transdução de Sinais , Citocinas/metabolismo
5.
Microb Cell Fact ; 23(1): 195, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971787

RESUMO

This study explores a sustainable approach for synthesizing silver nanocomposites (AgNCs) with enhanced antimicrobial and bioactivity using safe Lactobacillus strains and a whey-based medium (WBM). WBM effectively supported the growth of Lactobacillus delbrueckii and Lactobacillus acidophilus, triggering a stress response that led to AgNCs formation. The synthesized AgNCs were characterized using advanced spectroscopic and imaging techniques such as UV‒visible, Fourier transform infrared (FT-IR) spectroscopy, transmission electron (TEM), and scanning electron microscopy with energy dispersive X-ray analysis (SEM-Edx). Lb acidophilus-synthesized AgNCs in WBM (had DLS size average 817.2-974.3 ± PDI = 0.441 nm with an average of metal core size 13.32 ± 3.55 nm) exhibited significant antimicrobial activity against a broad spectrum of pathogens, including bacteria such as Escherichia coli (16.47 ± 2.19 nm), Bacillus cereus (15.31 ± 0.43 nm), Clostridium perfringens (25.95 ± 0.03 mm), Enterococcus faecalis (32.34 ± 0.07 mm), Listeria monocytogenes (23.33 ± 0.05 mm), methicillin-resistant Staphylococcus aureus (MRSA) (13.20 ± 1.76 mm), and filamentous fungi such as Aspergillus brasiliensis (33.46 ± 0.01 mm). In addition, Lb acidophilus-synthesized AgNCs in WBM exhibit remarkable free radical scavenging abilities, suggesting their potential as bioavailable antioxidants. These findings highlight the dual functionality of these biogenic AgNCs, making them promising candidates for applications in both medicine and nutrition.


Assuntos
Testes de Sensibilidade Microbiana , Nanocompostos , Prata , Soro do Leite , Nanocompostos/química , Prata/química , Prata/farmacologia , Soro do Leite/química , Soro do Leite/metabolismo , Lactobacillus acidophilus/efeitos dos fármacos , Lactobacillus acidophilus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Nanopartículas Metálicas/química , Lactobacillus/metabolismo , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Bull Exp Biol Med ; 177(1): 84-87, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38960954

RESUMO

A cultural microbiological study of the vaginal microbiota of patients of reproductive age was carried out to isolate the species Lactobacillus iners with subsequent study of phenotypic features. The presence of two phenotypically different species variants was found in patients with bacterial vaginosis.


Assuntos
Lactobacillus , Vagina , Vaginose Bacteriana , Humanos , Feminino , Lactobacillus/isolamento & purificação , Lactobacillus/classificação , Vaginose Bacteriana/microbiologia , Vagina/microbiologia , Adulto , Microbiota/fisiologia , Adulto Jovem , RNA Ribossômico 16S/genética
7.
Front Cell Infect Microbiol ; 14: 1390088, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040604

RESUMO

Introduction: The dysbiosis of vaginal microbiota is recognized as a potential underlying factor contributing to infertility in women. This study aimed to compare the vaginal microbiomes of infertile and fertile women to investigate their relationship with infertility. Methods: Metagenomic analysis was conducted on samples from 5 infertile and 5 fertile individuals using both amplicon 16S and metagenomics shotgun sequencing methods. Results and discussion: In the infertile group, the bacterial community was primarily represented by three major bacterial genera: Lactobacillus (79.42%), Gardnerella (12.56%) and Prevotella (3.33%), whereas, the fertile group exhibited a more diverse composition with over 8 major bacterial genera, accompanied by significantly reduced abundance of Lactobacillus (48.79%) and Gardnerella (6.98%). At the species level, higher abundances of L. iners, L. gasseri and G. vaginalis were observed in the infertile group. Regarding the microbiome composition, only one fertile and two infertile subjects exhibited the healthiest Community State Types, CST-1, while CST-3 was observed among two infertile and one fertile subject, and CST-4 in three other fertile and one infertile subject. Overall, alpha diversity metrics indicated greater diversity and lower species richness in the control (fertile) group, while the infertile group displayed the opposite trend. However, beta-diversity analysis did not show distinct clustering of samples associated with any specific group; instead, it demonstrated CST-type specific clustering. Shotgun metagenomics further confirmed the dominance of Firmicutes, with a greater abundance of Lactobacillus species in the infertile group. Specifically, L. iners and G. vaginalis were identified as the most dominant and highly abundant in the infertile group. Fungi were only identified in the control group, dominated by Penicillium citrinum (62.5%). Metagenome-assembled genomes (MAGs) corroborated read-based taxonomic profiling, with the taxon L. johnsonii identified exclusively in disease samples. MAG identities shared by both groups include Shamonda orthobunyavirus, L. crispatus, Human endogenous retrovirus K113, L. iners, and G. vaginalis. Interestingly, the healthy microbiomes sequenced in this study contained two clusters, Penicillium and Staphylococcus haemolyticus, not found in the public dataset. In conclusion, this study suggests that lower species diversity with a higher abundance of L. iners, L. gasseri and G. vaginalis, may contribute to female infertility in our study datasets. However, larger sample sizes are necessary to further evaluate such association.


Assuntos
Bactérias , Infertilidade Feminina , Metagenômica , Microbiota , Vagina , Humanos , Feminino , Vagina/microbiologia , Metagenômica/métodos , Infertilidade Feminina/microbiologia , Adulto , Microbiota/genética , Bangladesh , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Metagenoma , Adulto Jovem , Lactobacillus/isolamento & purificação , Lactobacillus/genética , Lactobacillus/classificação , Disbiose/microbiologia , Filogenia
8.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-39038938

RESUMO

With the increasing prevalence of age-related chronic diseases burdening healthcare systems, there is a pressing need for innovative management strategies. Our study focuses on the gut microbiota, essential for metabolic, nutritional, and immune functions, which undergoes significant changes with aging. These changes can impair intestinal function, leading to altered microbial diversity and composition that potentially influence health outcomes and disease progression. Using advanced metagenomic sequencing, we explore the potential of personalized probiotic supplements in 297 older adults by analyzing their gut microbiota. We identified distinctive Lactobacillus and Bifidobacterium signatures in the gut microbiota of older adults, revealing probiotic patterns associated with various population characteristics, microbial compositions, cognitive functions, and neuroimaging results. These insights suggest that tailored probiotic supplements, designed to match individual probiotic profile, could offer an innovative method for addressing age-related diseases and functional declines. Our findings enhance the existing evidence base for probiotic use among older adults, highlighting the opportunity to create more targeted and effective probiotic strategies. However, additional research is required to validate our results and further assess the impact of precision probiotics on aging populations. Future studies should employ longitudinal designs and larger cohorts to conclusively demonstrate the benefits of tailored probiotic treatments.


Assuntos
Envelhecimento , Suplementos Nutricionais , Microbioma Gastrointestinal , Probióticos , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Humanos , Idoso , Feminino , Masculino , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Lactobacillus/genética , Metagenômica/métodos , Bifidobacterium
9.
Nutrients ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38999862

RESUMO

Irritable bowel syndrome (IBS) is a common gastrointestinal disorder with gut microbiota imbalance playing a significant role. There are increasing numbers of research studies exploring treatment options involving probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT), but it is still uncertain which treatment option is superior. The research was conducted on various databases and unpublished trial data (up to February 2023). Randomized controlled trials (RCTs) were screened for adult patients with IBS comparing interventions with placebo. Probiotics, prebiotics, synbiotics, and FMT were assessed for their impact using mean difference and Bayesian network meta-analysis. Out of 6528 articles, 54 were included for probiotics, 7 for prebiotics/synbiotics, and 6 for FMT. Probiotics showed improvement in IBS symptoms, particularly with Bifidobacterium and Lactobacillus strains. Prebiotics and synbiotics did not show significant improvement. Network meta-analysis indicated the favorable effects of probiotics (OR = 0.53, 95% CI, 0.48 to 0.59) and FMT (OR = 0.46, 95% CI, 0.33 to 0.64) on IBS, with no serious adverse events reported. In short, probiotics and FMT are effective for managing IBS, with Bifidobacterium and Lactobacillus being dominant strains. However, the most effective probiotic combination or strain remains unclear, while prebiotics and synbiotics did not show significant improvement.


Assuntos
Transplante de Microbiota Fecal , Síndrome do Intestino Irritável , Metanálise em Rede , Prebióticos , Probióticos , Simbióticos , Síndrome do Intestino Irritável/terapia , Síndrome do Intestino Irritável/microbiologia , Humanos , Prebióticos/administração & dosagem , Probióticos/uso terapêutico , Probióticos/administração & dosagem , Simbióticos/administração & dosagem , Resultado do Tratamento , Microbioma Gastrointestinal , Ensaios Clínicos Controlados Aleatórios como Assunto , Bifidobacterium , Adulto , Feminino , Lactobacillus , Masculino
10.
Front Cell Infect Microbiol ; 14: 1409774, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006741

RESUMO

Background: Numerous bacteria are involved in the etiology of bacterial vaginosis (BV). Yet, current tests only focus on a select few. We therefore designed a new test targeting 22 BV-relevant species. Methods: Using 946 stored vaginal samples, a new qPCR test that quantitatively identifies 22 bacterial species was designed. The distribution and relative abundance of each species, α- and ß-diversities, correlation, and species co-existence were determined per sample. A diagnostic index was modeled from the data, trained, and tested to classify samples into BV-positive, BV-negative, or transitional BV. Results: The qPCR test identified all 22 targeted species with 95 - 100% sensitivity and specificity within 8 hours (from sample reception). Across most samples, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensenii, Gardnerella vaginalis, Fannyhessea (Atopobium) vaginae, Prevotella bivia, and Megasphaera sp. type 1 were relatively abundant. BVAB-1 was more abundant and distributed than BVAB-2 and BVAB-3. No Mycoplasma genitalium was found. The inter-sample similarity was very low, and correlations existed between key species, which were used to model, train, and test a diagnostic index: MDL-BV index. The MDL-BV index, using both species and relative abundance markers, classified samples into three vaginal microbiome states. Testing this index on our samples, 491 were BV-positive, 318 were BV-negative, and 137 were transitional BV. Although important differences in BV status were observed between different age groups, races, and pregnancy status, they were statistically insignificant. Conclusion: Using a diverse and large number of vaginal samples from different races and age groups, including pregnant women, the new qRT-PCR test and MDL-BV index efficiently diagnosed BV within 8 hours (from sample reception), using 22 BV-associated species.


Assuntos
Gardnerella vaginalis , Lactobacillus , Microbiota , Reação em Cadeia da Polimerase em Tempo Real , Vagina , Vaginose Bacteriana , Feminino , Vaginose Bacteriana/diagnóstico , Vaginose Bacteriana/microbiologia , Humanos , Vagina/microbiologia , Microbiota/genética , Lactobacillus/isolamento & purificação , Lactobacillus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , Gardnerella vaginalis/isolamento & purificação , Gardnerella vaginalis/genética , Adulto Jovem , Sensibilidade e Especificidade , Prevotella/isolamento & purificação , Prevotella/genética , Megasphaera/isolamento & purificação , Megasphaera/genética , Actinobacteria/isolamento & purificação , Actinobacteria/genética , Actinobacteria/classificação , Pessoa de Meia-Idade , Lactobacillus crispatus/isolamento & purificação , Lactobacillus crispatus/genética , Adolescente , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação , Gravidez , RNA Ribossômico 16S/genética
11.
J Agric Food Chem ; 72(28): 15875-15889, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38957928

RESUMO

This study investigated the mechanism underlying the flavor improvement observed during fermentation of a pea protein-based beverage using Lactobacillus johnsonii NCC533. A combination of sensomics and sensoproteomics approach revealed that the fermentation process enriched or generated well-known basic taste ingredients, such as amino acids, nucleotides, organic acids, and dipeptides, besides six new taste-active peptide sequences that enhance kokumi and umami notes. The six new umami and kokumi enhancing peptides, with human recognition thresholds ranging from 0.046 to 0.555 mM, are produced through the degradation of Pisum sativum's storage protein. Our findings suggest that compounds derived from fermentation enhance umami and kokumi sensations and reduce bitterness, thus improving the overall flavor perception of pea proteins. In addition, the analysis of intraspecific variations in the proteolytic activity of L. johnsonii and the genome-peptidome correlation analysis performed in this study point at cell-wall-bound proteinases such as PrtP and PrtM as the key genes necessary to initiate the flavor improving proteolytic cascade. This study provides valuable insights into the molecular mechanisms underlying the flavor improvement of pea protein during fermentation and identifies potential future research directions. The results highlight the importance of combining fermentation and senso(proteo)mics techniques in developing tastier and more palatable plant-based protein products.


Assuntos
Fermentação , Aromatizantes , Lactobacillus , Proteínas de Ervilha , Pisum sativum , Paladar , Humanos , Proteínas de Ervilha/metabolismo , Proteínas de Ervilha/química , Lactobacillus/metabolismo , Lactobacillus/genética , Pisum sativum/química , Pisum sativum/metabolismo , Aromatizantes/metabolismo , Aromatizantes/química , Proteômica , Adulto , Masculino , Feminino , Adulto Jovem , Bebidas/análise , Bebidas/microbiologia
12.
Acta Biochim Pol ; 71: 13014, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027262

RESUMO

Fatty acid profiles are crucial for the functionality and viability of lactobacilli used in food applications. Tween 80™, a common culture media additive, is known to influence bacterial growth and composition. This study investigated how Tween 80™ supplementation impacts the fatty acid profiles of six mesophilic lactobacilli strains (Lacticaseibacillus spp., Limosilactobacillus spp., Lactiplantibacillus plantarum). Analysis of eleven strains revealed 29 distinct fatty acids. Tween 80™ supplementation significantly altered their fatty acid composition. Notably, there was a shift towards saturated fatty acids and changes within the unsaturated fatty acid profile. While some unsaturated fatty acids decreased, there was a concurrent rise in cyclic derivatives like lactobacillic acid (derived from vaccenic acid) and dihydrosterculic acid (derived from oleic acid). This suggests that despite the presence of Tween 80™ as an oleic acid source, lactobacilli prioritize the synthesis of these cyclic derivatives from precursor unsaturated fatty acids. Myristic acid and dihydrosterculic acid levels varied across strains. Interestingly, palmitic acid content increased, potentially reflecting enhanced incorporation of oleic acid from Tween 80™ into membranes. Conversely, cis-vaccenic acid levels consistently decreased across all strains. The observed fatty acid profiles differed from previous studies, likely due to a combination of factors including strain-specific variations and growth condition differences (media type, temperature, harvesting point). However, this study highlights the consistent impact of Tween 80™ on the fatty acid composition of lactobacilli, regardless of these variations. In conclusion, Tween 80™ significantly alters fatty acid profiles, influencing saturation levels and specific fatty acid proportions. This work reveals key factors, including stimulated synthesis of lactobacillic acid, competition for oleic acid incorporation, and strain-specific responses to myristic and dihydrosterculic acids. The consistent reduction in cis-vaccenic acid and the presence of cyclic derivatives warrant further investigation to elucidate their roles in response to Tween 80™ supplementation.


Assuntos
Ácidos Graxos , Lactobacillus , Polissorbatos , Polissorbatos/farmacologia , Ácidos Graxos/metabolismo , Lactobacillus/metabolismo , Ácidos Oleicos/metabolismo , Ácido Mirístico/metabolismo , Ácido Oleico/metabolismo , Meios de Cultura/química , Ácido Palmítico/metabolismo , Ácidos Graxos Insaturados/metabolismo
13.
FASEB J ; 38(14): e23801, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39018106

RESUMO

Intracellular pathogens including Staphylococcus aureus contribute to the non-healing phenotype of chronic wounds. Lactobacilli, well known as beneficial bacteria, are also reported to modulate the immune system, yet their role in cutaneous immunity remains largely unknown. We explored the therapeutic potential of bacteria-free postbiotics, bioactive lysates of lactobacilli, to reduce intracellular S. aureus colonization and promote healing. Fourteen postbiotics derived from various lactobacilli species were screened, and Latilactobacillus curvatus BGMK2-41 was selected for further analysis based on the most efficient ability to reduce intracellular infection by S. aureus diabetic foot ulcer clinical isolate and S. aureus USA300. Treatment of both infected keratinocytes in vitro and infected human skin ex vivo with BGMK2-41 postbiotic cleared S. aureus. Keratinocytes treated in vitro with BGMK2-41 upregulated expression of antimicrobial response genes, of which DEFB4, ANG, and RNASE7 were also found upregulated in treated ex vivo human skin together with CAMP exclusively upregulated ex vivo. Furthermore, BGMK2-41 postbiotic treatment has a multifaceted impact on the wound healing process. Treatment of keratinocytes stimulated cell migration and the expression of tight junction proteins, while in ex vivo human skin BGMK2-41 increased expression of anti-inflammatory cytokine IL-10, promoted re-epithelialization, and restored the epidermal barrier via upregulation of tight junction proteins. Together, this provides a potential therapeutic approach for persistent intracellular S. aureus infections.


Assuntos
Queratinócitos , Lactobacillus , Staphylococcus aureus , Humanos , Queratinócitos/microbiologia , Queratinócitos/metabolismo , Queratinócitos/efeitos dos fármacos , Pele/microbiologia , Pele/metabolismo , Cicatrização/efeitos dos fármacos , Probióticos/farmacologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Ribonucleases/metabolismo
14.
BMC Womens Health ; 24(1): 410, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39026297

RESUMO

BACKGROUND: Chlamydia genital infections continue to be a serious health concern globally. Previous studies have reported that Chlamydia trachomatis infection alters the vaginal microbiota of infected women. This study investigated differences in the vaginal microbiome of South African pregnant women living with HIV with and without C. trachomatis infection. METHODS: This was a cross-sectional study among 385 pregnant women, recruited from the King Edward VIII Hospital in Durban, South Africa. C. trachomatis was detected using the Applied Biosystems™ TaqMan® Assays. A total of 40 samples, 20 C. trachomatis positive and 20 C. trachomatis negative, were selected for sequencing. The sequencing of the vaginal microbiome was performed using the PacBio platform. Statistical analysis was performed on IBM SPSS version 26. RESULTS: The prevalence of C. trachomatis infection was 12.2% (47/385). The genus Gardnerella (32.14% vs. 24.02%) and species in the genus Gardnerella (31.97% vs. 24.03%) were more abundant in the C. trachomatis-infected group compared to the uninfected group. Lactobacillus iners were also more abundant in the C. trachomatis-infected women (28.30%) compared to the uninfected women. However, these observed patterns did not reach statistical significance. Discriminant analysis showed that the class Alpha-Proteobacteria; order Bacillales; family Enterococcaceae; the genera Enhydrobacter, Enterococcus, and Parabacteroides; Enterococcus spp.; and Pseudomonas stutzeri significantly contributed to a model separating C. trachomatis-infected women from the uninfected group (p < 0.05). CONCLUSION: The organisms and taxa that significantly contributed to separating the vaginal microbiota of C. trachomatis-infected women from the uninfected women in this study cohort have not been previously observed in association with C. trachomatis infection or the vaginal microbiota. Future studies in larger cohorts that will investigate the role of these microorganisms in C. trachomatis infection and the vaginal microbiota are required.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Infecções por HIV , Microbiota , Vagina , Humanos , Feminino , África do Sul/epidemiologia , Vagina/microbiologia , Adulto , Gravidez , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/microbiologia , Estudos Transversais , Infecções por HIV/microbiologia , Infecções por HIV/complicações , Chlamydia trachomatis/isolamento & purificação , Complicações Infecciosas na Gravidez/microbiologia , Complicações Infecciosas na Gravidez/epidemiologia , Adulto Jovem , Gardnerella , Lactobacillus/isolamento & purificação
15.
Curr Microbiol ; 81(9): 271, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012492

RESUMO

Probiotics and prebiotics have been considered as alternative approaches for promoting health. This study aimed to investigate the anticandidal potential of various probiotic Lactobacillus strains and their cell-free supernatants (CFSs). The study assessed the impact of inulin and some fruits as prebiotics on the growth of selected probiotic strains in relation to their anticandidal activity, production of short-chain fatty acids, total phenolic content, and antioxidant activity. Results revealed variations in anticandidal activity based on the specific strains and forms of probiotics used. Non-adjusted CFSs were the most effective against Candida strains, followed by probiotic cells and adjusted CFSs (pH 7). Lacticaseibacillus rhamnosus SD4, L. rhamnosus SD11 and L. rhamnosus GG displayed the strongest anticandidal activity. Non-adjusted CFSs from L. rhamnosus SD11, L. rhamnosus SD4 and L. paracasei SD1 exhibited notable anticandidal effects. The adjusted CFSs of L. rhamnosus SD11 showed the highest anticandidal activity against all non-albicans Candida (NAC) strains, whereas the others were ineffective. Supplementation of L. rhamnosus SD11 with prebiotics, particularly 2% (w/v) mangosteen, exhibited positive results in promoting probiotic growth, short-chain fatty acids production, total phenolic contents, and antioxidant activity, and the subsequent enhancing anticandidal activity against both C. albicans and NAC strains compared to conditions without prebiotics. In conclusion, both live cells and CFSs of tested strains, particularly L. rhamnosus SD11, exhibited the best anticandidal activity. Prebiotics supplementation, especially mangosteen, enhanced probiotic growth and beneficial metabolites against Candida growth. These finding suggested that probiotics and prebiotic supplementation may be an effective alternative treatment for Candida infections.


Assuntos
Lactobacillus , Prebióticos , Probióticos , Probióticos/farmacologia , Lactobacillus/metabolismo , Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Antioxidantes/farmacologia , Inulina/farmacologia , Antifúngicos/farmacologia , Ácidos Graxos Voláteis/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Fenóis/farmacologia
16.
BMC Pregnancy Childbirth ; 24(1): 428, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877389

RESUMO

To explore the differences of vaginal microbes in women with preterm birth (PTB), and to construct prediction model. We searched for articles related to vaginal microbiology in preterm women and obtained four 16S rRNA-sequence datasets. We analyzed that for species diversity and differences, and constructed a random forest model with 20 differential genera. We introduce an independent whole genome-sequencing (WGS) data for validation. In addition, we collected vaginal and cervical swabs from 33 pregnant women who delivered spontaneously full-term and preterm infants, performed WGS in our lab to further validate the model. Compared to term birth (TB) samples, PTB women vagina were characterized by a decrease in Firmicutes, Lactobacillus, and an increase in diversity accompanied by the colonization of pathogenic bacteria such as Gardnerella, Atopobium and Prevotella. Twenty genus markers, including Lactobacillus, Prevotella, Streptococcus, and Gardnerella performed well in predicting PTB, with study-to-study transfer validation and LODO validation, different gestation validation showing good results, and in two independent cohorts (external WGS cohorts and woman samples WGS cohorts) in which the accuracy was maintained. PTB women have unique vaginal microbiota characteristics. A predictive model of PTB was constructed and its value validated from multiple perspectives.


Assuntos
Microbiota , Nascimento Prematuro , RNA Ribossômico 16S , Vagina , Humanos , Feminino , Vagina/microbiologia , Nascimento Prematuro/microbiologia , Gravidez , Microbiota/genética , Adulto , RNA Ribossômico 16S/genética , Sequenciamento Completo do Genoma , Recém-Nascido , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , Lactobacillus/isolamento & purificação , Lactobacillus/genética
17.
J Transl Med ; 22(1): 575, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886729

RESUMO

The vaginal microbiome is an immune defense against reproductive diseases and can serve as an important biomarker for cervical cancer. However, the intrinsic relationship between the recurrence and the vaginal microbiome in patients with cervical cancer before and after concurrent chemoradiotherapy is poorly understood. Here, we analyzed 125 vaginal microbial profiles from a patient cohort of stage IB-IVB cervical cancer using 16S metagenomic sequencing and deciphered the microbial composition and functional characteristics of the recurrent and non-recurrent both before and after chemoradiotherapy. We demonstrated that the abundance of beneficial bacteria and stability of the microbial community in the vagina decreased in the recurrence group, implying the unique characteristics of the vaginal microbiome for recurrent cervical cancer. Moreover, using machine learning, we identified Lactobacillus iners as the most important biomarker, combined with age and other biomarkers (such as Ndongobacter massiliensis, Corynebacterium pyruviciproducens ATCC BAA-1742, and Prevotella buccalis), and could predict cancer recurrence phenotype before chemoradiotherapy. This study prospectively employed rigorous bioinformatics analysis and highlights the critical role of vaginal microbiota in post-treatment cervical cancer recurrence, identifying promising biomarkers with prognostic significance in the context of concurrent chemoradiotherapy for cervical cancer. The role of L. iners in determining chemoradiation resistance in cervical cancer warrants further detailed investigation. Our results expand our understanding of cervical cancer recurrence and help develop better strategies for prognosis prediction and personalized therapy.


Assuntos
Quimiorradioterapia , Lactobacillus , Microbiota , Recidiva Local de Neoplasia , Neoplasias do Colo do Útero , Vagina , Humanos , Feminino , Neoplasias do Colo do Útero/microbiologia , Neoplasias do Colo do Útero/terapia , Neoplasias do Colo do Útero/patologia , Vagina/microbiologia , Recidiva Local de Neoplasia/microbiologia , Pessoa de Meia-Idade , Adulto , Idoso , Aprendizado de Máquina
18.
Nutrients ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892631

RESUMO

This study investigated the effect of astragalus polysaccharide (APS, an ingredient with hypoglycemic function in a traditional Chinese herbal medicine) on gut microbiota and metabolites of type 2 diabetes mellitus (T2DM) patients using a simulated fermentation model in vitro. The main components of APS were isolated, purified, and structure characterized. APS fermentation was found to increase the abundance of Lactobacillus and Bifidobacterium and decrease the Escherichia-Shigella level in the fecal microbiota of T2DM patients. Apart from increasing propionic acid, APS also caused an increase in all-trans-retinoic acid and thiamine (both have antioxidant properties), with their enrichment in the KEGG pathway associated with thiamine metabolism, etc. Notably, APS could also enhance fecal antioxidant properties. Correlation analysis confirmed a significant positive correlation of Lactobacillus with thiamine and DPPH-clearance rate, suggesting the antioxidant activity of APS was related to its ability to enrich some specific bacteria and upregulate their metabolites.


Assuntos
Antioxidantes , Astrágalo , Diabetes Mellitus Tipo 2 , Fezes , Fermentação , Microbioma Gastrointestinal , Polissacarídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polissacarídeos/farmacologia , Astrágalo/química , Fezes/microbiologia , Antioxidantes/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Tiamina/farmacologia , Tiamina/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/efeitos dos fármacos , Lactobacillus/metabolismo , Lactobacillus/efeitos dos fármacos , Hipoglicemiantes/farmacologia
19.
Nutrients ; 16(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38931211

RESUMO

Iron deficiency remains a public health challenge globally. Prebiotics have the potential to improve iron bioavailability by modulating intestinal bacterial population, increasing SCFA production, and stimulating expression of brush border membrane (BBM) iron transport proteins among iron-deficient populations. This study intended to investigate the potential effects of soluble extracts from the cotyledon and seed coat of three pea (Pisum sativum) varieties (CDC Striker, CDC Dakota, and CDC Meadow) on the expression of BBM iron-related proteins (DCYTB and DMT1) and populations of beneficial intestinal bacteria in vivo using the Gallus gallus model by oral gavage (one day old chicks) with 1 mL of 50 mg/mL pea soluble extract solutions. The seed coat treatment groups increased the relative abundance of Bifidobacterium compared to the cotyledon treatment groups, with CDC Dakota seed coat (dark brown pigmented) recording the highest relative abundance of Bifidobacterium. In contrast, CDC Striker Cotyledon (dark-green-pigmented) significantly increased the relative abundance of Lactobacillus (p < 0.05). Subsequently, the two dark-pigmented treatment groups (CDC Striker Cotyledon and CDC Dakota seed coats) recorded the highest expression of DCYTB. Our study suggests that soluble extracts from the pea seed coat and dark-pigmented pea cotyledon may improve iron bioavailability by affecting intestinal bacterial populations.


Assuntos
Galinhas , Microbioma Gastrointestinal , Ferro , Pisum sativum , Prebióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Ferro/metabolismo , Extratos Vegetais/farmacologia , Intestinos/microbiologia , Sementes , Bifidobacterium/metabolismo , Cotilédone , Lactobacillus/metabolismo , Proteínas de Transporte de Cátions
20.
J Appl Oral Sci ; 32: e20240024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922242

RESUMO

OBJECTIVE: To evaluate the protective effect of an experimental solution containing TiF4/NaF on the development of radiation-induced dentin caries lesions. METHODOLOGY: bovine root samples were irradiated (70Gy) and distributed as following (n=12/group): Commercial Saliva (BioXtra), NaF (500 ppm F-), TiF4 (500 ppm F), TiF4/NaF (TiF4: 300 ppm F-, NaF: 190 ppm F-), and Phosphate buffer solution (PBS, negative control). Biofilm was produced using biofilm from irradiated patients and McBain saliva (0.2% of sucrose, at 37oC and 5% CO2) for five days. The treatments were applied 1x/day. Colony-forming units (CFU) were counted and demineralization was quantified by transversal microradiography. The ANOVA/Tukey test was applied for all parameters. RESULTS: All treatments reduced CFU for total microorganisms. TiF4 reduced Lactobacillus sp. (7.04±0.26 log10 CFU/mL) and mutans streptococci (7.18±0.28) CFU the most, when compared to PBS (7.58±0.21 and 7.75±0.17) and followed by NaF (7.12±0.31 and 7.34±0.22) and TiF4/NaF (7.16±0.35 and 7.29± 0.29). TiF4 and Commercial saliva showed the lowest integrated mineral loss (ΔZ-vol%.mm) (1977±150 and 2062±243, respectively) when compared to PBS (4540±335), followed by NaF (2403±235) and TiF4/NaF (2340±200). Commercial saliva was the only to significantly reduce mineral loss (LD-µm) (111±25) compared to PBS (153±24).Mean mineral loss (R-vol%) decreased by 35.2% for TiF4 (18.2±3.3) when compared to PBS (28.1±2.9) Conclusion: TiF4/NaF has a comparable anti-cariogenic effect to TiF4 and Commercial saliva under the model in this study.


Assuntos
Biofilmes , Cárie Dentária , Dentina , Fluoretos , Saliva , Fluoreto de Sódio , Streptococcus mutans , Fluoreto de Sódio/farmacologia , Bovinos , Animais , Dentina/efeitos dos fármacos , Dentina/efeitos da radiação , Dentina/microbiologia , Cárie Dentária/prevenção & controle , Cárie Dentária/microbiologia , Biofilmes/efeitos dos fármacos , Fluoretos/farmacologia , Saliva/microbiologia , Saliva/química , Saliva/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Fatores de Tempo , Análise de Variância , Microrradiografia , Cariostáticos/farmacologia , Reprodutibilidade dos Testes , Lactobacillus/efeitos dos fármacos , Contagem de Colônia Microbiana , Desmineralização do Dente/prevenção & controle , Humanos , Teste de Materiais , Valores de Referência , Resultado do Tratamento , Estatísticas não Paramétricas , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA