Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.693
Filtrar
1.
Hematology ; 28(1): 2161194, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36607144

RESUMO

OBJECTIVE: SET domain containing protein 2 (SETD2) involves in the progression and development of chemotherapy resistance in acute myeloid leukemia (AML). Hence, this study aimed to investigate the relationship of SETD2 expression with disease risk, features, treatment response, and survival profile in AML. METHODS: One-hundred and sixty primary AML patients were retrospectively analyzed. Their bone marrow (BM) samples before and after induction therapy were retrieved for SETD2 detection by RT-qPCR. Moreover, SETD2 expression in BM samples of 20 disease controls (DCs) were also determined. RESULTS: SETD2 expression was downregulated in AML patients compared to DCs (P < 0.001). Higher SETD2 expression related to white blood cells ≤10 × 109/L despite not reaching statistical significance (P = 0.062). One-hundred and nineteen (74.4%) AML patients achieved complete response (CR), while the remaining 41 (25.6%) did not achieve that. Furthermore, increased SETD2 expression was associated with CR achievement (P = 0.015). Survival analyses displayed that SETD2 high (vs. low) was related to prolonged event-free survival (EFS) (P = 0.001) and overall survival (OS) (P = 0.021). Moreover, increased SETD2 quartile was correlated with favorable EFS (P = 0.004) and OS (P = 0.042). After adjustment using multivariate Cox's regression analysis, higher SETD2 quartile was independently related to prolonged EFS [hazard ratio (HR): 0.766, P = 0.013] and OS (HR: 0.669, P = 0.013). It was also noticed that SETD2 expression was elevated during the induction therapy (P < 0.001). CONCLUSION: Detection of SETD2 may assist in estimating treatment response and survival profile in AML patients.


Assuntos
Quimioterapia de Indução , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Prognóstico , Indução de Remissão , Estudos Retrospectivos , Histona-Lisina N-Metiltransferase
2.
Nat Commun ; 14(1): 115, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36611026

RESUMO

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phospho-ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.


Assuntos
Leucemia Mieloide Aguda , Medicina de Precisão , Humanos , Transdução de Sinais , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia
3.
Theranostics ; 13(1): 77-94, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593968

RESUMO

Rationale: microRNAs (miRNAs) are frequently deregulated and play important roles in the pathogenesis and progression of acute myeloid leukemia (AML). miR-182 functions as an onco-miRNA or tumor suppressor miRNA in the context of different cancers. However, whether miR-182 affects the self-renewal of leukemia stem cells (LSCs) and normal hematopoietic stem progenitor cells (HSPCs) is unknown. Methods: Bisulfite sequencing was used to analyze the methylation status at pri-miR-182 promoter. Lineage-negative HSPCs were isolated from miR-182 knockout (182KO) and wild-type (182WT) mice to construct MLL-AF9-transformed AML model. The effects of miR-182 depletion on the overall survival and function of LSC were analyzed in this mouse model in vivo. Results: miR-182-5p (miR-182) expression was lower in AML blasts than normal controls (NCs) with hypermethylation observed at putative pri-miR-182 promoter in AML blasts but unmethylation in NCs. Overexpression of miR-182 inhibited proliferation, reduced colony formation, and induced apoptosis in leukemic cells. In addition, depletion of miR-182 accelerated the development and shortened the overall survival (OS) in MLL-AF9-transformed murine AML through increasing LSC frequency and self-renewal ability. Consistently, overexpression of miR-182 attenuated AML development and extended the OS in the murine AML model. Most importantly, miR-182 was likely dispensable for normal hematopoiesis. Mechanistically, we identified BCL2 and HOXA9 as two key targets of miR-182 in this context. Most importantly, AML patients with miR-182 unmethylation had high expression of miR-182 followed by low protein expression of BCL2 and resistance to BCL2 inhibitor venetoclax (Ven) in vitro. Conclusions: Our results suggest that miR-182 is a potential therapeutic target for AML patients through attenuating the self-renewal of LSC but not HSPC. miR-182 promoter methylation could determine the sensitivity of Ven treatment and provide a potential biomarker for it.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , MicroRNAs , Animais , Camundongos , Linhagem Celular Tumoral , DNA , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Funct Integr Genomics ; 23(1): 43, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36658407

RESUMO

MicroRNA (miR)-381-3p is the newly discovered tumor-associated miRNA, which is frequently associated with diverse human malignancies; but, it is still unknown about its effect on acute myeloid leukemia (AML) in children. This work focused on exploring miR-381-3p's effect on childhood AML and identifying the possible mechanisms facilitating new treatment development. Using qRT-PCR analysis, miR-381-3p expression remarkably reduced in pediatric AML patients and AML cell lines (HL-60 and U937). Following transfection of miR-381-3p mimic or inhibitor into HL-60 and U937 cells, we conducted MTT assay to evaluate cell proliferation, flow cytometry (FCM) to measured cell apoptosis and cell cycle, whereas Transwell assays to detect cell invasion and migration. Our results demonstrated that miR-381-3p overexpression remarkably repressed cell growth, invasion and migration; additionally, miR-381-3p overexpression resulted in arrest of cell cycle and enhanced cell apoptosis. In contrast, miR-381-3p knockdown led to an opposite effect. Moreover, we predicted miR-381's target gene and validated it by luciferase reporter assay and TargetScan, separately. We identified miR-381-3p's binding site in ROCK1 3'-UTR. As revealed by Western-blot (WB) assay, miR-381-3p overexpression notably suppressed ROCK1 level. Moreover, restoring ROCK1 expression abolished miR-381-3p's inhibition on cell proliferation, invasion and migration. Data in this work indicated the role of miR-381-3p as the tumor suppressor within pediatric AML by targeting ROCK1. Therefore, miR-381-3p might serve as a potential therapeutic target for the treatment of pediatric AML.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , Criança , Regulação para Baixo , MicroRNAs/genética , MicroRNAs/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Linhagem Celular , Proliferação de Células/genética , Linhagem Celular Tumoral , Apoptose/genética , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
5.
J Agric Food Chem ; 71(3): 1518-1530, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36637065

RESUMO

Polyphenols have received attention as dietary supplements for the relief of alcoholic liver disease (ALD) due to various bioactivities. Ethanol-induced rat small intestinal epithelial cell 6 (IEC-6) and alpha mouse liver 12 (AML-12) cell models were pretreated with four dietary polyphenols with different structures to explore their effects on cytotoxicity and potential protective mechanisms. The results showed that polyphenols had potential functions to inhibit ethanol-induced AML-12 and IEC-6 cell damage and oxidative stress, and restore ethanol-induced IEC-6 permeability and tight junction gene expression. Especially, dihydromyricetin (DMY) had the best protective effect on ethanol-induced cytotoxicity, followed by apigenin (API). Western blot results showed that DMY and API had the best ability to inhibit CYP2E1 and Keap1, and promote nuclear translocation of Nrf2, which might be the potential mechanism by which DMY and API attenuate ethanol-induced cytotoxicity. Moreover, the molecular docking results predicted that DMY and API could bind more tightly to the amino acid residues of CYP2E1 and Keap1, which might be one of the inhibitory modes of dietary polyphenols on CYP2E1 and Keap1. This study provided a rationale for the subsequent protective effect of dietary polyphenols on alcohol-induced liver injury in animal models and provided new clues on bioactive components for ALD-protection based on the gut-liver axis.


Assuntos
Etanol , Leucemia Mieloide Aguda , Animais , Camundongos , Etanol/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Simulação de Acoplamento Molecular , Fígado/metabolismo , Estresse Oxidativo , Polifenóis/metabolismo , Leucemia Mieloide Aguda/metabolismo
6.
Nat Cell Biol ; 25(1): 170-182, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36624186

RESUMO

T cell acute lymphoblastic leukaemia (T-ALL) is an aggressive malignancy with poor prognosis, but a decisive marker and effective treatment for leukaemia stem cells (LSCs) remain unclear. Here, using lineage tracing, limiting dilution assays and in vivo live imaging approaches, we identify rare inhibitory receptor programmed cell death 1 (PD-1)-expressing cells that reside at the apex of leukaemia hierarchy for initiation and relapse in T-ALL. Ablation of PD-1-expressing cells, deletion of PD-1 in T-ALL cells or blockade of PD-1 or PD-1 ligand 1 significantly eradicated LSCs and suppressed disease progression. Combination therapy using PD-1 blockade and chemotherapy substantially extended the survival of mice engrafted with mouse or human T-ALL cells. Mechanistically, PD-1+ LSCs had high NOTCH1-MYC activity for disease initiation. Furthermore, PD-1 signalling maintained quiescence and protected LSCs against T cell receptor-signal-induced apoptosis. Overall, our data highlight the hierarchy of leukaemia by identifying PD-1+ LSCs and provide a therapeutic approach for the elimination of LSCs through PD-1 blockade in T-ALL.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor de Morte Celular Programada 1/genética , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T/metabolismo , Apoptose , Morte Celular , Células-Tronco/metabolismo
7.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674872

RESUMO

Numerous hematologic neoplasms, including acute B-lymphoblastic leukemia (B-ALL), are characterized by overexpression of anti-apoptotic BCL-2 family proteins. Despite the high clinical efficacy of the specific BCL-2 inhibitor venetoclax in acute myeloid leukemia (AML) and chronic lymphocytic leukemia (CLL), dose limitation and resistance argue for the early exploration of rational combination strategies. Recent data indicated that BCL-2 inhibition in B-ALL with KMT2A rearrangements is a promising intervention option; however, combinatorial approaches have not been in focus so far. The PI3K/AKT pathway has emerged as a possible target structure due to multiple interactions with the apoptosis cascade as well as relevant dysregulation in B-ALL. Herein, we demonstrate for the first time that combined BCL-2 and PI3K/AKT inhibition has synergistic anti-proliferative effects on B-ALL cell lines. Of note, all tested combinations (venetoclax + PI3K inhibitors idelalisib or BKM-120, as well as AKT inhibitors MK-2206 or perifosine) achieved comparable anti-leukemic effects. In a detailed analysis of apoptotic processes, among the PI3K/AKT inhibitors only perifosine resulted in an increased rate of apoptotic cells. Furthermore, the combination of venetoclax and perifosine synergistically enhanced the activity of the intrinsic apoptosis pathway. Subsequent gene expression studies identified the pro-apoptotic gene BBC3 as a possible player in synergistic action. All combinatorial approaches additionally modulated extrinsic apoptosis pathway genes. The present study provides rational combination strategies involving selective BCL-2 and PI3K/AKT inhibition in B-ALL cell lines. Furthermore, we identified a potential mechanistic background of the synergistic activity of combined venetoclax and perifosine application.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Leucemia Mieloide Aguda/metabolismo , Linhagem Celular Tumoral
8.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675134

RESUMO

Acute myeloid leukemia (AML) with a nucleophosmin 1 (NPM1) mutation is a unique subtype of adult leukemia. Recent studies show that NPM1-mutated AML has high autophagy activity. However, the mechanism for upholding the high autophagic level is still not fully elucidated. In this study, we first identified that tumor protein p53 inducible nuclear protein 2 (TP53INP2) was highly expressed and cytoplasmically localized in NPM1-mutated AML cells. Subsequent data showed that the expression of TP53INP2 was upregulated by fat mass and obesity-associated protein (FTO)-mediated m6A modification. Meanwhile, TP53INP2 was delocalized to the cytoplasm by interacting with NPM1 mutants. Functionally, cytoplasmic TP53INP2 enhanced autophagy activity by promoting the interaction of microtubule-associated protein 1 light chain 3 (LC3) - autophagy-related 7 (ATG7) and further facilitated the survival of leukemia cells. Taken together, our study indicates that TP53INP2 plays an oncogenic role in maintaining the high autophagy activity of NPM1-mutated AML and provides further insight into autophagy-targeted therapy of this leukemia subtype.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Adulto , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Autofagia/genética , Citoplasma/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina
9.
Ann Hematol ; 102(1): 73-87, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36527458

RESUMO

To gain insights into the idiosyncrasies of CD34 + enriched leukemic stem cells, we investigated the nature and extent of transcriptional heterogeneity by single-cell sequencing in pediatric AML. Whole transcriptome analysis of 28,029 AML single cells was performed using the nanowell cartridge-based barcoding technology. Integrated transcriptional analysis identified unique leukemic stem cell clusters of each patient and intra-patient heterogeneity was revealed by multiple LSC-enriched clusters differing in their cell cycle processes and BCL2 expression. All LSC-enriched clusters exhibited gene expression profile of dormancy and self-renewal. Upregulation of genes involved in non-coding RNA processing and ribonucleoprotein assembly were observed in LSC-enriched clusters relative to HSC. The genes involved in regulation of apoptotic processes, response to cytokine stimulus, and negative regulation of transcription were upregulated in LSC-enriched clusters as compared to the blasts. Validation of top altered genes in LSC-enriched clusters confirmed upregulation of TCF7L2, JUP, ARHGAP25, LPAR6, and PRDX1 genes, and serine/threonine kinases (STK24, STK26). Upregulation of LPAR6 showed trend towards MRD positive status (Odds ratio = 0.126; 95% CI = 0.0144-1.10; p = 0.067) and increased expression of STK26 significantly correlated with higher RFS (HR = 0.231; 95% CI = 0.0506-1.052; p = 0.04). Our findings addressed the inter- and intra-patient diversity within AML LSC and potential signaling and chemoresistance-associated targets that warrant investigation in larger cohort that may guide precision medicine in the near future.


Assuntos
Leucemia Mieloide Aguda , Criança , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Antígenos CD34/metabolismo , Perfilação da Expressão Gênica , Células-Tronco/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
10.
Oncoimmunology ; 12(1): 2152998, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36531688

RESUMO

Myelodysplastic syndromes (MDS) and their progression to secondary acute myeloid leukemia (sAML) are associated with an altered protein expression including extracellular matrix (ECM) components thereby promoting an inflammatory environment. Since the role of the proteoglycan biglycan (BGN) as an inflammatory mediator has not yet been investigated in both diseases and might play a role in disease progression, its expression and/or function was determined in cell lines and bone marrow biopsies (BMBs) of MDS and sAML patients and subpopulations of MDS stem cells by Western blot and immunohistochemistry. The bone marrow (BM) microenvironment was analyzed by multispectral imaging, patients' survival by Cox regression. ROC curves were assessed for diagnostic value of BGN. All cell lines showed a strong BGN surface expression in contrast to only marginal expression levels in mononuclear cells and CD34+ cells from healthy donors. In the MDS-L cell line, CD34-CD33+ and CD34+CD33+ blast subpopulations exhibited a differential BGN surface detection. Increased BGN mediated inflammasome activity of CD34-CD33+TLR4+ cells was observed, which was inhibited by direct targeting of BGN or NLRP3. BGN was heterogeneously expressed in BMBs of MDS and sAML, but was not detected in control biopsies. BGN expression in BMBs positively correlated with MUM1+ and CD8+, but negatively with CD33+TLR4+ cell infiltration and was accompanied by a decreased progression-free survival of MDS patients. BGN-mediated inflammasome activation appears to be a crucial mechanism in MDS pathogenesis implicating its use as suitable biomarker and potential therapeutic target. Abbreviations: Ab, antibody; alloSCT, allogenic stem cell transplant; AML, acute myeloid leukemia; BGN, biglycan; BM, bone marrow; BMB, bone marrow biopsy; casp1, caspase 1; CTLA-4, cytotoxic T lymphocyte-associated protein 4; DAMP, danger-associated molecular pattern; ECM, extracellular matrix; FCS, fetal calf serum; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HD, healthy donor; HSPC, hematopoietic stem and progenitor cell; HSC, hematopoietic stem cell; IFN, interferon; IHC, immunohistochemistry; IL, interleukin; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; MSI, multispectral imaging; NGS, next-generation sequencing; NLRP3, NLR family pyrin domain containing 3; OS, overall survival; PBMC, peripheral blood mononuclear cell; PD-1, programmed cell death protein 1; PD-L1, programmed death-ligand 1, PFS, progression-free survival; PRR, pattern recognition receptor; SC, stem cell; SLRP, small leucine-rich proteoglycan; TGF, transforming growth factor; TIRAP, toll/interleukin 1 receptor domain-containing adapter protein; TLR, toll-like receptor; Treg, regulatory T cell.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Segunda Neoplasia Primária , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Biglicano , Receptor 4 Toll-Like , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/metabolismo , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Antígenos CD34/metabolismo , Caspase 1 , Microambiente Tumoral
11.
J Biol Chem ; 299(1): 102787, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36509141

RESUMO

Chemoresistance remains a major challenge in the current treatment of acute myeloid leukemia (AML). The bone marrow microenvironment (BMM) plays a complex role in protecting leukemia cells from chemotherapeutics, and the mechanisms involved are not fully understood. Antileukemia drugs kill AML cells directly but also damage the BMM. Here, we determined antileukemia drugs induce DNA damage in bone marrow stromal cells (BMSCs), resulting in resistance of AML cell lines to adriamycin and idarubicin killing. Damaged BMSCs induced an inflammatory microenvironment through NF-κB; suppressing NF-κB with small molecule inhibitor Bay11-7082 attenuated the prosurvival effects of BMSCs on AML cell lines. Furthermore, we used an ex vivo functional screen of 507 chemokines and cytokines to identify 44 proteins secreted from damaged BMSCs. Fibroblast growth factor-10 (FGF10) was most strongly associated with chemoresistance in AML cell lines. Additionally, expression of FGF10 and its receptors, FGFR1 and FGFR2, was increased in AML patients after chemotherapy. FGFR1 and FGFR2 were also widely expressed by AML cell lines. FGF10-induced FGFR2 activation in AML cell lines operates by increasing P38 MAPK, AKT, ERK1/2, and STAT3 phosphorylation. FGFR2 inhibition with small molecules or gene silencing of FGFR2 inhibited proliferation and reverses drug resistance of AML cells by inhibiting P38 MAPK, AKT, and ERK1/2 signaling pathways. Finally, release of FGF10 was mediated by ß-catenin signaling in damaged BMSCs. Our data indicate FGF10-FGFR2 signaling acts as an effector of damaged BMSC-mediated chemoresistance in AML cells, and FGFR2 inhibition can reverse stromal protection and AML cell chemoresistance in the BMM.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Células da Medula Óssea/metabolismo , Dano ao DNA , Fator 10 de Crescimento de Fibroblastos/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Células Estromais/metabolismo , Microambiente Tumoral , Comunicação Parácrina
12.
J Biol Chem ; 299(1): 102798, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36528059

RESUMO

Chemotherapy resistance is the dominant challenge in the treatment of acute myeloid leukemia (AML). Nuclear factor E2-related factor 2 (Nrf2) exerts a vital function in drug resistance of many tumors. Nevertheless, the potential molecular mechanism of Nrf2 regulating the base excision repair pathway that mediates AML chemotherapy resistance remains unclear. Here, in clinical samples, we found that the high expression of Nrf2 and base excision repair pathway gene encoding 8-hydroxyguanine DNA glycosidase (OGG1) was associated with AML disease progression. In vitro, Nrf2 and OGG1 were highly expressed in drug-resistant leukemia cells. Upregulation of Nrf2 in leukemia cells by lentivirus transfection could decrease the sensitivity of leukemia cells to cytarabine, whereas downregulation of Nrf2 in drug-resistant cells could enhance leukemia cell chemosensitivity. Meanwhile, we found that Nrf2 could positively regulate OGG1 expression in leukemia cells. Our chromatin immunoprecipitation assay revealed that Nrf2 could bind to the promoter of OGG1. Furthermore, the use of OGG1 inhibitor TH5487 could partially reverse the inhibitory effect of upregulated Nrf2 on leukemia cell apoptosis. In vivo, downregulation of Nrf2 could increase the sensitivity of leukemia cell to cytarabine and decrease OGG1 expression. Mechanistically, Nrf2-OGG1 axis-mediated AML resistance might be achieved by activating the AKT signaling pathway to regulate downstream apoptotic proteins. Thus, this study reveals a novel mechanism of Nrf2-promoting drug resistance in leukemia, which may provide a potential therapeutic target for the treatment of drug-resistant/refractory leukemia.


Assuntos
Citarabina , DNA Glicosilases , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Apoptose , Núcleo Celular/metabolismo , Citarabina/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , DNA Glicosilases/metabolismo
13.
FASEB J ; 37(1): e22716, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36527390

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a major health problem in Western countries and has become the most common cause of chronic liver disease. Although NAFLD is closely associated with obesity, inflammation, and insulin resistance, its pathogenesis remains unclear. The disease begins with excessive accumulation of triglycerides in the liver, which in turn leads to liver cell damage, steatosis, inflammation, and so on. P38γ is one of the four isoforms of P38 mitogen-activated protein kinases (P38 MAPKs) that contributes to inflammation in different diseases. In this research, we investigated the role of P38γ in NAFLD. In vivo, a NAFLD model was established by feeding C57BL/6J mice with a methionine- and choline-deficient (MCD) diet and adeno-associated virus (AAV9-shRNA-P38γ) was injected into C57BL/6J mice by tail vein for knockdown P38γ. The results indicated that the expression level of P38γ was upregulated in MCD-fed mice. Furthermore, the downregulation of P38γ significantly attenuated liver injury and lipid accumulation in mice. In vitro, mouse hepatocytes AML-12 were treated with free fatty acid (FFA). We found that P38γ was obviously increased in FFA-treated AML-12 cells, whereas knockdown of P38γ significantly suppressed lipid accumulation in FFA-treated AML-12 cells. Furthermore, P38γ regulated the Janus Kinase-Signal transducers and activators of transcription (JAK-STAT) signaling pathway. Inhibition of P38γ can inhibit the JAK-STAT signaling pathway, thereby inhibiting lipid accumulation in FFA-treated AML-12 cells. In conclusion, our results suggest that targeting P38γ contributes to the suppression of lipid accumulation in fatty liver disease.


Assuntos
Leucemia Mieloide Aguda , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Metabolismo dos Lipídeos , Janus Quinases/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Transdução de Sinais , Ácidos Graxos não Esterificados/metabolismo , Inflamação/metabolismo , Metionina/farmacologia , Metionina/metabolismo , Leucemia Mieloide Aguda/metabolismo
14.
Cell Stem Cell ; 30(1): 69-85.e7, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36574771

RESUMO

N6-methyladenosine (m6A) is a common chemical modification for mammalian mRNA and exhibits high dynamics in various biological processes. However, dynamics of m6A RNA methylome during leukemogenesis remains unknown. Here, we delineate a comprehensive m6A landscape during acute myeloid leukemia (AML) development and identify PRMT6 as a key for maintaining AML stem cells. We observe an obvious change in m6A methylome during leukemogenesis and find that protein arginine methyltransferase PRMT6 and m6A reader IGF2BP2 maintain the function of human and murine leukemia stem cells (LSCs). Genetic deletion or pharmacological inhibition of PRMT6 damages AML development and LSC function. Mechanistically, IGF2BP2 stabilizes PRMT6 mRNA via m6A-mediated manner, which catalyzes H3R2me2a and suppresses lipid transporter MFSD2A expression. PRMT6 loss upregulates MFSD2A expression that increases docosahexaenoic acid levels and impairs LSC maintenance. Collectively, our findings reveal a critical role of PRMT6-MFSD2A signaling axis in AML development and provide a therapeutic strategy for targeting LSCs.


Assuntos
Leucemia Mieloide Aguda , RNA , Humanos , Animais , Camundongos , RNA/metabolismo , Epigenoma , RNA Mensageiro/metabolismo , Células-Tronco Neoplásicas/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Lipídeos , Mamíferos/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
15.
Oncotarget ; 13: 1359-1368, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537913

RESUMO

Antibody drug conjugates (ADC) are one of the attractive modalities for the treatment of acute myeloid leukemia (AML). Previously, we have developed ASP1235, a novel ADC targeting Fms-like tyrosine kinase 3 (FLT3) which is widely expressed on the leukemic blasts of AML patients. In this study, we sought to evaluate the therapeutic effect of ASP1235 in combination with venetoclax plus azacitidine, a novel standard-of-care treatment for elderly AML patients, in ASP1235 poor sensitive AML cells. To identify the suitable preclinical model, we first evaluated the growth inhibitory effect of ASP1235 on several leukemia cell lines expressing FLT3 and found that THP-1 cells were partially sensitive to ASP1235 in vitro. Furthermore, ASP1235 showed marginal anti-tumor activity in a THP-1 xenograft model. Compared to the leukemic blasts in most of the relapsed or refractory (R/R) AML patients tested, THP-1 cells expressed equivalent protein levels of Bcl-2, suggesting that ASP1235 in combination with venetoclax plus azacitidine is a rational treatment in the THP-1 model. In vitro, ASP1235 showed a cytotoxic effect on THP-1 cells in combination with venetoclax, and the combination effect was greater than the additive effect. Furthermore, ASP1235 also showed a combination effect with venetoclax plus azacitidine treatment. Similarly, the combination of ASP1235, venetoclax and azacitidine showed a superior anti-tumor effect in a THP-1 xenograft model without obvious body weight loss. These findings provide supportive evidence that the triple combination of ASP1235, venetoclax and azacitidine would improve the clinical outcome of ASP1235 monotherapy and venetoclax plus azacitidine regimen in AML patients.


Assuntos
Leucemia Mieloide Aguda , Tirosina Quinase 3 Semelhante a fms , Humanos , Animais , Camundongos , Xenoenxertos , Azacitidina/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Mieloide Aguda/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
16.
J Transl Med ; 20(1): 612, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550462

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) patients with normal karyotype (NK-AML) have significant variabilities in outcomes. The European Leukemia Net stratification system and some prognostic models have been used to evaluate risk stratification. However, these common standards still have some limitations. The biological functions and mechanisms of Small Integral Membrane Protein 3 (SMIM3) have seldomly been investigated. To this date, the prognostic value of SMIM3 in AML has not been reported. This study aimed to explore the clinical significance, biological effects and molecular mechanisms of SMIM3 in AML. METHODS: RT-qPCR was applied to detect the expression level of SMIM3 in bone marrow specimens from 236 newly diagnosed adult AML patients and 23 healthy volunteers. AML cell lines, Kasumi-1 and THP-1, were used for lentiviral transfection. CCK8 and colony formation assays were used to detect cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry. Western blot was performed to explore relevant signaling pathways. The biological functions of SMIM3 in vivo were validated by xenograft tumor mouse model. Survival rate was evaluated by Log-Rank test and Kaplan-Meier. Cox regression model was used to analyze multivariate analysis. The correlations between SMIM3 and drug resistance were also explored. RESULTS: Through multiple datasets and our clinical group, SMIM3 was shown to be significantly upregulated in adult AML compared to healthy subjects. SMIM3 overexpression conferred a worse prognosis and was identified as an independent prognostic factor in 95 adult NK-AML patients. Knockdown of SMIM3 inhibited cell proliferation and cell cycle progression, and induced cell apoptosis in AML cells. The reduced SMIM3 expression significantly suppressed tumor growth in the xenograft mouse model. Western blot analysis showed downregulation of p-PI3K and p-AKT in SMIM3-knockdown AML cell lines. SMIM3 may also be associated with some PI3K-AKT and first-line targeted drugs. CONCLUSIONS: SMIM3 was highly expressed in adult AML, and such high-level expression of SMIM3 was associated with a poor prognosis in adult AML. Knockdown of SMIM3 inhibited the proliferation of AML through regulation of the PI3K-AKT signaling pathway. SMIM3 may serve as a potential prognostic marker and a therapeutic target for AML in the future.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo/genética , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais , Prognóstico , Proliferação de Células/genética , Apoptose/genética , Cariótipo , Linhagem Celular Tumoral
17.
J Transl Med ; 20(1): 600, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36517851

RESUMO

BACKGROUND: The survival rate for patients with relapsed and refractory acute myeloid leukaemia (R/R-AML) remains poor, and treatment is challenging. Chimeric antigen receptor T cells (CAR-T cells) have been widely used for haematologic malignancies. Current CAR-T therapies for acute myeloid leukaemia mostly target myeloid-lineage antigens, such as CD123 and CD33, which may be associated with potential haematopoietic toxicity. As a lineage-specific receptor, CD7 is expressed in acute myeloid leukaemia cells and T cells but is not expressed in myeloid cells. Therefore, the use of CD7 CAR-T cells for R/R-AML needs to be further explored. METHODS: In this report, immunohistochemistry and flow cytometry were used to analyse CD7 expression in clinical samples from R/R-AML patients and healthy donors (HDs). We designed naturally selected CD7 CAR-T cells to analyse various functions and in vitro antileukaemic efficacy based on flow cytometry, and xenograft models were used to validate in vivo tumour dynamics. RESULTS: We calculated the percentage of cells with CD7 expression in R/R-AML patients with minimal residual disease (MRD) (5/16, 31.25%) from our institution and assessed CD7 expression in myeloid and lymphoid lineage cells of R/R-AML patients, concluding that CD7 is expressed in T cells but not in myeloid cells. Subsequently, we designed and constructed naturally selected CD7 CAR-T cells (CD7 CAR). We did not perform CD7 antigen knockdown on CD7 CAR-T cells because CD7 molecule expression is naturally eliminated at Day 12 post transduction. We then evaluated the ability to target and kill CD7+ acute myeloid leukaemia cells in vitro and in vivo. Naturally selected CD7 CAR-T cells efficiently killed CD7+ acute myeloid leukaemia cells and CD7+ primary blasts of R/R-AML patients in vitro and significantly inhibited leukaemia cell growth in a xenograft mouse model. CONCLUSION: Naturally selected CD7 CAR-T cells represent an effective treatment strategy for relapsed and refractory acute myeloid leukaemia patients in preclinical studies.


Assuntos
Leucemia Mieloide Aguda , Receptores de Antígenos Quiméricos , Humanos , Camundongos , Animais , Receptores de Antígenos Quiméricos/metabolismo , Imunoterapia Adotiva , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Antígenos CD7/metabolismo , Linfócitos T
18.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499220

RESUMO

The V-domain Ig suppressor of T-cell activation (VISTA) has been recognized as a critical negative regulator of antitumor immune response and is gaining growing interest as a potential pharmacological target in immunotherapy. This molecule is highly expressed in hematopoietic stem cells and myeloid compartment, and it has been found upmodulated in acute myeloid leukemia (AML). However, VISTA-associated immune features are relatively unexplored in myeloid malignancies. Herein, we aimed to explore whether this immune checkpoint regulator could play a role in the generation of an immune escape environment in AML patients. We characterized VISTA mRNA expression levels in leukemia cell lines and in large publicly available cohorts of specimens from bone marrow of healthy individuals and AML patients at diagnosis by deploying bulk and single-cell RNA sequencing. We also defined the correlations with leukemia-associated burden using results of whole-exome sequencing of AML samples at disease onset. We showed that VISTA expression linearly increased across the myeloid differentiation tree in normal hematopoiesis. Accordingly, its transcript was highly enriched in AML cell lines as well as in AML patients at diagnosis presenting with myelomonocytic and monocytic differentiation. A strong correlation was seen with NPM1 mutations regardless of the presence of FLT3 lesions. Furthermore, VISTA expression levels at baseline correlated with disease recurrence in patients with normal karyotype and NPM1 mutations, a subgroup traditionally considered as favorable according to current diagnostic schemes. Indeed, when compared to patients with long-term remission (>5 years after standard chemotherapy regimens), cases relapsing within 2 years from diagnosis had increased VISTA expression in both leukemia and T cells. Our results suggest a rationale for developing VISTA-targeted therapeutic strategies to treat molecularly defined subgroups of AML patients to prevent disease recurrence and treatment resistance.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Proteínas Nucleares/genética , Prognóstico , Mutação , Nucleofosmina , Leucemia Mieloide Aguda/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética
19.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499032

RESUMO

In a protein, point mutations associated with diseases can alter the native structure and provide loss or alteration of functional levels, and an internal structural network defines the connectivity among domains, as well as aggregate/soluble states' equilibria. Nucleophosmin (NPM)1 is an abundant nucleolar protein, which becomes mutated in acute myeloid leukemia (AML) patients. NPM1-dependent leukemogenesis, which leads to its aggregation in the cytoplasm (NPMc+), is still obscure, but the investigations have outlined a direct link between AML mutations and amyloid aggregation. Protein aggregation can be due to the cooperation among several hot spots located within the aggregation-prone regions (APR), often predictable with bioinformatic tools. In the present study, we investigated potential APRs in the entire NPM1 not yet investigated. On the basis of bioinformatic predictions and experimental structures, we designed several protein fragments and analyzed them through typical aggrsegation experiments, such as Thioflavin T (ThT), fluorescence and scanning electron microscopy (SEM) experiments, carried out at different times; in addition, their biocompatibility in SHSY5 cells was also evaluated. The presented data clearly demonstrate the existence of hot spots of aggregation located in different regions, mostly in the N-terminal domain (NTD) of the entire NPM1 protein, and provide a more comprehensive view of the molecular details potentially at the basis of NPMc+-dependent AML.


Assuntos
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Proteínas Nucleares/metabolismo , Nucleofosmina/genética
20.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555547

RESUMO

Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion of stem and myeloid progenitor cells. Immunotherapy has revolutionized the care for other cancers such as solid tumors and lymphomas, and has the potential to effectively treat AML. There has been substantial progress in the developments of immunotherapeutic approaches for AML over the last several years, including the development of antibodies that further increase the innate immunogenicity of leukemia cells by the inhibition of NKG2D ligand-particularly MICA and MICB-shedding, chimeric proteins such as IL-15 superagonist that expand natural killer (NK) cells, blockers of immunologic checkpoints such as NKG2A, and chemicals that indirectly increase expression of immune stimulatory proteins in leukemia stem cells. Furthermore, cellular therapies have been designed to enable alloreactive immunity by allogeneic NK cells or target leukemia antigens such as mutated NPM1. These immunotherapeutic approaches have demonstrated remarkable efficacies in preclinical studies and have successfully transitioned to early phase clinical trials, to establish safety and initial signal of clinical activity. Here, we briefly discuss some of the most recent and impactful developments in the AML immunotherapy field and provide our perspectives for the future directions of this exciting and new therapeutic opportunity.


Assuntos
Leucemia Mieloide Aguda , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células Matadoras Naturais , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...